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It is recognized now that a variety of real-life phenomena ranging from diffusion of cold atoms to the
motion of humans exhibit dispersal faster than normal diffusion. Lévy walks is a model that excelled in
describing such superdiffusive behaviors albeit in one dimension. Here we show that, in contrast to
standard random walks, the microscopic geometry of planar superdiffusive Lévy walks is imprinted in the
asymptotic distribution of the walkers. The geometry of the underlying walk can be inferred from
trajectories of the walkers by calculating the analogue of the Pearson coefficient.
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Introduction.—The Lévy walk (LW) model [1–3] was
developed to describe spreading phenomena that were not
fitting the paradigm of Brownian diffusion [4]. Still looking
like a random walk, see Fig. 1, but with a very broad
distribution of the excursions’ lengths, the corresponding
processes exhibit dispersal faster than in the case of normal
diffusion. Conventionally, this difference is quantified with
the mean squared displacement (MSD), hr2ðtÞi ∝ tα, and
the regime with α > 1 is called superdiffusion. Examples of
such systems range from cold atoms moving in dissipative
optical lattices [5] to T cells migrating in the brain tissue
[6]. Most of the existing theoretical results, however, were
derived for one-dimensional LW processes [3]. In contrast,
real-life phenomena—biological motility (from bacteria [7]
to humans [8] and autonomous robots [9,10]), animal
foraging [11,12], and search [13]—happen in two dimen-
sions. Somewhat surprisingly, generalizations of the Lévy
walks to two dimensions are still virtually unexplored.
In this work we extend the concept of LWs to two

dimensions. Our main finding is that the microscopic
geometry of planar Lévy walks reveals itself in the shape
of the asymptotic probability density functions (PDFs)
Pðr; tÞ of finding a particle at position r at time t after it was
launched from the origin. This is in sharp contrast to the
standard 2D random walks, where, by virtue of the central
limit theorem [14], the asymptotic PDFs do not depend on
the geometry of the walks and have a universal form of the
two-dimensional Gaussian distribution [15,16].
Models.—We begin with a core of the Lévy walk concept

[1,2]: A particle performs ballistic moves with constant
speed, alternated by instantaneous reorientation events, and
the length of the moves is a random variable with a power-
law distribution. Because of the constant speed v0, the
length li and duration τi of the ith move are linearly
coupled, li ¼ v0τi. As a result, the model can be equally

well defined by the distribution of ballistic move (flight)
times:

ψðτÞ ¼ 1

τ0

γ

ð1þ τ=τ0Þ1þγ ; τ0; γ > 0: ð1Þ

Depending on the value of γ, it can lead to a dispersal
α ¼ 1, typical for normal diffusion (γ > 2), and very long
excursions leading to the fast dispersal with 1 < α ≤ 2 in
the case of superdiffusion (0 < γ < 2). At each moment
of time t the finite speed sets the ballistic front beyond
which there are no particles. Below, we consider three
intuitive models of two-dimensional superdiffusive
dispersals.
(a) The simplest way to obtain a two-dimensional Lévy

walk out of the one-dimensional one is to assume that the
motions along each axis, x and y, are identical and
independent one-dimensional LW processes, as shown in
Fig 1(a). The two-dimensional PDF, Pðr; tÞ, rðtÞ ¼ fxðtÞ;
yðtÞg, of this product model is given by the product of two
one-dimensional LW PDFs, Pprodðr; tÞ ¼ PLWðx; tÞ×
PLWðy; tÞ. On the microscopic scale, each ballistic event
corresponds to the motion along either the diagonal or
antidiagonal. Every reorientation only partially erases the
memory about the last ballistic flight: while the direction of
the motion along one axis could be changed, the direction
along the other axis almost surely remains the same. The
ballistic front has the shape of a square with borders given
by jxj ¼ jyj ¼ v0t.
(b) In the XY model, a particle is allowed to move only

along one of the axes at a time. A particle chooses a random
flight time τ from Eq. (1) and one out of four directions.
Then it moves with a constant speed υ0 along the chosen
direction. After the flight time has elapsed, a new random
direction and a new flight time are chosen. This process is
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sketched in Fig. 1(b). The ballistic front is a square defined
by the equation jxj þ jyj ¼ v0t.
(c) The uniform model follows the original definition by

Pearson [17]. A particle chooses a random direction,
parametrized by the angle ϕ, uniformly distributed in the
interval ½0; 2π�, and then moves ballistically for a chosen
flight time. The direction of the next flight is chosen
randomly and independently of the direction of the
elapsed flight. The corresponding trajectory is sketched

in Fig. 1(c). The ballistic front of the model is a
circle jrj ¼ v0t.
Governing equations.—We now derive equations

describing the density of particles for the XY and uniform
models. The following two coupled equations govern the
space-time evolution of the PDF [3]:

νðr; tÞ ¼
Z

t

0

dτ
Z

dvνðr − vτ; t − τÞψðτÞhðvÞ

þ δðrÞδðtÞ;

Pðr; tÞ ¼
Z

t

0

dτ
Z

dvνðr − vτ; t − τÞΨðτÞhðvÞ: ð2Þ

The first equation describes the events of velocity reor-
ientation [marked by an open circle in Figs. 1(b) and 1(c)],
where the density νðr; tÞ allows us to count the number of
particles, νðr; tÞdrdt, whose flights ended in the interval
½r; rþ dr� during the time interval ½t; tþ dt�. The velocity
at each reorientation event is chosen from the model-
specific velocity distribution hðvÞ and is statistically
independent of the flight time. The second equation relates
the events of velocity reorientations to the density of the
particles. Here, ΨðτÞ is the probability to remain in flight
for time τ, ΨðτÞ ¼ 1 −

R
τ
0 ψðt0Þdt0. The formal solution of

the transport equations can be found via a combined
Fourier-Laplace transform [18]:

Pðk; sÞ ¼
R
dvΨðsþ ik · vÞhðvÞ

1 −
R
dvψðsþ ik · vÞhðvÞ : ð3Þ

This is a general answer for a random walk process in
arbitrary dimensions with an arbitrary velocity distribution,
where k and s are coordinates in Fourier and Laplace space
corresponding to r and t, respectively (but not for the
product model, which is described by two independent
random walk processes). The microscopic geometry of the
process can be captured with hðvÞ. For the XY model we
have hXYðvÞ ¼ ½δðvyÞδðjvxj − v0Þ þ δðvxÞδðjvyj − v0Þ�=4,
while for the uniform model it is huniformðvÞ ¼
δðjvj − v0Þ=2πv0. The technical difficulty is to find the
inverse transform of Eq. (3). We therefore employ the
asymptotic analysis [1–3] to switch from the Fourier-
Laplace representation to the space-time coordinates and
analyze model PDFs Pðr; tÞ in the limit of large r and
t [18].
In the diffusion limit γ > 2, the mean squared flight

length is finite. In the large time limit, the normalized
covariance of the flight components in all three models is
the identity matrix, and so the cores of their PDFs are
governed by the vector-valued central limit theorem [25]
and have the universal Gaussian shape Pðr; tÞ≃
1

4πDt e
−r2=4Dt, where D ¼ v20τ0=½2ðγ − 2Þ� (for the product

model the velocity has to be rescaled to v0=
ffiffiffi
2

p
). For the

outer parts of the PDFs some bounds can be obtained based

FIG. 1. Three models of Lévy walks on a plane. (a) In the
product model, x and y coordinates of a particle change according
to two independent 1D Lévy walks along the coordinate axes.
Whenever a direction of motion of one of the two LWs changes,
there is a kink in the trajectory (∘). The ballistic front is given by
jxj ¼ jyj ¼ v0t (red line). (b) In the XY model, a particle is
allowed to move with a speed v0 only along one axis at a time
which is chosen randomly at the reorientation points ∘. The
ballistic front is specified by the condition jxj þ jyj ¼ v0t. (c) In
the uniform model, at each reorientation point ∘, a particle
chooses a random direction of motion, specified by an angle
ϕ uniformly distributed in the interval ½0; 2π�, and then moves
with a constant speed v0. The ballistic front is a circle of the
radius v0t. (d–f) Trajectories produced by the models (a–c)
after time t ¼ 106. Note that on the large time scale the
trajectories of the product and XY models appear to be similar.
The insets show trajectories at t ¼ 103. The parameters are
γ ¼ 3=2, υ0 ¼ 1, and τ0 ¼ 1.
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on a theory developed for sums of random variables with
slowly decaying regular distributions [26].
The difference between the three walks becomes sharp in

the regime of sub-ballistic superdiffusion, 1 < γ < 2.
Figure 2 presents the PDFs of the three models
obtained by sampling [18] over the corresponding
stochastic processes for t ¼ 104 ≫ τ0 ¼ 1. These results
reveal a striking feature, namely, that the geometry
of a random walk is imprinted in its PDF. This is very
visual close to the ballistic fronts; however, as we show
below, the nonuniversality is already present in the
PDF cores.
The PDF of the product model is the product of the PDFs

for two identical one-dimensional LWs [3]. In the case of
the XY model, the central part of the propagator can be
written in Fourier-Laplace space as PXYðkx; ky; sÞ≃
ðsþ Kγ

2
jkxjγ þ Kγ

2
jkyjγÞ−1, where Kγ ¼ Γ½2 − γ�j cosðπγ=

2Þjτγ−10 vγ0 [18]. By inverting the Laplace transform, we
also arrive at the product of two characteristic functions
of one-dimensional Lévy distributions [27,28]:
PXYðkx; ky; tÞ≃ e−tKγ jkxjγ=2e−tKγ jkyjγ=2. In this case the
spreading of the particles along each axis happens twice
as slow (note a factor 1=2 in the exponent) than in the one-
dimensional case; each excursion along an axis acts as a
trap for the motion along the adjacent axis, thus reducing
the characteristic time of the dispersal process by a factor of
2. As a result, the bulk PDF of the XY model is similar to
that of the product model after the velocity rescaling,
~v0 ¼ v0=21=γ. This explains why on the macroscopic scales
the trajectory of the product model, see Fig. 1(e), looks
similar to that of the XY model. The difference between the
PDFs of these two models appears in the outer parts of
the distributions [see Figs. 2(a) and 2(b)]; it cannot be
resolved with the asymptotic analysis, which addresses
only the central cores of the PDFs. The PDF of the XY
model has a crosslike structure with sharp peaks at the
ends; see Fig. 3(a). The appearance of these Gothic-like
“flying buttresses” [29], capped with “pinnacles,” can be

understood by analyzing the process near the ballistic
fronts [18].
For the uniform model we obtain Puniformðr; tÞ≃

ð1=2πÞ R∞
0 J0ðkrÞe−t ~Kγkγkdk, where ~Kγ ¼ τγ−10 vγ0

ffiffiffi
π

p
Γ½2−

γ�=Γ½1þ γ=2�jΓ½ð1 − γÞ=2�j, and J0ðxÞ is the Bessel func-
tion of the first kind (see Ref. [18] for more details).
Different from the product and XY models, this is a radially
symmetric function that naturally follows from the micro-
scopic isotropy of the walk. Mathematically, the expression
above is a generalization of the Lévy distribution to two
dimensions [27,30]. However, from the physics point of
view, it provides the generalization of the Einstein relation
and relates the generalized diffusion constant ~Kγ to the
physical parameters of the 2D process, v0, τ0, and γ. In
Fig. 3(b) we compare the simulation results for the PDF of
the uniform model with the analytical expression above.
The regime of ballistic diffusion occurs when the mean

flight time diverges, 0 < γ < 1 [20,21]. Long flights
dominate the distribution of particles, and this causes
the probability concentration at the ballistic fronts. Since
the latter are model specific, see Fig. 1, the difference in the
microscopic schematization reveals itself in the PDFs even
more clearly [18].
Pearson coefficient.—The difference in the model PDFs

can by quantified by looking into moments of the corre-
sponding processes. The most common is the MSD,
hr2ðtÞi ¼ R

drr2Pðr; tÞ. Remarkably, for the XY and uni-
form models, the MSD is the same as for the 1D Lévy walk
with the distribution of flight times given by Eq. (1) [18].
The MSD, therefore, does not differentiate between the XY
and uniform random walks (and, if the velocity v0 is not
known a priori, the product random walks as well). Next
are the fourth-order moments, including the cross-moment
hx2ðtÞy2ðtÞi. They can be evaluated analytically for all three
models [18]. The ratio between the cross-moment and the
product of the second moments, PCðtÞ ¼ hx2ðtÞy2ðtÞi=
hx2ðtÞihy2ðtÞi, is a scalar characteristic similar to the
Pearson coefficient [31,32]. In the asymptotic limit and
in the most interesting regime of sub-ballistic

FIG. 2. Probability density functions of the three models in the superdiffusive regime. The distributions are plotted on a log scale for
the time t=τ0 ¼ 104. The PDF for the product model (a) was obtained by multiplying PDFs of two identical one-dimensional LW
processes. The PDFs for the XY (b) and uniform (c) models were obtained by sampling over 1014 realizations. The parameters are
γ ¼ 3=2, v0 ¼ 1, and τ0 ¼ 1.
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superdiffusion, 1 < γ < 2, this generalized Pearson coef-
ficient equals

PCðtÞ ¼

8>>><
>>>:

1 product model
γΓ½4−γ�2
Γ½7−2γ� XY model

ð2−γÞ2ð3−γÞ2
2ð4−γÞð5−γÞðγ−1Þ

�
t
τ0

�
γ−1

uniform model:

ð4Þ

The PC parameter is distinctly different for the three
processes: the product model has PCðtÞ≡ 1, for the XY
model it is a constant smaller than 1 for any γ ∈�1; 2� and
does not depend on υ0 and τ0, while for the uniform model
it diverges in the asymptotic limit as tγ−1. Figure 3 presents
PCðt ¼ 5 × 105Þ of the XY [Fig. 3(c)] and uniform
[Fig. 3(d)] models obtained by samplings over 1014

stochastic realizations. We attribute the deviation of the
numerical results for the XY model from the analytical
result Eq. (4) near γ ≲ 2 to a slow convergence to the
asymptotic limit PCðt → ∞Þ [18].
PC can be used to find how close a particular two-

dimensional superdiffusive process is to each of the
models. The value of γ can be estimated from the MSD
exponent α, γ ¼ 3 − α. To test this idea we investigate a
classical two-dimensional chaotic Hamiltonian system
[22,23] that exhibits a superdiffusive LW-like dynamics
[4,23]. In this system, a particle moves in a dissipationless
egg-crate potential and, depending on its total energy,
exhibits normal or superdiffusive dispersals [18]. It is
reported in Ref. [23] that, for the energy E ¼ 4, the
dispersal is strongly anomalous, while in Ref. [22] it is
stated that the diffusion is normal with α ¼ 1, within the
energy range E ∈ ½5; 6�. We sampled the system dynamics
for two energy values, E ¼ 4 and 5.5. The obtained MSD
exponents are 1.62� 0.04 and 1� 0.02, respectively. We
estimated the PCðtÞ for the time t ¼ 105 and obtained the
values 0.35 and 0.997. The analytical value of the PC
(4) for the XY process with γ ¼ 3 − 1.62 ¼ 1.38 is 0.355.
This PC value thus suggests that we are witnessing a
superdiffusive XY Lévy walk. The numerically sampled
PDF of the process [18], see inset in Fig. 3(c), confirms this
conjecture.
In contrast to the uniform model, the PC parameters for

the XY and product models are not invariant with respect to
rotations of the reference frame, fx0; y0g ¼ fx cosϕ−
y sinϕ; x sinϕþ y cosϕg. While in theory the frame can
be aligned with the directions of maximal spread exhibited
by an anisotropic particle density at long times, see
Figs. 2(a) and 2(b), it might be not so evident in real-life
settings. The angular dependence of the PC can be
explored by rotating the reference frame by an angle
ϕ ∈ ½0; π=2�, starting from some initial orientation, and
calculating dependence PC½ϕ�. The result can then be
compared to analytical predictions for the asymptotic limit
where the three models show different angular dependen-
cies [18]. In addition, the time evolution of PC½ϕ� is
quantitatively different for the product and XY models
and thus can be used to discriminate between the two
processes. In the product model, the dependence PC½ϕ�
changes with time qualitatively. For short times it reflects
the diagonal ballistic motion of particles and for longer
times attains the shape characteristic to the XY model [18],
an effect that we could already anticipate from inspecting
the trajectories in Fig. 1(d). In the XY model the positions
of minima and maxima of PC½ϕ� are time independent.
Conclusion.—We have considered three intuitive models

of planar Lévy walks. Our main finding is that the geometry
of a walk appears to be imprinted into the asymptotic
distributions of walking particles, both in the core of the
distribution and in its tails. We also proposed a scalar
characteristic that can be used to differentiate between the

FIG. 3. Statistical features of the models and their Pearson
coefficients. (a), (b) The section of the PDF of the XY model (a)
and uniform model (b) along x axis. The results of the statistical
sampling for t ¼ 104 (solid black line) are compared with the
analytical results (dashed lines): for the XY model it is a product
of the one-dimensional Lévy distribution and the function
t1=γðt − x=vÞ−1=γ [18]; for the uniform model it is a two-
dimensional Lévy distribution. (c),(d) Pearson coefficients for
three models. Lines correspond to the asymptotic values Eq. (4),
symbols present the results of statistical sampling for the time
t ¼ 105 (error bars are smaller then the symbol size). The PC’s
for the chaotic Hamiltonian diffusion in an egg-crate potential
[23] at time t ¼ 105, for energy values E ¼ 4 (left triangle) and
E ¼ 5.5 (right triangle), was obtained by sampling over 105

independent realizations. The values of the exponent γ, 1.38 and
2, were extracted from the MSD exponent α, γ ¼ 3 − α. The inset
shows the PDF of the process for t ¼ 103 sampled over 108

realizations.
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types of walks. Further analytical results can be obtained
for arbitrary velocity distribution and dimensionality of the
problem [33]. For example, it is worthwhile to explore the
connections between underlying symmetries of 2D
Hamiltonian potentials and the symmetries of the emerging
LWs [34].
The existing body of results on two-dimensional super-

diffusive phenomena demonstrates that the three models we
considered have potential applications. A spreading of cold
atoms in a two-dimensional dissipative optical potential
[35] is a good candidate for a realization of the product
model. Lorentz billiards [36–38] reproduce the XY Lévy
walk with exponent γ ¼ 2. The uniform model is relevant
to the problems of foraging, motility of microorganisms,
and mobility of humans [3,11,12,39,40]. On the physical
side, the uniform model is relevant to a Lévy-like super-
diffusive motion of a gold nanocluster on a plane of
graphite [41] and a graphene flake placed on a graphene
sheet [42]. LWs were also shown, under certain conditions,
to be the optimal strategy for searching random sparse
targets [13,43]. The performance of searchers using differ-
ent types of 2D LWs (for example, under specific target
arrangements) is a perspective topic [44]. Finally, it would
be interesting to explore a nonuniversal behavior of
systems driven by different types of multidimensional
Lévy noise [45–47].
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