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Abstract

Physicists are nowadays able to produce and measure light pulses with durations on the
inconceivably small scale of attoseconds. While this allows them to probe and explore the
dynamics of the most fundamental processes of the physical world on ever shorter time
scales, the explicit nature of time itself still remains a mystery even today. This unresolved
issue divides the scientific community into two distinct camps. Those in the first camp
view time as a fundamental entity of nature, while those in the second camp view it as
an e�ective or emergent quantity derived from more elementary principles. Proponents
of the latter view advocate for a static global state as the fundamental entity, in which
the whole encompasses a principal “system” and a “clock” as separate subsystems. In this
context, the central notion is that of a state of the principal system being conditioned on
the physical state of the clock. As a result, time or, more concretely, dynamics emerges
from the inherent correlations between both subsystems contained in the global state.
Two prominent quantum mechanical approaches for this “timeless” theory have been de-
veloped during the last decades. The first relies on a semiclassical treatment in the form
of Born-Oppenheimer and Wentzel-Kramers-Brillouin approximations, but allows one to
include interactions between system and clock. A second treatment, devised by Page and
Wootters, works in abstract Hilbert space instead. Unfortunately, it is as of yet unable to
generally deal with interactions and often relies on Hamiltonians of a special form.

The main objective of this thesis is to close the gap between both approaches through con-
struction of an overarching framework in full generality, without relying on specific choices
for the underlying subsystems or the Hamiltonians involved. To this end, we single out
three central principles on which the previous approaches build, namely a global energy
constraint, the existence of subsystems and a definition of the conditional state of the prin-
cipal system. Based on them, we derive unitary system dynamics and the time-dependent
Schrödinger equation with an exact memoryless e�ective potential from a timeless quan-
tummechanical formulation, namely the time-independent Schrödinger equation. We find
that the traditionally presupposed time is replaced by a scalar path variable parametrizing
a global state invariance generated by the energy constraint. Yet, this derivation deals
exclusively with pure states and, to widen its scope, we extend the timeless approach to
quantummechanical mixed states and classical probability densities as well. A key concept
is the minimization of a unitarity-violating term in the evolution equations, appearing in
the presence of an interaction term between system and clock. Useful approximations and
analytical and numerical examples complement our results and corroborate our deriva-
tions. As a further demonstration of the versatility of our approach, we explain how a
long-suspected connection between imaginary-time formulations and inverse temperature
in canonical ensembles could be traced to a common physical origin. Finally, we discuss the
consequences of our newly developed framework, especially similarities to conventional
open systems theory, and conclude with an outlook for future investigations.



Kurzfassung

Heutzutage sind Physiker in der Lage, Lichtimpulse mit einer unvorstellbar kurzen Dau-
er im Attosekundenbereich zu erzeugen und zu messen. Dies ermöglicht es ihnen, die
Dynamik der grundlegendsten Prozesse der physikalischen Welt auf immer kürzeren Zeits-
kalen zu untersuchen und zu erforschen. Jedoch bleibt die genaue Natur der Zeit selbst
bis heute ein Rätsel. Diese ungelöste Frage spaltet die wissenschaftliche Gemeinschaft
in zwei unterschiedliche Lager. Die Vertreter des ersten Lagers betrachten Zeit als eine
grundlegende Einheit der Natur, während die Vertreter des zweiten Lagers sie als eine
e�ektive oder emergente Größe betrachten, die sich aus elementareren Prinzipien ablei-
ten lässt. Letztere plädieren für einen statischen Gesamtzustand als grundlegende Einheit,
wobei das Gesamtsystem ein Primär-„System“ und eine „Uhr“ als getrennte Teilsysteme
umfasst. In diesem Zusammenhang ist der zentrale Gedanke ein Zustand des Primärsys-
tems, welcher durch den physikalischen Zustand der Uhr bedingt ist. Infolgedessen ergibt
sich Zeit oder, konkreter gesagt, Dynamik aus den inhärenten Korrelationen zwischen den
beiden im Gesamtzustand enthaltenen Teilsystemen. In den letzten Jahrzehnten wurden
zwei prominente quantenmechanische Ansätze für diese „zeitlose“ Theorie entwickelt.
Der erste stützt sich auf eine semiklassische Behandlung in Form von Born-Oppenheimer-
und Wentzel-Kramers-Brillouin-Näherungen, erlaubt aber die Einbeziehung von Wechsel-
wirkungen zwischen System und Uhr. Eine zweite Herangehensweise, die von Page und
Wootters entwickelt wurde, arbeitet hingegen im abstrakten Hilbertraum. Sie ist jedoch
noch nicht in der Lage Wechselwirkungen allgemein zu berücksichtigen und stützt sich
häufig auf Hamiltonoperatoren spezieller Form.

Das Hauptziel dieser Arbeit ist es, die Lücke zwischen beiden Herangehensweisen zu schlie-
ßen, indem ein übergreifender Ansatz in voller Allgemeinheit konstruiert wird, ohne dabei
bestimmte Festlegungen für die zugrunde liegenden Teilsysteme oder Hamiltonoperatoren
tre�en zu müssen. Zu diesem Zweck heben wir drei zentrale Prinzipien hervor, auf denen
bisherige Ansätze basieren: eine globale Energiebeschränkung, die Existenz von Teilsyste-
men und eine Definition des bedingten Zustands des primären Systems. Darauf aufbau-
end leiten wir die unitäre Systemdynamik und die zeitabhängige Schrödingergleichung
mit einem exakten, e�ektiven Potential ohne Gedächtnis aus einer zeitlosen quantenme-
chanischen Formulierung, der zeitunabhängigen Schrödingergleichung, her. Wir stellen
fest, dass die traditionell vorausgesetzte Zeit durch eine skalare Pfadvariable ersetzt wird,
welche eine durch die Energiebeschränkung erzeugte globale Zustandsinvarianz parame-
trisiert. Diese Herleitung befasst sich jedoch ausschließlich mit reinen Zuständen. Um
ihren Anwendungsbereich zu erweitern, dehnen wir den zeitlosen Ansatz auch auf quan-
tenmechanische, gemischte Zustände und klassische Wahrscheinlichkeitsdichten aus. Ein
Schlüsselkonzept ist dabei die Minimierung eines die Unitarität verletzenden Terms in den
Evolutionsgleichungen, der bei Vorhandensein eines Wechselwirkungsterms zwischen Sys-
tem und Uhr auftritt. Nützliche Näherungen sowie analytische und numerische Beispiele
ergänzen unsere Ergebnisse und bestätigen unsere Herleitungen. Als weitere Demonstra-
tion der Vielseitigkeit unseres Ansatzes zeigen wir, wie eine lange vermutete Verbindung
zwischen Imaginärzeitformulierungen und inverser Temperatur in kanonischen Ensembles
auf einen gemeinsamen physikalischen Ursprung zurückgeführt werden kann. Abschlie-
ßend diskutieren wir die Konsequenzen unseres neu entwickelten Ansatzes, insbesondere
die Ähnlichkeiten zur konventionellen Theorie o�ener Systeme, und geben einen Ausblick
auf zukünftige Untersuchungen.
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Chapter �

Introduction

A ����� �������� ����.

This is undisputed even in the non-scientific community and may in fact seem trivial due
to our everyday experience. But what exactly is meant by such a statement? Implicitly,
we almost always assume having a universally shared understanding of what constitutes a
timepiece or clock, the grammatical subject of said phrase. But in fact, the actual meaning
can be much more complex.

The deliberate act of keeping time is probably as old as humanity itself [�] and has
played a critical role in technological advances throughout human history [�]. One of
the oldest pieces of evidence for man-made structures with calendrical function dates
back approximately ��,��� years [�] and represents just one of many historical records
demonstrating the need and the ability of human civilization to track the passage of time.
Other examples include the famous Stonehenge monument [�,�], the Nebra Sky Disc [�],
the Mayan calendar [�,�], ancient Egyptian sundials [�], early depictions of hourglasses in
the fourteenth century [�], the fifteenth-century Prague astronomical clock [�] and the first
marine chronometer by Harrison from the eighteenth century [��, ��], to name but a few.
Central to many early timekeeping devices is the reliance on the motion of the Sun across
the sky, indicating durations of either days or years due to the Earth’s rotation and its orbit
around the Sun, respectively. The Sun’s influence is even more far-reaching considering
the fact that biological life can have a built-in circadian clock [��], which has synchronized
with an external stimulus (day-night cycle) through evolutionary development. However,
scientific breakthroughs in the twentieth century enabled technological advancements,
which have ultimately led to the birth of atomic clocks. Their exceedingly high relative
accuracies (Fig. �.�) finally resulted in the departure from celestial-based clocks as primary
sources for standard time durations. This progress in precision manifested itself in the
adoption of a new standard definition for the second in ����, based on the transition
between hyperfine-split caesium groundstate levels [��]. Contemporary atomic clocks
allow precise timekeeping with fractional uncertainties on the order of 10

�18 [��–��],
which, for comparison, is roughly the equivalent of a deviation of one second or less over
the time span of the currently observed age of the universe (⇡ 4.35⇥ 10

17
s [��]). Not

only does modern quantum physics allow a stable tracking of time over longer and longer
durations, but it also facilitates experimental techniques to explore fundamental physical
processes at the other extreme end of the scale, namely for extraordinarily short time spans
(Fig. �.�). Nowadays, researchers are capable of producing ultrashort light pulses on the
scale of attoseconds (10

�18
s), providing means to probe electronic motion on an atomic

scale [��]. Accordingly, such short pulses also require sophisticated timingmechanisms not
only for the determination of their duration [��], but also for the measurement of ultrashort
processes [��–��]. In general, the working concept of all these clocks is a combination of

�
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(a) (b)

(c)

Figure �.� – (a) The historical development of timekeeping devices has seen rapid
improvements in terms of clock accuracy over the last centuries. (b) Since their
inception, atomic clocks have been progressively refined and, as a result, their frac-
tional uncertainties have been reduced exponentially over the last decades. (c) The
typical transient time scales for electromagnetic pulses nowadays achievable in ul-
trafast science have been pushed toward the attosecond regime and are currently at
the doorstep of the zeptosecond domain [��,��]. Reprinted from Refs. [��,��,��].

a frequency standard and a counting apparatus [�,��,��]. Yet, one easily overlooked, but
non-trivial aspect must be mentioned as well, namely the measurement of timekeeping
instruments by an observer. What underlies the process of obtaining information about
the clock state is the extended interaction over some period of time, due to a generic
coupling between clock and observer. The outcome is a correlation among clock and
clock-watcher, such that the state of the clock is associated with the state of an observer
that has information about the clock state. A continuous buildup of this association can
only take place under the premise of temporal evolution and, hence, reveals the fact that
time must be a presupposed notion in any of these settings. An appropriate portrayal of
the situation is described in Ref. [��] as “the passage of time is estimated via the evolution
of a reference system—a clock”. As a major consequence, these clocks do not constitute a
temporal source in the sense of providing time as a secondary derived notion, which opposes
the meaning of the verb in our opening statement. Although the working principles of
such timekeeping devices have been examined from a very fundamental point of view in
the literature [��–��], we are instead more concerned with the origin of time itself in
this thesis. The necessity to draw this distinction also arises in Ref. [��], in which Erker
et al. separate their work on autonomous quantum clocks from ones that rather seek to
explore the emergence of time. Due to the operational character, the timekeeping devices
mentioned above only register time and we accordingly label them “operational clocks”.
This classification is essential in order to distinguish them from clocks of a complementary
class, one which we call “fundamental clocks”. Their defining property is a functional
existence independent of a concept of time or, in other words, they are a primitive notion

�



logically prior to time. Such a di�erentiation is usually not made in the literature, but may
help to avoid any confusion about the collective use of the word “clock”. The di�erence
between both classes is illustrated by the relations

time ) operational clock ,

fundamental clock ) time .

Certainly, a more precise nomenclature would be useful, but the ambiguous name “clock”
has already been established in the field of time emergence as well. Clocks of the second
type are the main subject of this thesis and, therefore, we omit the adjective “fundamental”
and simply refer to them as “clocks” for the remainder of this thesis. At any rate, clocks
and time are always intertwined and it is mandatory to closer examine the concept of time,
the grammatical object of our introductory sentence.

The history of time in science is long and convoluted, making it di�cult to give a fully com-
prehensive review and we certainly do not attempt to do so. Yet, several great resources,
such as Refs. [��–��], have been published to provide extensive overviews and discussions
on the subject. According to historical records, the earliest accounts of time in a mainly
non-religious context were given by Greek scholars [��] more than two thousand years
ago, by the likes of Plato, Democritus and Aristotle. Subsequently, the view on time took a
winding path across multiple cultures in the following centuries [��,��] and despite some
religious influences, which are alien to today’s scientists, some ideas have influenced mod-
ern thinking about time [��]. A major historical milestone, for science in general, has been
the publication of Newton’s “Principia” in ���� [��], in which he famously proclaimed that
“absolute, true and mathematical time, of itself, and from its own nature, flows equably
without relation to anything external” [��]. This concept of an “absolute time” being
an immaterial property of nature [��], which was inspired by Newton’s predecessor Bar-
row [��,��], has been criticized not only by his contemporary Leibniz, but also by many
following scholars [��]. Leibniz’s own views, exhibited in the famous Leibniz-Clarke cor-
respondence [��], are nowadays taken as the beginning of “relationism” [��], a doctrine
embracing the notion of spatiotemporal relations among physical objects as basic elements
and, thus, replacing the concept of absolute space and time [��, ��]. As a characteristic
implication follows that “all motion is relative motion” [��], a principle that continues to be
relevant in physics to this day. Even the prominent relationist Mach influenced one of the
biggest theoretical breakthroughs in physics in the twentieth century [��]. Inspired by him,
Einstein discovered general relativity in ���� [��], in which the classical notions of space
and time are inseparably fused to four-dimensional “space-time”. Not only did entirely
new conceptual questions about time arise with this new theory about gravitation [��], but
the very foundation of classical mechanics was challenged by a simultaneously appearing
theoretical framework, rivaling most hitherto known physical conceptions.

The advent of quantum mechanics in the early twentieth century has severely changed
the landscape of physics and with it came a new scrutiny of the notions of space and
time [��–��]. Canonical quantization rules prescribe the promotion of position and mo-
mentum variables q and p to operator status, i.e., q̂ and p̂, respectively. One must be
cautious however, as the change from scalars to operators is only applied to position and
momentum of point particles and not to the static background coordinates [��]. This can
cause confusion, because not space itself is quantized, but position, which might have
been the origin of a decades-long uncertainty about whether time should be quantized or
not [��,��]. The quantum mechanical operator formalism also gave rise to the now well-
known commutation relation [q̂, p̂] = i~h, indicating the fundamental non-commutativity
of position and momentum. On the right-hand side of this relation appears the emblematic

�



� I�����������

representative of quantum mechanics, Planck’s reduced constant ~h with the dimension of
an action. As a consequence, the physical ability to measure position and momentum at
the same time is limited by nature and this feature is mathematically expressed by the
famous Heisenberg uncertainty �q ·�p � ~h/2. Right from the beginning of quantum me-
chanics [��], physicists have been seeking after formally equivalent statements for time, in
particular, a genuine operator t̂ for time and a corresponding uncertainty relation [��–��],
induced by a fundamental commutation relation similar to position and momentum. Yet,
time appears only as an external real-valued parameter in the arguments of a Schrödinger
wavefunction or Heisenberg operator. Dimensional analysis of action and time implies an
energy dimension for the operator being conjugate to a time operator. Since the Hamilton
function H obtains an operator status with Ĥ as well in the transition from classical to
quantum mechanics, the relation of interest becomes [ t̂, Ĥ] = i~h. In hindsight, the goal of
finding a time operator seems ill-posed, given that in classical mechanics normally a notion
of a time trajectory does not exists. As argued by Hilgevoord, there are only time-indicating
variables [��], which can be used to track change in time. In contrast, time-energy uncer-
tainties do exist, but they are not rooted in the existence of a fundamental commutation
relation with the Hamiltonian. Nonetheless, the apparent contradictions between space
and time have sparked a plethora of works about the nature of time. Already Schrödinger
noticed the indispensability of clocks to deal with time in quantum theory [��] and per-
formed a preliminary analysis of states of a physical clock. A concise historical review
of early day quantum mechanical treatments of time can be found in Ref. [��]. Inspired
by the idea that a change in time is associated with the motion of a physical degree of
freedom, researchers have attempted to raise the status of coordinate time to that of a
physical degree of freedom.

One of the simplest approaches to promote t to a time-indicating physical quantity can be
given for a classical non-relativistic particle [��] with the classical action integral

S =
Z t2

t1

dt


m
2

Å
dq
dt

ã2

� V (q, t)
�
=
Z t2

t1

dt L
Å

q,
dq
dt

, t
ã

(�.�)

and the non-relativistic Lagrange function L(q, dq/dt , t). As is standard in classical me-
chanics, the Legendre transformation

H(q, p, t)⌘ p
dq
dt
� L =

p2

2m
+ V (q, t) (�.�)

with momentum p ⌘ @ L/@ (dq/d�) yields the Hamilton function H in phase space coordi-
nates (q, p). Now, we promote t to a new physical degree of freedom, similar to a position,
and introduce a new fictitious time parameter �, such that the two position degrees of
freedom are q(�) and t(�). Then the new action S̃ for the extended system reads

S̃ =
Z �2

�1

d�
dt
d�


m
2

Å
dq/d�
dt/d�

ã2

� V (q, t)
�
⌘
Z �2

�1

d� L̃
Å

q, t,
dq
d�

,
dt
d�

ã
(�.�)

with the extended Lagrange function L̃(q, t, dq/d� , dt/d�). Consequently, the interaction
V (q, t) can now be seen as a coupling between two physical degrees of freedom instead
of a time-dependent potential acting only on one degree of freedom. The new extended
Lagrange function L̃ has an important property that distinguishes it from the original
Lagrange function L, namely its homogeneity in velocity. Any Lagrange function L̃ with
this property leads to a vanishing Hamilton function H̃ = 0 of the extended system. In
addition, the homogeneity implies a form-invariance of L̃ under the reparametrization s(�)
with ds/d� > 0, which is why such systems are called “time-reparametrization invariant”.

�



In this context, “time” refers to the parameter time � used in the action integral S̃. For the
non-relativistic Hamilton function used here, the momentum Pt associated with t gives the
constraint

C ⌘ Pt +
1

2m
p2 + V (q, t) = Pt + H = 0 . (�.�)

and the extended Hamilton function reads

H̃ =
dt
d�

C = 0 . (�.�)

The constraint C has been used as a starting point for quantization [��, ��]. Already
Dirac [��] noted that the function dt/d� is arbitrary as long as it is strictly positive and
no absolute time exists in such systems. For this reason, q(�) and t(�) have no phys-
ical meaning [��]. Choosing a specific (monotonically increasing) parametrization t(�)
and "deparametrizing" to q(t) provide the physically relevant relations. In other words,
only the relation between two physical degrees of freedom are of physical significance.
The known equation of motions for the original system can easily be recovered from
dq/dt = (dq/d�)/(dt/d�) = (@ H̃

�
@ p )/(dt/d�) = p/m for example.

Despite the simplistic nature of this example, it su�ces to reveal the most important char-
acteristics of the timeless approach in physics. Starting from the global perspective, we
find that the state of all physical degrees of freedom must be energy constraint. This is the
only requirement of a global character and any further conditions necessitate the pivotal
notion of a division of the whole into smaller parts. Although it may seem trivial, due to
the ubiquitous usage of subsystems in physics, the existence of at least one partitioning
into two separate entities is crucial for the emergence of time. Both parts are typically
designated “system” and “clock” (of the fundamental type). Of course, this does not ex-
clude the existence of a further subdivision into multiple smaller subsystems, but we are
mainly concerned with the bipartite setting. Due to the global energy constraint, such a
division induces correlations between clock and system, which are contained in the state
of the whole. Based on these correlations, the final essential of the timeless approach is
the notion of a system state depending on the state of the clock and, thus, provides a rela-
tional character. An illustrative example of celestial mechanics showing these attributes is
displayed in Figure �.�.

Considerations of this type have not only been applied in classical, but also in quantum
mechanics. Perhaps most notable in this regard, at least from a historical perspective, is
the book about quantum theory by Born and Jordan [��] from ����. The authors state that
a time-dependent Hamiltonian can only be an approximate calculational tool for a smaller
part of a larger closed system, for which exact treatments are possible. Furthermore, they
assert that any open system can be completed to a closed system by means of append-
ing a second system, which can act as a clock and provide time for the principal system.
Although their analysis was only conceptual in nature, it has already anticipated modern
approaches appearing decades later. It is rather astounding that Born and Jordan’s view
used to be largely ignored [��].

The search for an emergent notion of time appears most prominently in the context of
gravity research, where the canonical form of the equations of gravity are not dynami-
cal laws [��], but constraints. In canonical quantum gravity, the central formula is the
quantum mechanical Wheeler-deWitt equation [��, ��, ��] of the form Ĥ | i = 0, which
can be seen as a quantum version of a constraint similar to Eq. (�.�). Here, Ĥ is known
as the “super-Hamiltonian” [��] and the state  is referred to as the “wavefunction of
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Figure �.� – The Earth revolves around the sun on a Kepler orbit with constant
energy [��]. Here, the system degree can be seen as the distance r between Earth
and sun and depends on the “clock degree” ✓ . Any correlation between both
degrees is encoded in the full orbit, which represents the global state. Fixing the
“clock state” to a specific angle ✓ unequivocally determines the “system state” to
be r(✓ ) by virtue of the correlations contained in the orbit. For the special case
of a circular path, the distance is always constant and, therefore, no correlation
exists between distance and angle. This shift in point of view from motion in
time (Hamilton’s principle) to a path in configuration space (Jacobi’s principle) is
well-known in classical mechanics [��,��].

the universe” [��, ��, ��]. In order to yield the dynamical laws known in physics, sev-
eral strategies have been devised [��] to find a concept of time that is compatible with
the static description. Simply put, one tries to find an internally appearing time for a
theory in which an external time does not exist. This issue is commonly known as the
“problem of time” [��–��] and one widely used attempt for a solution is the semiclassical
approach [��,��,��,��,��,��–��]. Owing to many mathematical nuances, we only want
to mention the simplest method, which is summarized in Ref. [��]. For this approach, the
global state is expressed in a configuration space basis which depends on a three-metric
and degrees of freedom representing non-gravitational fields. To obtain an intrinsic time
from the quantum correlation of three-geometry and matter [��], the global state is cho-
sen as an exact factorization of a Wentzel-Kramers-Brillouin (WKB) wavefunction for the
three-metric and a general wavefunction for the non-gravitational degrees conditioned on
the three metric [��]. Substitution of this ansatz into the Wheeler-deWitt equation and ap-
plication of appropriate semiclassical approximations yield a time-dependent Schrödinger
equation (TDSE). Crucially, the time derivative originates from a directional derivative
along the gradient of the classical action for the gravitational field, which appears in the
phase of the WKB-part of the wavefunction. Hence, the three-metric plays the role of
the clock degree of freedom and its classical trajectory parametrizes the evolution of the
non-gravitational fields. Due to the heavy mathematical machinery of general relativity,
we only consider a non-relativistic analog in this thesis, which nevertheless captures key
features of the semiclassical timeless approach. A historical precursor of this method,
mentioned in a paper authored by Mott in ���� [��, ��], stems from collision physics.
In general, the clock is taken as a heavy-mass non-relativistic particle and the principal
system is often represented as a light-mass counterpart, but can be a generic quantum
system as well. Similar to the treatment in quantum gravity, a Born-Oppenheimer method
and a WKB approximation for the clock are used to derive the TDSE for the system from
time-independent Schrödinger equation (TISE) for the global wavefunction [��–���]. The
interaction between both particles is typically a function of their positions. Therefore it is
not only the system evolution, but also an e�ective system potential that is parametrized
by the classical trajectory of the heavy particle [���, ���].
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An alternative timeless approach in quantum mechanics first appeared in ���� in the pa-
per by Page and Wootters [���] and a subsequent publication by Wootters [���] in ����.
Instead of working in a specific basis representation as in the semiclassical treatment, the
Page-Wootters (PW) approach only deals with state vectors in abstract Hilbert space, thus,
o�ering great generality. However, this generalization comes with the trade-o� of being
able to only deal with non-interacting systems, although Refs. [���, ���] are notewor-
thy exceptions for specific Hamiltonians. The time-evolved state of the principal system
arises from a partial inner product in clock Hilbert space of a unitarily transforming clock
state and a global energy eigenstate [���]. This procedure is the quantum analog of the
scheme described in Fig. �.� and clearly demonstrates the importance of quantum cor-
relations, or entanglement, which are contained in the global state. Consequently, the
system TDSE with a time-independent Hamiltonian is straightforwardly found through
the application of a derivative with respect to time. Our brief introduction of PW is later
supplemented with the corresponding formulas. Experimental tests of this approach have
been performed [���–���] from the point of a “super-observer” who has access to the en-
ergy eigenstate of a bipartite system, and have confirmed the capability of entanglement
to encode the time evolution of a subsystem. Weak points of PW are the presupposition
of the clock evolution and the inability to address generally interacting systems. Still, it
has the great advantage of applying also to finite-dimensional Hilbert spaces and of not
requiring a notion of space [���]. The second aspect is beneficial for isolated investigations
of time emergence without any concerns about relativity. Reflecting on the idea that space
could be an emergent concept too [���–���], we believe that such a separate treatment is
essential. Given the two primary strategies to accomplish the emergence of time and their
respective advantages and disadvantages, one naturally seeks to find a common approach
combining the individual strengths of the semiclassical and PW approach. In particular,
an improved framework should be able to generally deal with coupled systems and should
not require a semiclassical approximation, or any approximation for that matter. The at-
tempt to construct such an overarching approach for a timeless formulation without the
aforementioned disadvantages is the main objective of this thesis.

We fully accomplish this goal through derivation of a system TDSE with a time-dependent
e�ective potential from a completely generic Hamiltonian, without depending on any ap-
proximation. A key element for this achievement constitutes the alternative formulation of
the global energy restriction as an invariance principle. The path variable parametrizing
the occurring transformations in the invariance appears as a substitute for the traditionally
presupposed time t and we elaborate on its metric character in terms of clock properties,
which is generally missing in the literature. Our extensive discussions of the features of
our theoretical exploration of time are complemented by additional studies on topics, such
as semiclassical approximations and time-energy uncertainties. Moreover, we do not only
treat pure quantum states, but extend our framework to quantum mixed states and even
classical probabilities as a display of the versatile nature of our approach. In contrast to the
pure states case, a non-Hermitian term appears as a new element in the evolution equations
and is further examined. Since the treatments in quantum and classical mechanics ex-
hibit surprising similarities, we are able to condense our analysis into a unified formulation.

Before outlining the development of our framework, we want to briefly touch on an-
other seemingly unrelated field, namely thermodynamics and the concept of temperature.
Physicists have long been puzzled about the apparent mathematical similarities between
dynamical and thermodynamical formulations [���], as for example expressed by Zee [���]:
“At the arithmetic level this connection comes merely from the fact that the central objects
in quantum physics e�iHT and in thermal physics e��H are formally related by analytic
continuation. Some physicists, myself included, feel that there may be something pro-
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found here that we have not quite understood.” Here, time is represented by T and the
inverse temperature is denoted by � , while H is the Hamiltonian for the system. The term
containing the inverse temperature is proportional to the canonical ensemble, which is
exclusively used in this thesis. Although its form is relatively simple, there is no unique
physical origin for its derivation. The principal system is presumed to be part of a larger set
of degrees of freedom, which have a sharp definite total energy. Usually, the complement
part is called a “bath”. While traditional quantum mechanical approaches start from a
global microcanonical ensemble in the form of a completely mixed state of degenerate
energy eigenstates, a more recent formulation called “canonical typicality” only requires a
single “typical” global energy eigenstate [���, ���]. Typicality refers to the fact that most
random pure states of the whole yield a reduced density operator for a small subsystem
that is almost identical to a canonical ensemble. Crucially, the Hilbert space dimension of
the bath must be much larger than that of the principal system. Regardless of the specific
method (or even specific mechanics) chosen, the general principle for the emergence of
temperature is always the same. The global state of a bipartite system is energy constraint
and the canonical ensemble can be derived by consideration of only a fraction of the whole,
the principal system. Surprisingly, they exactly match those of the timeless approach and
deepen the uncanny likeness of temporal and thermal descriptions in physics. That the
foundations of theories of time and temperature are the same hints at the possibility for
a common origin and strongly suggests to seek for a connection between the two. This
closeness has, to our knowledge, first been mentioned by Vedral [���] and later a “peaceful
coexistence” of time and temperature within a single global quantum state by virtue of
canonical typicality and the PW approach has been declared by Favalli and Smerzi [���].
Incidentally, Mach, whose ideas have been quite influential for investigations of space and
time, already drew parallels between time and temperature [���]. Another counterpart is
the existence of temperature-energy uncertainties [���–���] as the thermal analog of time-
energy uncertainty relations. These inequality relations for temperature and energy do
not originate from a temperature operator, as it does not exist, similar to the non-existence
of a time-operator. While these insights have either shown a purely mathematical link or a
conceptual similarity, a definite arithmetic connection between time and temperature de-
rived from the same physical origin is nevertheless still missing. Employing our adaptable
framework in the unified formalism to the realm of imaginary time o�ers the remarkable
opportunity to explore this unusual link. Once the notion of entropy is introduced, we
umambiguously identify imaginary time with inverse temperature by virtue of the unique
relation between temperature and entropy change for canonical ensembles.

A contemplation on the ideas and challenges presented above has encouraged us to expand
the scope of previous approaches by the development of a comprehensive framework that
is able to successfully address the issues currently encountered. To this end, we formulate
three elementary principles in Chapter �, which constitute the core concepts of our work
and form a minimal set of assumptions for the emergence of time. The main body of this
thesis is dedicated to the derivation of time and the characteristic evolution equations in
quantum and classical mechanics and is found in Chapter �. Afterward, we examine the
aforementioned connection of imaginary time and inverse temperature in Chapter �. After
having briefly reviewed the canonical ensemble, we analogously derive imaginary time and
the di�erential equations for dynamical changes of the system and determine the necessary
conditions for an identification with inverse temperature. Due to the rather mathematical
emphasis in the aforementioned two chapters, we reserve discussions of our results and
the underlying principles for Chapter �. Finally, Chapter � provides an overview of several
interesting directions for future research projects. Whenever necessary, we move extensive
calculations into appendices to ensure a fluent reading and to ease comprehension of the
main points.
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Chapter �

Concepts

Based on the review of existing research in the previous chapter, our main goal is twofold.
On the one hand, we aim at the generalization of the existing approaches of time emergence
in order to overcome current shortcomings. On the other hand, we attempt to trace
time and temperature back to a common origin, because of the remarkable resemblance
of the derivations of dynamical and thermal laws, once time is viewed as an emergent
quantity. A necessary step toward this objective is an explicit formulation of the most
essential elements of both theories. To this end, a minimal set of two postulates and
one proposition is introduced, capturing the core ideas underlying our framework. The
global energy constraint in Section �.�, the existence of subsystems in Section �.� and the
definition of a subsystem state in Section �.� serve as guiding principles throughout this
thesis.

�.� Global energy constraint

A key aspect and central notion of this thesis is the all-encompassing nature of a global
state or global system. Hence, no larger systems exist or, in other words, the global
state is everything. Naturally, the question arises how such a state is characterized and a
reasonable answer is provided by a feature, which is prevalent in many studies investigating
time and temperature. One of the crucial properties of time-reparametrization invariant
systems is the constancy of the global energy of the extended system (Chapter �). It also
forms the basis for all quantum mechanical treatments of time emergence, for example
in Refs. [��, ��, ���–���, ���–���]. As mentioned above, the same principle appears as a
fundamental requirement in statistical physics, in which the derivation of the canonical
ensemble for a subsystem, quantum or classical, rests on the constraint of constant energy
for the global state [���,���–���]. Considering its importance, the global energy constraint
is crucial to our framework. Thus, given that a well-defined notion of energy exists, we
formulate our first

Postulate (I): The global state is energy constraint.

Not only is the notion of time non-existent for such global states, but also the concept of
temperature is entirely absent. As both phenomena are intimately related to a surrounding
system, one naturally seeks for their origin through the separation of the whole into parts.

�.� Existence of subsystems

An omnipresent concept of physics is the existence of individual systems. For this rea-
son, we can routinely make statements like “an electron interacts with an electromagnetic
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field”. Such classifications are made possible by a clear distinction of di�erent degrees of
freedom. Laws governing the independent structure and also the interaction with other
distinct systems characterize the nature of each individual system. Even though rarely
discussed, the existence and definiteness of such a partitioning are non-trivial and far from
obvious [���], which has been brilliantly expressed by Zurek’s remark [���] “. . . with-
out the assumption of a preexisting division of the Universe into individual systems the
requirement that they have a right to their own states cannot be even formulated . . . ”.
The success of quasi-particle descriptions illustrates how a change in the fragmentation of
the whole can lead to more elegant descriptions of physical phenomena. In quantum me-
chanics, this decomposition is expressed by the tensor product factorization of the whole
Hilbert space into smaller Hilbert spaces associated with each subsystem. Crucially, dif-
ferent factorizations can be mathematically realized and even the number of subsystems
can vary. To date, it remains unknown if a physical mechanism exists to single out specific
fragmentations from the vast set of possible splittings and, if so, how it works. This issue
is seldom discussed in the literature, but exceptions such as Ref. [���] do exist.

In this thesis, we do not try to answer the question of preferred decompositions, but instead
assume that such a partitioning can be realized at all. In addition, it shall be fixed and
singled out by some (unknown) mechanism, which we do not further specify. To quote
Zurek [���] again: “However, a compelling explanation of what the systems are—how
to define them given, say, the overall Hamiltonian in some suitably large Hilbert space—
would undoubtedly be most useful.”

The possibility of dividing the global system constitutes our second postulate, namely

Postulate (II): At least two subsystems must exist.

Interestingly, it excludes any global system with a prime number dimension. Once a
subsystem (S) is specified and fixed, its complementary subsystem (C) is immediately and
unambiguously defined as well. In the remainder of this thesis, we denote the principal
subsystem (S) by “system” and (C) by “clock” or “complement”, depending on the context.
As always in physics, we have to separate the notion of a system itself and the physical
state this system can be in. Inspired by Page and Wootters [���,���], we propose a specific
definition for the subsystem states in the following section.

�.� Relational system state

As we have described in the introductory Chapter �, time can emerge as a parameter
characterizing the internal relations in a global timeless energy-constrained state. In order
to define the state of the system (S) for which the clock (C) provides time, we need to
find a procedure, which allows us to relate them both in the correct way. The example in
Figure �.� reveals the general working mechanism for obtaining a relational system state.
One has to harness the internal correlation of the global state by means of associating a
specific radius (system state) to a particular angle (clock state). Guided by this insight, we
put forth

Proposition (III): For a given state of the complement (C), the global
state provides an internal correlation to the principal system (S), which
relates to a unique system state.
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�.� Relational system state

In other words, the state of the system is conditioned on the state of the complement and
their relation is encoded in the global state. For this reason, we use “relational state”
and “conditional state” for the system state synonymously throughout this thesis. The
global state must contain all conditional relations between both subsystem states. That
such a view can also be applied to a thermodynamic setting is shown in Chapter �. In
the following chapter, (I)-(III) are applied to derive time in the context of quantum and
classical mechanics and, thus, justify the proposition (III).
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Chapter �

Time emergence

This chapter features the application of the three core principles from the preceding chapter
in an e�ort to derive three well-known di�erential equations governing the evolution of
a system, namely the TDSE for pure quantum states, the von Neumann equation for
mixed quantum states and the Liouville equation for classical probability densities. The
presentation of our results for the emergence of time does not follow the chronological
order in which previous publications on the topic appeared. Instead, the aforementioned
equations are first derived within our framework and comparisons to previous works in
the literature accompany our analysis. Our mathematical treatment commences in Sec. �.�
with the derivation of the famous TDSE, describing the dynamics of pure states within
quantum mechanics. In addition, we provide analytical and numerical examples, as well
as possible approximations. The exact results allow us to generalize the derivation to
mixed states, i.e., quantum mechanical density operators, and their respective evolution
equation in Sec. �.�. A formulation in the Wigner representation at the end of that
section lays the groundwork for Sec. �.�, in which we try to shed light on the question of
the transferability of our results from quantum to classical mechanics. To this end, the
focus shifts to classical probability densities in an abstract Hilbert space formulation and
connections to the quantum framework are pointed out specifically. At last, motivated
by the quantum-classical similarities, this chapter closes with an attempt to combine the
results form the preceding sections in a unified, basis-independent formalism in Sec. �.�.

�.� Quantum mechanics - Pure states

�.�.� Subsystems

In the preceding chapter, we have already mentioned that splitting a global system into
subsystems is facilitated by a tensor product structure in quantum mechanics. Therefore,
postulate (II) refers to the ability of expressing the global Hilbert space H as the tensor
product

H =HS ⌦HC . (�.�.�)

Here, HS and HC refer to the system Hilbert space and the complementary clock Hilbert
space, respectively. Their corresponding dimensions are denoted by dS ⌘ dimHS and
dC = dimHC, such that dimH = dS · dC. In the case of infinite-dimensional Hilbert
spaces, we give the dimensions nS and nC of the subsystem configuration spaces (RnS

and RnC) instead. All parts of our analysis proceed with respect to this decomposition in
the following. The rationale to start with postulate (II) originates from the intention of
expressing the global energy constraint (I) in terms of subsystem Hamiltonians and the
coupling between them.
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�.�.� Total energy constraint and global invariance

One of the most important equations of the twentieth century, the well-known time-
independent Schrödinger equation (TISE)

Ä
Ĥ � E1̂

ä
| i= 0 , (�.�.�)

describes a pure quantum eigenstate | i 2 H � of the Hamiltonian Ĥ with energy eigen-
value E. Put di�erently, | i is constrained by the energy operator Ĥ � E1̂ and, for this
reason, Eq. (�.�.�) is ideally suited to express postulate (I) in mathematical form. Explicitly,
the most general form, in accordance with the product structure (�.�.�), reads

Ä
ĤS ⌦ 1̂C + V̂ + 1̂S ⌦ ĤC � E1̂

ä
| i= 0 . (�.�.�)

for the global state | i with fixed energy E. The subsystem Hamiltonians ĤS and ĤC act
only on states in HS and HC, respectively, and characterize the nature of the individual
subsystems. Any interaction between both subsystems resides in the coupling term V̂ ,
which operates in H and, therefore, acts simultaneously on clock and system. Although
being finite, the norm of | i is arbitrary, because of the absence of any outside agent
or observer who would be able to probe this state. In particular, only one single global
state | i physically exists in our framework and embodies the physical entirety. Thus, any
probabilistic interpretation becomes meaningless, rendering the numerical value of the
norm itself irrelevant. For notational convenience, we choose h | i= 1 and omit identity
operators 1̂i in the following, unless it is useful to point them out explicitly.

Constraint Eq. (�.�.�) can also be expressed in a mathematically equivalent way as the
invariance

exp

⇥
i�(ĤS + V̂ + ĤC � E)

⇤
| i= | i 8� 2R (�.�.�)

of the global state | i. Such a view point has generally not been recognized in the litera-
ture, but provides a new understanding of the mechanism for time emergence, as explained
below. A notable exception is the work by Boette et al. [���, ���], in which the authors
establish (�.�.�), but refrain from a further examination. We could, equally well, define
another invariance, i.e., exp

⇥
�(ĤS + V̂ + ĤC � E)

⇤
| i = | i for all � 2 R, which becomes

important in Chapter �. In a strict mathematical sense, another symbol needs to be em-
ployed for the parameter in this second invariance, but we slightly abuse our notation and
retain the same symbol. Throughout this thesis, the parameter � is conventionally used as
the path variable parametrizing the invariance generated by energy constraints.

As a side note, we want to mention the amusing fact that history has taken a route similar
to time emergence approaches [��], when Schrödinger first published the TISE [���] and
only later postulated the TDSE [���]. For the derivation of the second equation, a last
element is needed, namely the definition of the system state.

�A physical global state is actually an element of H \{0}, but, as is common, we omit the distinction in
this thesis for notational simplicity.
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�.�.� Relational system state

So far, only the global state | i has been considered and wemust put forth a state definition
for a fraction of the whole, i.e., the system. According to proposition (III), a state ' of the
system ensues from the association to a clock state � by means of the internal correlations
within the global state  . In the present section, all occurring states belong to the class of
pure states and, consequently, the normalized vector |�iC 2HC with h�|�iC = 1 represents
the state of the clock. We define the conditional system state |'iS 2 HS as the partial
projection of |�iC onto the HC-part of | i [���, ���], mathematically expressed as

|'iS ⌘ |'[�]iS ⌘
h�| iCq

h |
�
1̂S ⌦ |�ih� |C

�
| i

. (�.�.�)

Such a state is always normalized, i.e., h'|'iS = 1, and a subscript C for the scalar product
signifies a contraction solely in the clock Hilbert space. The conditional dependence on
the clock state � is indicated by the argument in square brackets, but we mostly omit
the explicit emphasis in exchange for a clearer notation. In other words, fixing the state
in the complement space, the clock sector HC, unambiguously determines the system
state in HS via the subsystem relations contained in | i. For illustration, the Bell state
| Belli =

�
|"S ⌦ #Ci + |#S ⌦ "Ci

�
/
p

2 for two spin-�/� systems [���] can serve as a sim-
ple example to demonstrate the definition (�.�.�). If the clock is in the spin-down state
|�iC = |#CiC, the system is in the spin-up state |'iS/ h�| BelliC/ h#C|"S ⌦ #CiC = |"SiS.
Figure �.� shows a depiction of the relational statement (�.�.�) and, for later reference, we
define the unnormalized system state |�iS ⌘ h� | iC as well.

Serving as the starting point for the mixed state treatment and for a comparison with
conventional frameworks, we also provide the corresponding pure state density operator

|'ih'|S =
trC
�
|�ih�|C | ih |

�

h |
�
1̂S ⌦ |�ih�|C

�
| i

(�.�.�)

with the partial trace trC over the clock degrees of freedom, which follows from (�.�.�).
The system state definition (�.�.�), or Eq. (�.�.�) for that matter, sharply contrasts the one
from the standard open systems theory [���], in which the state of the system is described
by the reduced density operator

⌥̂S,red ⌘
trC
�
| ih |

�

h | i
. (�.�.�)

For an entangled state | i, the reduced density ⌥̂S,red always describes a mixed state.
However, the opposite happens for (�.�.�) or (�.�.�), given that the system is always in a
pure state for pure |�iC and | i. This di�erence also appears in terms of mean values, as
both system definitions imply

⌦
ÂS
↵
red =

h |
�
ÂS ⌦ 1̂C

�
| i

h |
�
1̂S ⌦ 1̂C

�
| i

and
⌦
ÂS
↵
=
h |
�
ÂS ⌦ |�ih� |C

�
| i

h |
�
1̂S ⌦ |�ih�|C

�
| i

, (�.�.�)

respectively, for any system operator ÂS. Comparing both expressions from the relationist
perspective shows a conditioning of the system on a clock state with maximal information,
i.e., a pure state. In contrast, the open systems theory relates to a fully mixed clock state,
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Figure �.� – Sketch for the relational system state ' in Equation (�.�.�). The clock
state �, given on a one-dimensional configuration space, is partially projected
onto the global state  , which lives on a three-dimensional configuration space.
Mathematically, each vertical line segment of  is multiplied with � and integrated
over the clock configuration space. As a result, the system state'manifests itself on
its two-dimensional configuration space. In order to visualize the wavefunctions,
only real values are used.

|�ih�|C �! 1̂C/nC, which has maximal entropy and the lowest information content. In any
case, definition (�.�.�) clearly represents a generalization of (�.�.�) once mixed clock states
⇢̂C are allowed and such a perspective lays the foundation for section �.�. To point out a
further di�erence, we mention that the global state in the theory of open systems [���]
is never an energy eigenstate. Otherwise, no global and, therefore, no system dynamics
would take place, since time is already presupposed in that framework. In the remainder,
we use h |�ih�| i ⌘ h |(1̂S ⌦ |�ih�|C)| i for a more compact notation, unless it causes
confusion.

�.�.� Relational formalism versus measurement process

Here, we must clarify an interpretational issue associated with our system state definition.
In quantum mechanics, one usually attaches to Eq. (�.�.�) the notion of a state | i being
measured in one of their constituents, the clock degree(s) of freedom. Based on this, the
system ends up in the definite state |'iS after the measurement resulted in the outcome �.
However, we strongly emphasize that our relational state description (�.�.�) does not en-
tail an actual measurement. Since the topic is vitally important, we systematically explain
below how the measurement process unfolds in the description of the nowadays widely
accepted theory of decoherence. Scrutinizing the essential elements of this approach
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EnvironmentApparatus

| Belli

S C

Figure �.� – A sketch of the measurement process according to decoherence theory
shows the entangling interaction (horizontal arrows) of a measured system (red
box) with a measurement apparatus (blue box) and the subsequent coupling to
a large environment (gray box). After tracing out the environmental degrees
of freedom, the reduced state of measured system and apparatus (dashed lines)
exhibits no interference between di�erent measurement outcomes. In particular,
the measured system comprises a composite of two spin-�/� systems (S and C),
which are initially in the non-separable Bell state | Belli. The gray sinusoidal line
represents the internal entanglement between both spins. For the purpose of
providing means to compare to the relational formalism, only the clock spin (C)
couples to the apparatus, as indicated by the black horizontal arrow. Adapted from
Ref. [���].

helps us to work out the underlying assumptions and to clearly distinguish the relational
state (�.�.�) formalism from the theory of observations.

The question of how our classical world emanates from within quantum mechanics is
broadly known as the “measurement problem” [���]. It originates from the phenomeno-
logical fact that we, as classical observers, obtain definite measurement outcomes and do
not witness quantum mechanical interference in the macroscopic world. So far, only par-
tial answers have been found, which explains the persistence of the measurement problem
in physics even today [���, ���–���]. We take the position that such a process must be ex-
plained using only concepts native to quantum theory. In this Everettian manner [���], the
concepts of “decoherence” [���,���,���,���] and its more sophisticated version, “quantum
Darwinism” [���–���], have been pioneered in order to explain the measurement process
and the emergence of the classical world [���]. These approaches embrace the pervading
idea that any measured quantum system is part of a larger structure, which also constitutes
a measuring apparatus and the rest of the world. Without resorting to classical concepts,
the fundamental quantum nature of the additional physical degrees of freedom is used
to explain how measurement devices record outcomes and how the quantum mechanical
interference between measurement results rapidly disappears from the perspective of the
observing apparatus. The sketch in Figure �.� provides a visual guide for the following
exposition, which elucidates this intricate process.

At the core of the aforementioned frameworks lies the entangling interaction of a state
| i =

P
i ci | ii 2 H with a ready state |⌫0iapp 2 Happ of the measurement apparatus

(Fig. �.�), which has already been suggested in von Neumann’s seminal book about quan-
tum mechanics [���, ���]. For a later comparison with the relational formalism, we retain
the symbols | i and H here, even though they do not have a global nature in the mea-
surement process. Described in a very simplified way [���,���], the entangling interaction
with the measurement apparatus evolves the initial state | i⌦ |⌫0iapp within finite time T1
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into an entangled state. Schematically, this can be expressed as
ÇX

i

ci | ii

å
⌦ |⌫0iapp

T1�!
X

i

ci | ii ⌦ |⌫iiapp . (�.�.�)

The “measured system” should not be confused with the “principal system” (S) associ-
ated with HS. Only a special type of interaction [���, ���, ���] can give rise to the final
state in this “quantum nondemolition measurement” (�.�.�), namely one for which | ii
are eigenstates of the coupling part acting on H [���, ���, ���]. It ensures that the states
| ii are not perturbed and this simplification is usually called the “quantum-measurement
limit” [���]. As a matter of fact, it is the interaction that determines which states | ii are
recorded by the apparatus [���]. Anyway, the states |⌫iiapp are linked (or “entangled”)
to a specific state | ii of the measured system after (�.�.�) and provide the basis for a
particular measurement outcome on one of the “branches” | ii ⌦ |⌫iiapp.

Crucially, the combined system of measurement apparatus and of the measured system
couples to another typically large system, called the “environment” (Fig. �.�). This inter-
action entangles the individual branches | ii ⌦ |⌫iiapp with specific environmental states
|⌧iienv and we assume once again that these branch states are not disturbed by the coupling
term. Hence, the process (�.�.�), called “premeasurement” [���], extends to

ÇX

i

ci | ii

å
⌦ |⌫0iapp ⌦ |⌧0ienv

T2�!
X

i

ci | ii ⌦ |⌫iiapp ⌦ |⌧iienv (�.�.��)

with another finite duration T2. Since the environment consists of a large number of degrees
of freedom, the states |⌧iienv orthogonalize very rapidly, i.e.,

⌦
⌧i
��⌧ j
↵
env ⇡ �i j [���]. In the

framework of open system theory, the di�erent branches e�ectively “decohere”, because
of the additional contact with the environment. The reduced density operator, without the
environmental degrees of freedom, becomes

⇢̂red =
X

i

ci | iih i |⌦ |⌫iih⌫i |app , (�.�.��)

and any coherence between di�erent states |⌫iiapp of the measurement apparatus vanishes.
As a result, a definite outcome or “measurement result” of the apparatus emerges, which
is collectively described by the state |⌫iih⌫i |app. How observers find themselves in only
one of the states |⌫iiapp, a problem called “self-locating uncertainty”, is subject of ongoing
research [���, ���] and might be closely related to the emergence of Born’s rule [���, ���].
At any rate, no quantum mechanical interference with other measurement results can be
observed, due to the decohered nature of the branches containing the apparatus and the
system of interest.

Once again, we use the Bell state | Belli 2 H =HS⌦HC ' C2⌦C2 as a particular example
to illustrate how a term like h#C| BelliC is used as a mathematical shortcut to describe a
measurement outcome. In our particular case, we assume the measurement device (appa-
ratus) to exclusively couple to the clock spin (Fig. �.�) and we choose the eigenstates of the
interaction as | ii 2 {|"S ⌦ #Ci , |#S ⌦ "Ci}. Individual spin states live in the Hilbert spaces
of the clock and the principal system, respectively. After the first entangling interaction,
the intermediate state reads (|"S ⌦ #Ci ⌦

��⌫#C
↵
app + |#S ⌦ "Ci ⌦

��⌫"C
↵
app)/

p
2, in which, for

example, the apparatus reading
��⌫#C

↵
app coincides with a measurement of the spin-down

clock state. The insuppressible contact with the environment ultimately destroys the co-
herence between both branches in a very short time scale. Ignoring the environmental
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H ⌦Happ ⌦Henv

H ⌦Happ

H =HS ⌦HC

HS

a

H =HS ⌦HC

HS

Figure �.� – Comparison of the Hilbert space structures involved in a typical mea-
surement process (left) and the quantummechanical framework for the conditional
system states used in this thesis (right). A measurement of a state from Hilbert
space H depends on a larger structure, such as H ⌦Happ ⌦Henv, which embeds
the measured system and enables decoherence. In contrast, nothing exists outside
of H in our framework.

degrees of freedom leads to the reduced density operator

⇢̂red =
1

2

Ä
|"Sih"S|S⌦ |#Cih#C|C⌦

��⌫#C
↵⌦
⌫#C
��
app+ |#Sih#S|S⌦ |"Cih"C|C⌦

��⌫"C
↵⌦
⌫"C
��
app

ä
. (�.�.��)

If observers find themselves on the branch with the apparatus indicating a spin-down mea-
surement outcome for the clock, i.e.,

��⌫#C
↵
app, then they can infer the state of the system to

be “spin-up” ("S), given they have full knowledge about the initial state | Belli. Due to its
complexity, one uses a simplification to describe this process, which disregards the exact
nature of the interactions with the surroundings. In particular, the situation described
above is represented by the partial scalar product h#C| BelliC 2 HS, the general notational
shortcut to express a final state after a measurement in quantum mechanics, and is equal
in notation to a relation system state in the form (�.�.�).

The actual theory of decoherence and quantum Darwinism is much more subtle and math-
ematically detailed. Its explanation lies outside the scope of this thesis, but we point out
two important and unique properties of this process, already contained in our simplified
description. They are implicitly assumed whenever the simple (partial) scalar product is
written to describe a state after measurement. First, an evolution in time must exist, no
matter how short the actual duration of the interaction. Therefore, time becomes a prereq-
uisite in order for the entanglement between the measured system and the apparatus to
change continuously. A subsequent interaction with the environment presumes a temporal
evolution as well. Second, a measured system of interest is always embedded in a larger
composite system, typically consisting of a vast number of degrees of freedom and allowing
for a split into further subsystems, which is elucidated by an illustration on the left side of
Fig. �.�. Both features are not present in our framework, because we postulate the global
system to encompass all available degrees of freedom [���], such that an extension to a
larger system becomes impossible (see Fig. �.�). Furthermore, time does not exist for | i,
but only emerges as an internal relation between subsystems. As such, the entanglement,
with respect to the Hilbert space factorization (�.�.�), does not change and remains con-
stant. In fact, we actually derive the subsystem evolution from the constant entanglement
between two subsystems, instead of taking the evolution of a global state and its change of
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internal entanglement for granted. All aspects considered and given the severe di�erences,
one must unequivocally acknowledge that our definition (�.�.�) of the system state does
not constitute a measurement, even though the mathematical formulation might indicate
di�erently. This crucial point is either only discussed very briefly or not at all in the liter-
ature. Nevertheless, our framework does not exclude the decoherence mechanism, but it
must take place inHS itself, for which the clock provides time. That process only requires
a decomposition of HS into further subsystems, for example environment or apparatus. A
first attempt to describe a measurement process within a global static state | i has been
given by Deutsch [���]. For now, we content ourselves with the provisional interpretation
of Eq. (�.�.�) as a relational statement and return to a discussion on the subject in Chapter �.

Interestingly, Gisin already used such a relational state definition in ���� to derive a
dissipative Schrödinger equation [���] and, thus, his publication pre-dates the seminal
paper of Page and Wootters [���] by one year, even though it was not presented in the
context of time emergence. In the subsequent section, we formulate the influential findings
from Refs. [���, ���] in the language of our framework.

�.�.� Time emergence without interaction

The arguably simplest setup occurs for a vanishing interaction in the energy con-
straint (�.�.�), i.e., V̂ = 0, and underlies PW [���, ���]. Despite its widespread use in
the literature, the absence of any coupling severely limits the applicability to generic phys-
ical situations and requires additional restrictions on the global Hamiltonian and on the
global state. Any emergent, non-trivial system dynamics relies on the internal entangle-
ment of the global state (Chapter �) and, therefore, necessitates the global Hamiltonian to
possess degenerate energy subspaces. Otherwise, only separable | i fulfill the TISE (�.�.�).
Not only does the degeneracy become an essential prerequisite, but also the presumption
that the global state actually exhibits entanglement, as separable states still solve the TISE.
In contrast, generic coupling terms V̂ in the global Hamiltonian imply entangled energy
eigenstates and do not impose any additional preconditions, which makes our approach
for interacting subsystems all the more vital. Nevertheless, neglecting the interaction al-
lows us to demonstrate and to discuss our framework in a comprehensible way, without
mathematical intricacies. To this end, the unitary transformation in the invariance (�.�.�)
becomes separable, namely

ei�ĤS ⌦ ei�(ĤC�E) | i= | i . (�.�.��)

We seek an equation for a system state defined by (�.�.�), which must involve a contraction
in the HC-part. To this end, we partially project a fixed clock state |�0iC 2 HC onto
Eq. (�.�.��). The clock subscript is associated with � = 0 and indicates the initial clock
state, which becomes clear in the following.

Applying also the inverse transformation exp

�
�i�ĤS

�
after the partial projection yields

h�0|ei�(ĤC�E)| iC = e�iĤS� h�0| iC . (�.�.��)

Through the definition of

|�(�)i ⌘ e�i�(ĤC�E) |�0i (�.�.��)

and a normalization on both sides, we obtain the result

h�(�)| iCp
h |�(�)ih�(�)| i

= e�iĤS�
h�(0)| iCp

h |�(0)ih�(0)| i
. (�.�.��)
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�(x, y)

�

0

+y

�

�(y, �)
�

x

�(x, �) �
�

dy ��(y, �)�(x, y)

Figure �.� – Conditional system state |'(�)iS in position representation. Any
change of the clock state (blue wavefunctions on the left) induces a change in
the relational system state (red wavefunctions on the bottom). The TDSEs for
both subsystems emerge from the invariance (�.�.�) of the global state  (mid-
dle). Gray dotted lines indicate the partial projection of each clock state and their
corresponding system states. Moreover, the quantum correlations contained in
| i make it even possible for simple clock wavefunctions to yield intricate system
wavefunctions. Only real-valued wavefunctions are used for an easy visualization.

Both denominators are equal, because of invariance (�.�.�). The left hand side corresponds
to the conditional system state |'(�)iS = h�(�)| iC /

p
h |�(�)ih�(�)| i of Eq. (�.�.�) and,

as a result, the change of the system state is described by

|'(�)iS = e�i�ĤS |'(0)iS . (�.�.��)

Fig. �.� shows a pictorial representation of Eqs. (�.�.�), (�.�.��), (�.�.��) and (�.�.��).
Simple di�erentiation with respect to the parameter � yields the TDSE

i
d

d�
|'(�)iS = ĤS |'(�)iS , (�.�.��)

in which � takes the place of the usual time t. Similarly, one finds i d |�iC
�
d� = (ĤC �

E) |�iC for the clock. In its core, our derivation entails the concept devised by Page
and Wootters [���, ���], but several remarks are added in order to point out previously
unnoticed aspects and to gain a deepened understanding of our formalism.
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�.�.�.� Remarks

First, the evolution equations for clock and system emerge simultaneously. In contrast,
the form of the clock evolution has previously been assumed in advance, for example in
Refs. [���–���,���,���,���]. Their derivation proceeds in a symmetrical fashion, such that
starting with the reversed relational state |�[']iC ⌘ h'| iS /

p
h |'ih'| i gives the same

di�erential equations as a result. However, the initial clock state would not be the same,
because |�['(0)]iC = |�['[�(0)]]iC 6= |�(0)iC in general. The class of global maximally
entangled states (MES) is an exception to this discrepancy, as explained in Appendix G.
Furthermore, time or motion reversal simply refers to the parity transformation �! ��,
in which the motion of clock and system are synchronously reversed.

Second, the clock can be more complex than just a single degree of freedom, such as a
quantum particle on a one-dimensional configuration space R. It may constitute a com-
plex composite system itself or can have a finite-dimensional Hilbert space. In the case
of a finite dimension dC and the assumption of commensurate clock energy di�erences, a
natural periodicity TC exists for the clock, after which any initial state |�0iC must return
to itself (if not earlier). As a consequence, the system must respect this periodicity as well,
i.e., |�(TC)iC = |�(0)iC implies |'(TC)iS = |'(0)iS.

Third, the derivation does not depend on the dimensionality of the global system. Even
though the Hilbert space basis may be discrete and finite, the state space itself always has
a continuous structure. A specific example is a two-level system, with a continuous state
space, the Bloch sphere, allowing for infinitely many di�erent states. Due to this property,
changes in clock or system appear continuous and give rise to a continuous notion of time.

Fourth, dynamics emerges via the entanglement contained in | i. As already indicated by
the notation used in definition (�.�.�), the system depends explicitly on the state |�(�)iC of
the clock and only implicitly on the parameter �. Hence, time or dynamics must physically
be seen as the relation to the motion of another subsystem and can only mathematically be
expressed by a physically meaningless quantity �, which parametrizes this motion. Simply
put, we could change the parametrization with � ! s(�) via a smooth monotonically
increasing function s(�) with ds/d� > 0 and no physical change in the theory would
occur, because |'[�(s)]iS relates to a specific state |�(s)iC and not the actual value of s.
Thus, � only has topological meaning for the order of di�erent states [���, ���], but no
metric property [���]. In the elementary classical point particle model of Chapter �, we
consider the simple clock mapping t(�) : R ! R and the corresponding “system state”
q(�), which has lead to the deparametrization q(t) via the inverse �(t), independent of the
actual parametrization � or s(�). The quantum world features the more complex mapping
|�(�)iC : R ! HC and, even though the system state (�.�.�) is already parametrized
by the clock state vector, it is not a function of a single scalar clock quantity. Despite
this obstacle, it is possible to condense the necessary clock information into the mapping
AC(�) ⌘ h�(�)|ÂC|�(�)iC : R ! R with a suitable Hermitian clock operator ÂC. If the
chosen operator allows for a smooth monotonically increasing function AC(�) and its
associated inverse �(AC) (at least on a finite interval), then we can deparametrize (�.�.��)
to

i
d

dAC
|'(AC)iS =

d�(AC)
dAC

ĤS |'(AC)iS . (�.�.��)

The system state

|'(AC)iS = e�iĤS�(AC)) |'(0)iS (�.�.��)
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is now given in terms of a scalar clock property, which we can call “quantum ephemeris
time” and which has the property of a metric time [���, ���]. For that reason, � merely
obtains the status of an ordering label for the relations between clock and system. As long
as the order of these labels is preserved, their actual value does not matter. To illustrate, we
take the example of the clock Hamiltonian ĤC = K̂2/2 for a free particle with momentum
operator K̂. The Ehrenfest theorem [���, ���] yields

Q(�) = �K+Q(0) (�.�.��)

as a classical motion for mean clock position Q ⌘ h�(�)|Q̂|�(�)iC and constant mean
momentum K⌘ h�(0)|K̂ |�(0)iC. In this case, the system Hamiltonian in the TDSE

i
d

dQ
|'(Q)iS =

1

K
ĤS |'(Q)iS (�.�.��)

is simply rescaled by the constant factor 1/K and the clock mean position Q parametrizes
the system motion. So far, the reparametrization invariance has never been recognized in
the literature before and, thus, represents an important result of this thesis. Of course,
such an operator choice depends explicitly on the clock state, owing to the fact that certain
mean values may not change. For example, a clock without mean momentum (K= 0) must
be tracked by another choice. Higher-order operators, such as Q̂2 in hQ̂2i� hQ̂i2, do repre-
sent valid choices as well and, in this particular case, would track the dispersing nature of a
wavepacket. It is not necessary either to find a suitable operator for all values of �, because
it su�ces to find a set of clock operators such that the whole range of � can be adequately
covered. In a way, this procedure resembles the covering of a di�erentiable manifold with
di�erent charts providing coordinate systems for di�erent parametrizations of the mani-
fold [���]. A simple circle represents such a manifold, for which at least two charts are
necessary to cover it completely and this example provides an analogy for cyclic clocks. The
periodicity entails the requirement to have at least two di�erent clock mean values to fully
parametrize the systemmotion. Another important example is a spin system ĤC = ⌦ Ŝz with
2S+1 energy levels, for which the evolution can be tracked with hŜxiC(�) = S0 cos(⌦�+ ✓0),
yielding � = (arccos[hŜxiC(�)/S0]� ✓0)/⌦. The spin operators Ŝi for i 2 {x , y, z} fulfill the
usual commutation relation [Ŝ j , Ŝk] = i" jkl Ŝl [���] and the constants S0 and ✓0 are de-
termined by the initial state |�0iC. If hŜxiC(�) approaches the positive turning point and
ceases to provide a monotonically increasing function, then switching to hŜyiC(�) provides
another suitable tracking function. For the ranges of �-values for which both the sine and
the cosine function are decreasing, one can simply use h�ŜxiC(�) or h�ŜyiC(�). One can
even use functions of mean values, such as f (hŜxiC, hŜyiC) = [arctan

�
hŜyiC/hŜxiC

�
� ✓0]/⌦

with d f /d� = 1. This spin treatment holds broad applicability, because any state with
a finite number of populated energy states and commensurate energy di�erences can be
mapped to a spin system. The frequency ⌦ represents the smallest energy unit, such that
all energy di�erences are integer multiples of ⌦.

Fifth, a key aspect is the non-classicality of the clock state. Classical characteristics can
only occur by means of the time parametrization hÂCi and the use of Ehrenfest’s theorem
in its general form without any approximation. If the resulting system of coupled first-
order linear equations is finite or cyclic [���], such as for a free particle or a harmonic
oscillator, then a single (possibly higher-order) di�erential equation for hÂCi appears and
can resemble known classical equations for single trajectories of point particles. However,
this set of di�erential equations is in general infinite [���]. To emphasize this important
distinction again, the classical behavior of mean values does not imply classical behavior
of the wave function [���]. For notational simplicity, we still use the parameter � for the
remainder of this thesis, but with the implicit understanding of always being able to find
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a reparametrization in terms of a clock property. Although the arbitrariness of choosing a
specific clock parametrization seems adverse, it is the search for simplicity of the funda-
mental equations in physics that distinguishes linear relations with �, such as Eq. (�.�.��),
from more complicated ones. The demand for a time definition leading to the most simple
mechanical equations goes back to Poincaré [���].

Sixth, if no entanglement is present in | i with respect to the tensor product structure
Eq. (�.�.�), then it is a product state | i = |'̃iS ⌦ |�̃iC with h�̃ |�̃iC = 1 and h'̃|'̃iS = 1.
This separability leads to the simple system evolution

|'(�)i=
h�0|ei�(ĤC�E)|�̃iC��� h�0|ei�(ĤC�E)|�̃iC

���
| {z }

2exp(iR)

|'̃iS . (�.�.��)

Regardless of the initial clock state |�0iC, the system state changes only by a complex phase,
which does not entail any physical change. Hence, entanglement (“quantum correlation”)
is essential for any non-trivial unitary changes in the physical state of the system. Without
a coupling V̂ , the energy eigenstate can only exhibit internal correlations if its eigenenergy
E has a degenerate associated eigenspace.

Seventh, any non-trivial dynamical change in the system requires a non-vanishing ĤC 6= 0,
otherwise the clock changes only by a complex factor |�(�)iC = exp(iE�) |�0iC and induces
an irrelevant phase in the system, i.e., |'(�)iS = exp(�iE�) |'(0)iS. In other words, if no
physical change occurs for the clock, then the system does not change either. Interestingly,
this characteristic remains even for non-vanishing couplings V̂ 6= 0 between system and
clock. We note that ĤC = 0 does not preclude an entangled global state | i.

Eighth, in light of invariance (�.�.�), the emergence of the system dynamics can be under-
stood from a new point of view. To elaborate, any phase changes in the clock state must
be compensated by complementary phase changes in the system in order to preserve the
global invariance generated by the total Hamiltonian (minus energy E).

Ninth, the absence of a coupling term V̂ allows us to split the unitary transformation
exp

�
i�Ĝ

�
= exp

�
i�ĤS

�
⌦ exp

�
i�(ĤC � E)

�
, and the part operating on the system Hilbert

space HS simply commutes with the clock projection. Such a straightforward derivation
is not possible if Ĥ features an interaction between clock and system, and the need for a
more sophisticated derivation arises. The more general case with V̂ 6= 0 is treated in the
next section, after we clarify two remaining technical aspects and briefly discuss previous
studies of PW.

Although we regard the full clock Hilbert space spanned by the eigenstates of ĤC, only the
energy eigenstates that are contained in the global state | i are relevant. Any part |��iC
of a generic clock state |�iC that has no overlap with | i, e.g. h��| iC = 0, is irrelevant.
More precisely, any state |��iC that fulfills

h��|ei�(ĤC�E)| iC = 0 8� 2R (�.�.��)

cannot be part of the correlation contained in | i. Alternatively stated, we cannot partially
project a clock state (or part of it) for which no specific relation of a system state to this
clock state is encoded in the global state. We can illustrate this fact with a wall clock
having, for simplicity, only the positions � to �� for the hand of the clock. It is pointless to
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Clock

ĤC

System

ĤS

V̂
| i

Figure �.� – Illustration of the energy level structure of clock and system, in which
the black lines indicate the energies of ĤC and ĤS, respectively. The blue colored
levels are elements of the subsets ⇡C, and ⇡S, . These are the only relevant states
in the process and depend explicitly on the global state | i. A possible interaction
V̂ between both subsystems is indicated by the red symbols.

ask which system state we measure at a clock position ��, because it is not contained in
our description of the global system, i.e., | i. If the clock state is decomposed into

|�0iC/ |�̄0iC + |��iC (�.�.��)

for which Eq. (�.�.��) holds, then the partial projection onto Eq. (�.�.�) simply reduces to

h�̄(�)| iC = e�i�ĤS h�̄0| iC (�.�.��)

with |�̄(�)iC ⌘ e�i�(ĤC�E) |�̄0iC. The clock vector |��iC has no influence on the system state.

For a further clarification, which also holds for V̂ 6= 0, we use the energy eigenstates
|�miC 2 HC and |'niS 2 HS of clock Hamiltonian ĤC and system Hamiltonian ĤS as a
specific basis. Expressed in this basis, the global state reads

| i=
X

mn
cmn |�m ⌦'ni (�.�.��)

and we define the subsets of participating energy levels by

⇡C, ⌘
�
|�miC

��9n : cmn 6= 0

 
(�.�.��)

and

⇡S, ⌘
�
|'niS

��9m : cmn 6= 0

 
(�.�.��)

for clock and system, illustrated in Fig. �.�. These sets describe the physically accessible
states [���] in system and clock Hilbert space. Alternatively, we use the reduced density
matrices of the subsystems to define the same sets via

⇡C, ⌘
n
|�miC

��� h�m|
�

trS | ih |
ä
|�miC 6= 0

o
, (�.�.��)

��



� T��� ���������

⇡S, ⌘
n
|'niS

��� h'n|
�

trC | ih |
ä
|'niS 6= 0

o
. (�.�.��)

These sets span the e�ective subsystemHilbert spaces in which the dynamics can take place
and we define the projectors ⇧̂S, =

P
|'niS2⇡S, 

|'nih'n|S and ⇧̂C, =
P
|�miC2⇡C, 

|�mih�m|C.
From here on, we only take into account the e�ective subspaces and clock states |�iC,
which are at most a superposition of the states contained in ⇧C, . In particular, we use the
following redefinitions

⇧̂C, ĤC ⇧̂C, ! ĤC ,

⇧̂S, ĤS ⇧̂S, ! ĤS ,

Ä
⇧̂S, ⌦ ⇧̂C, 

ä
V̂
Ä
⇧̂S, ⌦ ⇧̂C, 

ä
! V̂ ,

trC ⇧̂C, ! dC , (�.�.��)

trS ⇧̂S, ! dS ,

⇧̂C, ! 1̂C ,

⇧̂S, ! 1̂S ,

instead of introducing a new set of variables and considerably simplify all treatments in
the remainder of this thesis.

The very last remark touches upon the boundedness of the Hamiltonian. A traditional wis-
dom in physics states that any Hamiltonian must be bounded from below, otherwise the
system would decay infinitely long and would continuously reach lower and lower energy
states. Although such a process is conceivable, it relies on two essential assumptions. First,
one assumes an additional system, the environment, into which energy is released, such
as the electromagnetic field for an excited atom for instance. Second, only the presence
of a coupling with these environmental degrees allows for an energy exchange. In our
setup, neither of the two does exist for the global state and, for this reason, unbounded
Hamiltonians are allowed. Similar arguments are conveyed in Ref. [���].

In the tradition of PW [���, ���], we do not assume a particular physical system for the
clock or specify any clock Hamiltonian ĤC. While references such as [���] employ generic
clock Hamiltonians as well, the authors of many newer studies [���, ���, ���, ���] choose
the clock Hamiltonian to equal the one-dimensional momentum operator K̂ of a particle,
i.e., ĤC = K̂. The rationale behind this choice is twofold. First, the clock position operator
Q̂ can supposedly take the role of a “time operator” by virtue of the commutation relation
[Q̂, ĤC] = i. Second, the position eigenstates |QiC form a distinct class of clock states,
because of their simple evolution in form of |�(�)iC = |Q+�iC and the property of being
an eigenstate of a “time operator”.

�.�.� Time emergence with interaction

The majority of scientific works about time emergence (outside the quantum gravity com-
munity) considers setups without an interaction between clock and system. Yet, such
a setting is very special and, in general, a generic Hamiltonian Ĥ does not allow for a
bipartite tensor structure exhibiting two non-interacting systems. In light of this fact, it
becomes imperative to have a general treatment for coupled subsystems readily available.
We extend an existing collection of publications [��–���,���,���,���,���,���] that consider
this sophisticated configuration, with a thorough analysis within the quantum mechanical
framework administered by the postulates (I) and (II) and proposition (III). A decisive
element of these previous works is the appearance of an e�ective potential acting on the

��
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system and depending on the state of the clock, or simply put, a time-dependent system
Hamiltonian. As demonstrated in the preceding section, the occurrence of such a term
is tied to the presence of a coupling term V̂ . The following derivation of the TDSE with
interactions is of great generality, because of its model-independence and the appearance
of an e�ective system potential V̂S in its most general form. Furthermore, the existence
of an interaction almost always ensures a non-separable energy eigenstate | i possessing
non-vanishing entanglement, unless the coupling commutes with the self-Hamiltonians,
i.e., [ĤS + ĤC, V̂ ] = 0. An example for this special case is V̂ = ĤS ⌦ ĤC from Ref. [���].

�.�.�.� Invariance and infinitesimal transformations

As before, the invariance Eq. (�.�.�) provides a starting point, but the clock projection
cannot easily be resolved into a unitary evolution for the system, as already stated in
the preceding section. The key to determining the correct unitary system dynamics is
the splitting of � into many infinitesimal segments  ⌘ �/N ⌧ 1 with N � 1 and the
associated division of exp

�
i�(ĤC + ĤS + V̂ � E)

�
into many infinitesimal transformations

exp

�
i(ĤC + ĤS + V̂ � E)

�
. After initially treating only one small transformation, the form

of the system evolution for finite � becomes apparent.

Since  is a small quantity, we can Taylor expand Eq. (�.�.�) up to first order in  and
partially project an initial clock state |�0iC onto it, yielding

h�0|ei(ĤC+ĤS+V̂�E)| iC = h�0| iC + i h�0|
�
ĤC + ĤS + V̂ � E

�
| iC + O (

2) . (�.�.��)

�.�.�.� Optimization of e�ective potential and non-Hermitian remainder

Clearly, the term h�0|V̂ | iC in (�.�.��) needs further evaluation. We wish to obtain an
e�ective operator V̂S acting only on the relation system state. To this end, we introduce

V̂S(0) h�0| iC ⌘ h�0|V̂ | iC � |�(0)iS (�.�.��)

with the remainder vector |�(0)iS ⌘ h�0|
�
V̂ � V̂S(0)

�
| iC. So far, the e�ective potential

V̂S(0), which operates solely in the system Hilbert space HS, is undetermined. In order to
capture with V̂S the unitary part of the system evolution to the fullest extent, we minimize
the contribution from the potentially unitarity-violating term |�iS. In other words, we
seek an e�ective potential generating (together with ĤS) a unitary evolution that is as
close as possible to the exact relational dynamics. For an ease in notation, we introduce
the projectors

P̂�(�)⌘ e�i�(ĤC�E) |�0ih�0|C ei�(ĤC�E)
, (�.�.��)

P̂ ⌘ | ih | , (�.�.��)

P̂'(�)⌘ |'(�)ih'(�)|S =
|�(�)ih�(�)|S
h�(�)|�(�)iS

(�.�.��)

and omit the argument � in the following, which is implicitly taken as � = 0 for now.
Expressing the norm of the remainder vector in a trace form yields

h�|�iS = tr

î
P̂ (V̂ � V̂S)P̂�(V̂ � V̂S)

ó
� 0 . (�.�.��)

This term is bounded from below and must posses at least one minimum. On the contrary,
it has no upper bound, because V̂S can always be rescaled by a scalar factor and can increase
the norm by an arbitrary factor. In order to find a V̂S minimizing the remainder norm, we
use a variational approach in which the e�ective system potential varies by a small, but
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arbitrary Hermitian term”�V S, namely V̂S �! V̂S+”�V S. This ensures a variation within the
space of Hermitian operators and the subsequent variation of the norm reads

�h�|�iS = tr

î
P̂ ”�V S P̂�(V̂S � V̂ ) + P̂ (V̂S � V̂ )P̂�”�V S

ó
(�.�.��)

= tr

î”�V S

¶
P̂�(V̂S � V̂ )P̂ + P̂ (V̂S � V̂ )P̂�

©ó
(�.�.��)

= trS

î”�V S h�0|
¶
(V̂S � V̂ )P̂ + P̂ (V̂S � V̂ )

©
|�0iC

ó
!= 0 , (�.�.��)

where we used the cyclic property of the trace. As stated above, the variation ”�V S is
arbitrary and, therefore, the norm variation can only equal zero if the operator-valued
mean value with respect to |�0iC vanishes. It leads to

h�0|
�
P̂ V̂ + V̂ P̂ 

�
|�0iC = h�0|P̂ |�0iC V̂S(0) + V̂S(0) h�0|P̂ |�0iC (�.�.��)

= h�(0)|�(0)iS
Ä
P̂' V̂S(0) + V̂S(0)P̂'

ä
(�.�.��)

for V̂S and cannot be further simplified. Despite that, an additional property aids in the
extraction of all relevant parts. Before doing so, it is useful the define the complementary
projector ˆP' ⌘ 1̂S � P̂'. With a Feshbach-Fano-like partitioning [���, ���], we can bring
the e�ective system potential to the block form

V̂S = P̂' V̂S P̂' +
ˆP' V̂S P̂' + P̂' V̂S

ˆP' +
ˆP' V̂S

ˆP' =

 
P̂' V̂S P̂' P̂' V̂S

ˆP'
ˆP' V̂S P̂'

ˆP' V̂S
ˆP'

!
. (�.�.��)

Since V̂S never appears stand-alone in the equation of motions, but always in conjunction
with |�iS as V̂S |�iS, it is clear that the last term in Eq. (�.�.��) has no influence on the
system dynamics. Additionally, Eq. (�.�.��) gives no constraint for this term and, without
loss of generality, it can be defined in the most convenient way. The third term gives also
zero when applied to |�iS, but it is kept in order to ensure the Hermiticity of V̂S. Solving
Eq. (�.�.��) yields the optimal e�ective system potential

V̂S =
h� |
�
V̂ P̂ + P̂ V̂

�
|�iC

h |P̂� | i
�Re(a)P̂' (�.�.��)

and, furthermore, an evaluation of the remainder vector leads to

|�iS,min = �i Im(a) |�iS . (�.�.��)

The complex scalar a(�) is defined as a ⌘ h |V̂ P̂� | i/ h |P̂� | i 2 C and further details of
the calculations can be found in Appendix A.�. An alternative form for a follows from the
global energy constraint (�.�.�) and reads

a = E � h'|ĤS|'iS �
h |ĤC P̂� | i

h |P̂� | i
. (�.�.��)

Using the aforementioned freedom, we can add �Re(a)ˆP' to the e�ective potential V̂S
without any change in the system dynamics, yielding the simpler expression

V̂S =
h� |
�
V̂ P̂ + P̂ V̂

�
|�iC

h |P̂� | i
�Re(a) . (�.�.��)
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This is a surprising result, because the term we suspected to spoil the linearity and her-
miticity of the first order term in Eq. (�.�.��) is actually linear in the system state |�iS,
regardless of the choice for |�iC. Therefore, only a purely imaginary scalar violates the
Hermiticity. Although the norm of |�iS is not conserved, the dynamics remains unaf-
fected upon renormalization. Put di�erently, only the hermitian term ĤS + V̂S governs the
evolution in projective system Hilbert space�. We also note that the contributions to the
imaginary part Im(a) = Im h |ˆP� V̂ P̂� | iC / h |P̂� | i represent only transitions from the
clock state to its complement through V̂ . An alternative form, which does not rely on the
interaction V̂ , is presented in Appendix A.�.

In hindsight, another way to attain the same result exists. Rewriting the important term
as

h�|V̂ | iC = h�|V̂ | iC
h�|�iS
h�|�iS

=
h� |V̂ P̂ |�iC
h |P̂� | i

|�iS (�.�.��)

resembles an operator acting linearly on the unnormalized system state |�iS. It is not
Hermitian, but we can add zero in a clever way to obtain a Hermitian operator and an
additional scalar term, namely

h�|V̂ | iC =
h�|V̂ P̂ |�iC
h |P̂� | i

|�iS +
h�|P̂ V̂ |�iC
h |P̂� | i

|�iS �
h�|P̂ V̂ |�iC
h |P̂� | i

|�iS (�.�.��)

=
h�|
�
V̂ P̂ + P̂ V̂

�
|�iC

h |P̂� | i
|�iS �

h |V̂ P̂� | i

h |P̂� | i| {z }
⌘a2C

|�iS . (�.�.��)

Again, we find the same Hermitian e�ective system potential V̂S acting on the system and
a purely imaginary term spoiling the norm conservation of |�iS, i.e.,

h�|V̂ | iC =
⇥
V̂S � i Im a

⇤
|�iS (�.�.��)

With this new insight, Eq. (�.�.��) can be expressed as

h�0|ei(ĤC+ĤS+V̂�E)| iC = h�0| iC + i
Ä
ĤS + V̂S(0)� i Im a(0)

ä
h�0| iC

+ i h�0|(ĤC � E)| iC + O (
2) (�.�.��)

= ei
�

ĤS+V̂S(0)
�
e Im a(0) h�0|ei(ĤC�E)| iC + O (

2) (�.�.��)
!= h�0| iC (�.�.��)

and, subsequently, we find

e�i
�

ĤS+V̂S(0)
�
h�0| iC = e Im a(0) h�0|ei(ĤC�E)| iC + O (

2) (�.�.��)

for a small step size . To understand the meaning of the exponential prefactor on the
right-hand side, we note that

Im(a) = Im

h |V̂ P̂� | i

h |P̂� | i
= Im

h |
�
E � ĤC � ĤS

�
P̂� | i

h |P̂� | i
(�.�.��)

�This is the space (“ray space”) in which � |'iS and |'iS are identified for � 2 C\{0} and belong to the
same equivalence class.
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= � Im

h |ĤC P̂� | i

h |P̂� | i
= �

1

2

h |
⇥
�iĤC, P̂�

⇤
| i

h |P̂� | i
(�.�.��)

= �
1

2

h |
�
dP̂�

�
d�
�
| i

h |P̂� | i
= �

1

2

d

d�
ln h |P̂� | i . (�.�.��)

Hence,

e
R �

0
d�0 Im a(�0) =

vut h |P̂�(0)| i

h |P̂�(�)| i
(�.�.��)

and a small � = ⌧ 1 allows for the approximation
vut h |P̂�(0)| i

h |P̂�()| i
= e

R 
0

d�0 Im a(�0) = e Im a(0) + O (2) . (�.�.��)

Clearly, the prefactor normalizes the system state. Dividing both sides of Eq. (�.�.��)
by

p
h |�0ih�0| i provides us with the final version for the “infinitesimal” step for the

normalized system state

e�i
�

ĤS+V̂S(0)
�
|'(0)iS =

h�()| iCp
h |�()ih�()| i

+ O (2) = |'()iS + O (2) (�.�.��)

with the same clock state |�(�)iC = exp

⇥
�i�(ĤC � E)

⇤
|�0iC as in Eq. (�.�.��) of the pre-

ceding section.

�.�.�.� Consecutive transformations

For illustration, we perform two infinitesimal steps, i.e.,

h�0| iC = h�0|e2i(ĤC+ĤS+V̂�E)| iC (�.�.��)

= ei
�

ĤS+V̂S(0)�i Im a(0)
�
h�()|ei(ĤC+ĤS+V̂�E)| iC + O (2) (�.�.��)

= ei
�

ĤS+V̂S(0)�i Im a(0)
�
ei
�

ĤS+V̂S()�i Im a()
�
h�(2)| iC + O (2) . (�.�.��)

Using the same operations as above, the system state transforms as

|'(2)iS = ei
�

ĤS+V̂S()
�
ei�
�

ĤS+V̂S(0)
�
|'(0)iS + O (2) (�.�.��)

and progressive use of this form for finite � yields

h�0|ei�(ĤC+ĤS+V̂�E)| iC =
Å
T ei

R �
0

d�0
⇥

ĤS+V̂S(�0)
⇤ã
h�0|ei�(ĤC�E)+

R �
0

d�0 Im a(�0)| iC (�.�.��)

in the limit N !1 and with anti-�-ordering operator T . The exponential term involving
Im a(�) ensures the system state’s normalization for all �. With the definitions from above,
we get

|'(�)iS = T e�i
R �

0
d�0
⇥

ĤS+V̂S(�0)
⇤
|'(0)iS (�.�.��)
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with �-ordering operator T and, after applying a simple derivative with respect to �, also
the system TDSE

i
d

d�
|'(�)iS =

⇥
ĤS + V̂S(�)

⇤
|'(�)iS . (�.�.��)

Once again, the parameter � appears in place of the traditional time t, even under the
presence of an interaction between clock and system. Equation (�.�.��) represents one of
the main results of this thesis. Despite the presence of a system-clock coupling, the form
of the clock evolution (�.�.��) remains unchanged. Subsequently, a notable property from
Sec. �.�.� holds, namely that only non-vanishing clock Hamiltonians ĤC 6= 0 can induce
physical changes in the system, regardless of the initial state |�0iC. Otherwise, only the
global phase of the system state changes by exp(�i�E) for ĤC = 0. A major feature of
the e�ective system TDSE is the inextricable link between the e�ective system potential
and the initial system state. Any change of the initial clock state results in a simultaneous
change of the potential and the initial system state in general.

To the best of our knowledge, the only other works treating the PW approach with an
interaction term [���,���] are solely able to derive a system TDSE with a time-convoluted
e�ective potential, which reduces to a time-local expression only for special interactions.
In addition, the authors rely on ĤC = K̂, the existence of a time operator with [ĤC, T̂C] = i
and the eigenstates of T̂C as clock states. As we have demonstrated successfully, neither
the time-convolution nor a very special clock is necessary to obtain unitary dynamics with
an exact e�ective potential. Interestingly, this situation resembles a historical development
in open systems theory. In ����, Hashitsume et al. [���] published a derivation of a time-
convolutionless formulation of master equations and, thus, their approach succeeded the
Nakajima-Zwanzig formalism [���,���] from around ����, which contains memory e�ects.

�.�.�.� Second order contributions

We omitted the remaining term scaling with O (2) in Eq. (�.�.��). However, a careful
researcher could argue that a summation of all small transformations can lead to a scaling
O (N2) = O (�) which is linear in . In that case, the remainder term could be as
important as the e�ective system Hamiltonian. To rule out this possibility, we perform a
simple check by assuming the clock evolution to be a priori given by |�(�)iC = exp

⇥
�i�(ĤC�

E)
⇤
|�0iC. Our previous treatment provides this form of the evolution and it su�ces now

to show that the conditional system state is governed by Eq. (�.�.��). The important terms
are

i
d

d�
h�| iC = �h |(ĤC � E)|�iC = h |(ĤS + V̂ )|�iC , (�.�.��)

i
d h |�ih� | i

d�
= h |

î
ĤC, |�ih� |C

ó
| i= �h |

î
V̂ , |�ih�|C

ó
| i (�.�.��)

and the change of the conditional system state reads

i
d

d�
|'iS = i

d

d�

h�| iCp
h |�ih�| i

(�.�.��)

=
h� |
�
ĤS + V̂

�
| iCp

h |�ih� | i
+ |'iS

h |
î
V̂ , |�ih�|C

ó
| i

2 h |�ih�| i| {z }
=i Im a

(�.�.��)
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(�.�.��)=
⇥
ĤC + V̂S

⇤
|'iS�i Im a |'iS + i Im a |'iS| {z }

=0

. (�.�.��)

Clearly, no additional term appears and, indeed, we verify our treatment of neglecting
the O (2) contributions to be correct. The analytical exactness of the final result is worth
mentioning, because the derivation does not require any approximation. However, the
possibility for a simplification of the e�ective system potential exists under specific circum-
stances. Before we present those, we showcase our formalism with a specific example. Not
only can we point out certain important features of our framework, but we demonstrate
how fully analytical solutions to time-dependent problems can be obtained.

�.�.� Illustration for coupled harmonic oscillators

For any application, we need to calculate an energy eigenstate | i as an essential element
of our framework, either analytically or numerically. Such a formidable task is di�cult
in general, but the mathematical freedom to change the tensor product structure of the
Hilbert space may provide means for its realization. Specifically, we assume a partitioning
H = H 0

S ⌦H
0
C to exist, in which the global Hamiltonian Ĥ 0 allows for an easy computa-

tion of the energy eigenstate | i. One example is an interaction-free global system with
well-known subsystem Hamiltonians. A change in the tensor product structure induces
a new factorization H = HS ⌦HC and, simultaneously, transforms the Hamiltonian to
a new form Ĥ. Such an operation e�ectively corresponds to a basis transformation and
leaves the global state | i unaltered. This procedure shifts the main task from solving a
complicated TISE to finding the correct transformation from a simple Hamiltonian Ĥ 0 to a
desired Hamiltonian Ĥ. For illustration, we present one example in this section, namely
two coupled oscillators obtained from a single harmonic oscillator and a free particle,
which are not coupled.

The combination of a harmonic oscillator and a non-interacting free particle can be de-
scribed by the separable Hamiltonian

Ĥ =
p̂2

x + p̂2

y

2
+

1

2
x̂2

. (�.�.��)

For simplicity, the frequency ! of the oscillator and the two masses Mx and My are set
to one. Both systems are well known and allow for an easy determination of the energy
spectrum [���]

E(n, k) =
1

2
k2 +

Å
n+

1

2

ã
� 0 n 2N0, k 2R . (�.�.��)

Their associated eigenstates

 n,k(x , y) =
1
p

2⇡
e�ik y · ⌘n(x) . (�.�.��)

include the energy eigenstates

⌘n(x) =
Å

1

⇡

ã 1

4 1
p

2nn!

Hn(x) e�x2/2
. (�.�.��)

of the harmonic oscillator Ĥosc = (p̂2

x + x̂2)/2 [���]. The physicist’s version of the Hermite
polynomials is Hn(x) = (�1)nex2 d

n

dyn

Ä
e�x2

ä
and some of their properties are detailed in

Appendix B. Hence, the global energy eigenstate reads

 n,k(x , y) =
1

⇡1/4
p

2n+1⇡n!

e�ik y Hn(x) e�x2/2
. (�.�.��)
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Interestingly, most eigenenergies E possess a degenerate subspace and the set {ni}0nE�1/2

labels the corresponding momenta

ki = k(E, ni) = ±
∆

2(E � ni)� 1 , (�.�.��)

which provide di�erent orthogonal states for fixed energy E. The most general energy
eigenstate can be expressed as

 (x , y) =
X

i

ci  ni ,ki
(x , y) (�.�.��)

with complex coe�cients ci.

In order to introduce an interaction, we modify the tensor product structure of H . Such
a change is facilitated by a variable transformation (x , y)! (r, s) and we define the new
variables

x = r cos✓ � s sin✓ (�.�.��)
y = s cos✓ + r sin✓ (�.�.��)

with a fixed rotation angle ✓ . For simplicity, we assume ✓ to only take the values

0< cos✓ < 1 and 0< sin✓ < 1 (�.�.��)

or 0 < ✓ < ⇡/2 and note that dx dy = dr ds. Applying this basis transformation yields the
transformed Hamiltonian

Ĥ =
p̂2

r

2
+

cos
2 ✓

2
r̂2

| {z }
=ĤC

+
p̂2

s

2
+

sin
2 ✓

2
ŝ2

| {z }
=ĤS

+ sin(2✓ ) · ŝ⌦ r̂| {z }
=V̂

, (�.�.��)

which describes two coupled harmonic oscillators with natural frequencies !r ⌘ cos✓ and
!s ⌘ sin✓ , respectively. As a side note, it is also possible to start from two position-
coupled harmonic oscillators with di�erent masses and frequencies and, subsequently, find
an inverse coordinate transformation to obtained two uncoupled system [���]. Expressed
in the new variables, the global energy eigenstates read

 n,k(r, s) =
1

⇡1/4
p

2n+1⇡n!

e�ik(s cos✓+r sin✓ )Hn(r cos✓ � s sin✓ ) e�(r cos✓�s sin✓ )2/2
.

(�.�.��)

and clearly reveal the entanglement between the two degrees of freedom, r and s, respec-
tively, due to a loss of separability.

We employ well-knownwavefunctions for the clock states, namely the coherent states [���,
���]

↵(r,�,!, r0) =
⇣!
⇡

⌘ 1

4

exp

ï
�

i
2

�
!�+ rcl(�) · pcl(�)

�ò

· exp

h
�
!

2

�
x � rcl(�)

�2
i

exp

⇥
ir · pcl(�)

⇤
(�.�.��)

evolving under the Hamiltonian Ĥosc = (p̂2

r +!
2 r̂2)/2 with the classical trajectories

rcl(�) = r0 cos(!�) (�.�.��)
pcl(�) = �!r0 sin(!�) . (�.�.��)
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This particularly simple form is linked to special initial conditions rcl(0) = r0 and pcl(0) = 0.
Complex conjugation of the coherent state yields

↵⇤(r,�,!, r0) =
⇣!
⇡

⌘1/4
ei
�
!�+rcl(�)·pcl(�)

�
/2 e�ir · pcl(�) e�!

�
r�rcl(�)

�2

/2 (�.�.��)

and, therefore, the density in position space reads

|↵(r,�,!, r0)|
2 =

s
!

⇡
exp

î
�!

�
r � rcl(�)

�2
ó

. (�.�.��)

The prefactor ensures the normalization
R

dx |↵(r,�,!, r0)|
2 = 1. Using these special states,

we define the clock state to be

h�(�)|riC ⌘ ↵⇤(r,�,!r , r0) · exp

⇥
�i�E

⇤
(�.�.��)

with the clock frequency !r = cos✓ . In essence, all clock states considered are charac-
terized by their initial mean position r0. Obviously, other clock states can be used, but
coherent states allow to analytically calculate some of the occurring integrals, because of
to their Gaussian nature.

The unnormalized conditional system state is

|�(�)iS = h�(�)| iC =
X

i

ci
⌦
�(�)

�� ni ,ki

↵
C . (�.�.��)

For the sake of simplicity, we only take the simple form | i =
�� n,k

↵
in the following for a

fixed pair of n and k. Individual conditional system states in s-basis are

�n,k(s,�) =
⌦
s⌦�(�)

�� n,k
↵

(�.�.��)

and have the exact form

�n,k(s,�) =Nn,k(�) e�i⇣(�)
exp

ï
�is

Å
k+

pcl(�) sin✓
1+ cos✓

ãò
exp

2
4�

�
s� rcl(�) cot✓

�2

2(1� cos✓ )

3
5

·Hn
⇥
s� rcl(�) cot✓ + iL(�)

⇤
. (�.�.��)

The details of the calculation and the definitions of the prefactor Nn,k, the phase ⇣ and the
modified momentum L can be found in Appendix C. Parts of expression (�.�.��) resemble
a coherent state, namely the second and third exponential terms with a slightly adjusted
classical momentum. However, the �-dependent Hermite polynomial modulates the shape
of the system wavefunction and is a remnant of the harmonic oscillator energy eigenfunc-
tion ⌘ in  . Such a composite expression promises interesting system dynamics and an
illustration for n = 1 is shown in Fig. �.�, together with the free evolution (V̂S = 0) for
comparison. Equation (�.�.��) exhibits an important feature of our formalism, namely the
cyclic structure. All �-dependencies in the system state are linked to the classical phase
space trajectory

�
rcl(�), pcl(�)

�
of the clock and must follow the periodicity of the clock. In

other words, once the clock state returns to its initial state |�0iC, the systemmust inevitably
return to its initial state as well. Any natural periodicity of the system (here 2⇡/!s) can
loose its meaning. If system and clock freely evolve on very di�erent time scales and the
interaction is weak, then the dynamics can still display both scales. However, our example
does not allow for this possibility. A further display of the cyclic property occurs through
the mean position

⌦
�n,k

��ŝ
���n,k

↵
S⌦

�n,k
���n,k

↵
S

= rcl cot✓ (�.�.��)
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(a)

(b)

Figure �.� – The evolution of the system wavefunctions for an uncoupled and
coupled harmonic oscillator, due to (�.�.��), is compared by means of their absolute
values. Panel (a) shows the exact system evolution of the relational system state
|'(s,�)|, whereas the free evolution of the harmonic oscillator, due to ĤS and with
the same initial state as in (a), is presented in (b) for comparison. The shown
dynamics corresponds to total energy E = 1.8, basis rotation angle ✓ = 0.325⇡ and
momentum k ⇡ 0.775 in atomic units (see App. D). Clearly, the coupled harmonic
oscillator (principal system) does not display its natural periodicity any longer.

of the system (App. C), which, in addition, does not depend on n or k.

The squared norm of these states is

⌦
�n,k

���n,k
↵
S =

N 2

n,kp
1� cos✓

nX

l,m=0

l+meven

✓
n
m

◆✓
n
l

◆
(2L)2n�(l+m) il�m

2
m+l �

Å
m+ l + 1

2

ã

·

vt
cos✓

1� cos✓

l+m

2F1

Å
�m,�l;

1� l �m
2

;
cos✓ � 1

2cos✓

ã
(�.�.��)

with the hypergeometric functions 2F1(a, b; c; z) and allows us to express the normalized
system state

��'n,k
↵
S in an analytically exact fashion. Specifically for the n= 1 example, the

normalized system state in position basis reads

'1,k = �
Å

1� cos✓

⇡

ã1/4
vt 1� cos✓

2L2(1� cos✓ ) + 1
(s� rcl cot✓ + iL) e�i⇣

· exp

ï
�is

Å
k+

pcl sin✓
1+ cos✓

ãò
exp

2
4�

�
s� rcl cot✓

�2

2(1� cos✓ )

3
5 . (�.�.��)

In general, the states (�.�.��) evolve under the influence of the e�ective system potential

V̂S = rcl sin(2✓ )
�
P̂' ŝ+ ŝ P̂'

�
� (2r2

cl cos
2 ✓ + cos✓ )

+ 2i
ï

P̂'
�
cos✓ p̂s + k+ pcl sin✓

�
ŝ� ŝ

�
cos✓ p̂s + k+ pcl sin✓

�
P̂'

ò
, (�.�.��)

which is also calculated in Appendix C. A slight simplification follows from the operation
on the system state |'iS, because of the cancellation of two terms. The resulting expression
is

V̂S
��'n,k

↵
S =

ß
rcl sin(2✓ ) ŝ| {z }
=h� |V̂ |�iC

+ cos✓ + 2i (k+ pcl sin✓ )
î
P̂', ŝ

ó

+ i cos✓
î
P̂', ŝ p̂s + p̂s ŝ

ó™ ��'n,k
↵
S (�.�.���)
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and features the operator-valuedmean value h�|V̂ |�iC. Such a termmodifies theminimum
position of the harmonic system potential and oscillates with the natural frequency !r of
the clock. Unfortunately, the other terms do not allow for an easy interpretation, except
for the trivial energy shift from the constant term. For a validity check of our results, we
numerically compared the relational framework with the sequential time evolution and
found perfect agreement. A representation of V̂S in position basis can be straightforwardly
calculated. However, instead of presenting the results for n = 1 in the main text, we
provide these more complex expressions in Appendix C.

In summary, we have derived an analytical solution to a time-dependent problem, which
features a complicated time-dependent potential. Although special, such exact solutions
are very rare in physics. The change of the tensor product structure of the global Hilbert
space proves essential in our derivation and might be useful for other problems too. As
a significant consequence of our approach, the obtained system dynamics clearly exhibits
the cyclic structure of the clock.

�.�.� Approximations for e�ective potential

The evaluation of the e�ective system potential can be complicated, because it depends
on | i, V̂ and |�iC. In this section, we show two approximations, which simplify the
expression for V̂S. Additionally, we point out a relation between both approximations and
provide connections to previous works, as well as another numerical example.

�.�.�.� Clock quasi-eigenstate of interaction

A straightforward approximation concerns the action of the coupling V̂ on the clock state
|�iC. If |�iC is almost an eigenstate, a “quasi-eigenstate”, of the HC-part of the interac-
tion V̂ , then one can neglect the components of V̂ |�iC that are orthogonal to |�iC. In
mathematical notation, this statement translates to

V̂ |�iC =
�
P̂� +

ˆP�
�
V̂ |�iC| {z }
⇡0

⇡ h� |V̂ |�iC |�iC (�.�.���)

with the complementary clock state projector ˆP� ⌘ 1̂C � P̂� . The term h�|V̂ |�iC is an
e�ective operator acting in the system Hilbert space HS, because the scalar product is
only taken in HC. Ideally, this approximation should hold true for all �, but for numerical
purposes it may su�ce to hold only for a certain range of interest.

Surprisingly, an element of decoherence theory mentioned in Section �.�.� has an intrigu-
ing reappearance here, namely the “pointer state”. These states are characterized by their
robustness against entanglement buildup with an environment under the evolution of a
total Hamiltonian, which includes the self-Hamiltonians and an interaction with the envi-
ronment [���]. In the “quantum-measurement limit”, which neglects the self-Hamiltonian
(here ĤC), the pointer states are simply the eigenstates of the interaction and are ab-
solutely stable [���]. Yet, the aforementioned situation might be too idealized in most
applications and it is necessary to include the self-Hamiltonian. In this case, the pointer
states are determined by their ability to become the least entangled with the environment
(on the time scale of interest). This procedure, known as “predictability sieve” [���, ���],
has been employed to find coherent states as the most robust pointer states for a harmonic
oscillator coupled linearly via its position to a heat bath [���], even though the eigenstates
of the interaction are position eigenstates. These ideas seem to be in close analogy to
Eq. (�.�.���) and, for this reason, we suspect that the predictability sieve might be a useful
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procedure to find clock states well-suited for the quasi-eigenstate approximation.

Since our framework does not require the stand-alone term (�.�.���), but only the partial
scalar product h�|V̂ | iC, the slightly weaker condition

h�(�)|V̂ ˆP� | iC ⇡ 0 (�.�.���)

can be used. It allows for non-vanishing orthogonal parts ˆP� V̂ |�(�)iC as long as they are
not contained in | i. For simplicity, we keep the name “quasi-eigenstate approximation”,
even though the weaker form does not necessitate an approximate eigenstate in principle.
However, it is much easier in practice to find genuine quasi-eigenstates and, as is shown
below, we can connect our approach to prior works with Eq. (�.�.���). If this approximation
is su�ciently accurate, then the e�ective system potential reduces to

V̂S(�) |'iS ⇡ h�(�)|V̂ |�(�)iC |'iS (�.�.���)

for all relevant � applied to the system state and V̂S does no longer depend on | i. In case
approximation (�.�.���) holds exactly true, the norm of |�iS = h�| iC is preserved, as can
be easily proven with

d

d�
ln h�|�iS = Im

h |V̂ P̂� | i

h |P̂� | i
(�.�.���)= Im

h� ⌦�|V̂ |� ⌦�i
h�|�iS| {z }
2R

= 0 (�.�.���)

from Eq. (�.�.��). As a result, the norm change of |�i provides a quantifier for the error
induced by the quasi-eigenstate approximation (�.�.���). A more rigorous error analysis
can be facilitated by the di�erence vector

|⌅iS ⌘
�
V̂S � h�|V̂ |�iC

�
|'iS (�.�.���)

=
Ä
h�|V̂ |�iC P̂' + P̂' h�|V̂ |�iC

ä
|'iS �

Ä
Re a+ h�|V̂ |�iC

ä
|'iS

+
h�|
Ä
V̂ ˆP� P̂ + P̂ 

ˆP� V̂
ä
|�iC

h |�ih�| i
|'iS (�.�.���)

=
h� |
Ä
V̂ ˆP� P̂ + P̂ 

ˆP� V̂
ä
|�iC

h |�ih�| i
|'iS �

 
Re

h |ˆP� V̂ P̂� | i
h |�ih�| i

!
|'iS (�.�.���)

=
h�|V̂ ˆP� | iCp
h |�ih�| i

+ |'iS · i Im

h |ˆP� V̂ P̂� | i
h |�ih�| i| {z }
=Im a

, (�.�.���)

because its norm

Z2 ⌘ h⌅|⌅iS (�.�.���)

= (Im a)2 +
h |ˆP� V̂ P̂� V̂ ˆP� | i
h |�ih�| i

+ i Im a

2
4
h |
Ä

ˆP� V̂ P̂� � P̂� V̂ ˆP�
ä
| i

h |�ih� | i

3
5

| {z }
=2i Im a

(�.�.���)
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=
h |ˆP� V̂ P̂� V̂ ˆP� | i
h |�ih�| i

� (Im a)2 (�.�.���)

quantifies the instantaneous error due to the approximation. It is used in Sec. �.�.�.� to
numerically assess the deviation from the exact evolution.

Considering that | i appears in Eq. (�.�.���), one might prefer an error measure for the
stronger form (�.�.���) of the quasi-eigenstate approximation, because it does not depend
on | i. In a fashion similar to the analysis above, the definition of a di�erence operator

⌅̂S ⌘ h�|V̂
ˆP� V̂ |�iC , (�.�.���)

acting in HS, can shed light on the issue of finding a suitable quantifier. Yet, we must
find a contracted form to yield a single real number. To this end, we could either use
a matrix norm, such as the Hilbert-Schmidt norm

��ÂS

��2

S ⌘ trS(Â
†

SÂS) [���], or use the
mean value with respect to a certain normalized system state |⌧iS 2 HS. Unfortunately,
both options can yield infinity for unbounded operators, unless we restrict to the e�ective
system Hilbert space spanned by the states in ⇧S, from the end of Sec. �.�.�. However,
determining ⇧S, requires once again knowledge of the global state | i. Being aware of
this issue, we nevertheless define

Z2

strong ⌘ max
|⌧iS 2HS
h⌧|⌧iS=1

h⌧|⌅̂S|⌧iS = max
|⌧iS 2HS
h⌧|⌧iS=1

h⌧⌦� |V̂ ˆP� V̂ |⌧⌦�i (�.�.���)

and acknowledge its inadequacy for unbounded V̂ . In practice, most interactions are of
the simple form

V̂ = ŴS ⌦ ŴC (�.�.���)

for ŴS and ŴC acting only in HS and HC, respectively. For instance, position-position
coupling V̂ / q̂1 ⌦ q̂2 [���, ���] and spin-spin interaction V̂ / �̂1,i ⌦ �̂2, j [���] represent
just two of many examples. Here, �̂n,i represent the Pauli matrices [���] for n 2 {1, 2} and
i 2 {x , y, z}. For the separable interaction (�.�.���), the error (�.�.���) factorizes to

Z2

strong,sep = h� |ŴC
ˆP�ŴC|�iC| {z }

=Var� [ŴC]

· max
|⌧iS 2HS
h⌧|⌧iS=1

h⌧|Ŵ 2

S |⌧iS (�.�.���)

and the second factor is independent of the clock state. Hence, the variance of ŴC with
respect to the clock state |�iC quantifies the deviation from being in an exact eigenstate of
ŴS, as was to be expected. In addition, by focusing only on the first factor, a possible un-
boundedness of the second factor can be tolerated. For example, the variance Var�[ŴC] is
used in Section �.�.�.�. If the variance cannot give a conclusive answer as in Section �.�.�.�,
we can use the relative error

Z2

rel ⌘
Var�[ŴC]

h�|ŴC|�i
2

C

(�.�.���)

as a dimensionless alternative. In this form, the variance is compared to the strength of
the interaction.
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�.�.�.� Connection to quantization of constrained system

As mentioned in Chapter �, the classical constraint (�.�) has been used as the starting point
for a quantization procedure in order to derive the TDSE [��, ��]. The quantized version
of constraint (�.�) is the TISE

Ĥ | i=
Å

P̂t +
1

2m
p̂2 + V (q̂, t̂)

ã
| i= 0 (�.�.���)

with the position operator t̂ and its associated momentum operator P̂t . A representation
of the TISE in a global position basis reads

✓
�i~h @

@ t
�
~h2

2m
@ 2

@ q2
+ V (q, t)

◆
 (x , t) = 0 (�.�.���)

and its form equivalence to the TDSE is then used as a claim for a successful emergence of
time. However, this derivation depends explicitly on a special basis and does not explain
any relation to a physical clock state. E�ectively, the resulting TDSE is just a TISE in
disguise. Nonetheless, we can use the quasi-eigenstate approximation to derive a genuine
TDSE of the same form. The special nature of the clock Hamiltonian ĤC = P̂t allows for a
straightforward relation, because any wavepacket in the t-position basis is non-dispersing.
If the initial clock state is chosen as a position eigenstates (or a very narrow wavepacket),
i.e.,

|�0iC = |t0iC , (�.�.���)

then its associated �-evolution has the simple form

|�(�)iC = |t0 +�iC . (�.�.���)

In this case, the clock states are actual eigenstates of the interaction, because

V (q̂, t̂) |�(�)iC = V (q̂, t0 +�) |�(�)iC . (�.�.���)

The system TDSE becomes

i
d

d�
|'(�)iS =

Å
1

2m
p̂2 + V (q̂, t0 +�)

ã
|'(�)iS (�.�.���)

with the e�ective potential h�(�)|V (q̂, t̂)|�(�)iC = V (q̂, t0 + �) as a result. Obviously, the
mean clock position t ⌘ h�(�)| t̂|�(�)iC = t0 + � represents an adequate quantity to track
the clock evolution and the deparametrization yields

i
d

dt
|'(t)iS =

Å
1

2m
p̂2 + V (q̂, t)

ã
|'(t)iS . (�.�.���)

Finally, this genuine TDSE makes reference to a specific clock property via t and not to a
static configuration space coordinate.

There is another important di�erence between the approach described at the beginning
of this section and our relational framework, namely the fixing of the initial system state.
While the basis-dependent form (�.�.���) may resemble the TDSE, it does not describe how
an initial state is extracted from the global state. In contrast, our procedure yields the
definite state |'(0)iS = h�0| iC /

p
h |�0ih�0| i in addition to the TDSE. The same issue

occurs in semiclassical treatments and is shown later.
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�.�.�.� Monochromatic mode interacting with atomic system

In reference [���], Braun et al. consider time emergence for a generic atomic system
interacting with a monochromatic field mode. For the sake of consistency, their results
are presented in a notation consistent with this thesis in the following. Upon quantization
of the classical electromagnetic fields [���], their Hamiltonian describes a sum of many
uncoupled harmonic oscillator. By picking just a single field mode for the clock, the
corresponding clock Hamiltonian

ĤC =!
Å

â†â+
1

2

ã
(�.�.���)

describes a single harmonic oscillator with creation and annihilation operators â and â†,
respectively. Here, ! denotes the angular frequency. The generic system Hamiltonian for
an atom is

ĤS =
X

i

"i ĉ
†

i ĉi (�.�.���)

and the interaction reads

V̂ =
X

i j

gi j ĉ
†

i ĉ j ⌦ (â+ â†)⌘ Ŝ ⌦ (â+ â†) . (�.�.���)

Choosing the ground state |'0iS as a reference state allows the authors of Ref. [���] to
express the atomic operators as ĉ†

i ⌘ |'iih'0|S, such that ĉ†

i ĉ j =
��'i
↵⌦
' j
��
S. The sum â + â†

of annihilation and creation operator corresponds to the electric field of the mode (or
position for a mechanical harmonic oscillator). Quite similar to our example in Sec. �.�.�,
the clock state is e�ectively chosen as a coherent state |�(�)iC = |↵(�)iC with â |↵(�)iC =
↵0e�i!� |↵(�)iC and, after applying semiclassical approximations, Braun et al. yield the
TDSE

i
d

d�
|'(�)iS =

ï
ĤS + Ŝ

�
↵0e�i!� +↵⇤

0
ei!�

�ò
|'(�)iS . (�.�.���)

In essence, this result is the quasi-eigenstate approximation, because

h�(�)|V̂ |�(�)iC = h↵(�)|Ŝ ⌦ (â+ â†)|↵(�)iC (�.�.���)

= Ŝ
�
↵0e�i!� +↵⇤

0
ei!�

�
. (�.�.���)

Equipped with the error estimates from Sec. �.�.�.�, it is now even possible to quantify the
deviation from the exact dynamics. After a simple calculation, one realizes that the clock
variance

Var�[â+ â†] = 1 (�.�.���)

is constant, regardless of ↵0, and cannot provide a convincing error estimate. For this
reason, we prefer the use of the relative error

Z2

rel =
1

4|↵|2
·

1

cos2(!�+ #0)
(�.�.���)

with mean interacting strength h�(�)|(â+ â†)|�(�)iC = 2|↵0| · cos(!�+ #0) for ↵0 ⌘
|↵0| · exp(i#0). Clearly, the clock must have a large mean energy !|↵|2 for a small er-
ror. However, the relative error becomes infinite at the turning points!�+#0 = (n+1/2)⇡
(n 2 Z) and the approximation becomes the least exact. While the variance is still finite at
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these points, the mean interaction strength vanishes and causes the singular behavior.

This is an interesting example in view of our hypothesis in Sec. �.�.�.� about the use of
pointer states as clock states. The setup in Ref. [���] corresponds directly to the analysis
considered here. Even though, the interaction features the harmonic oscillator position of
the clock in a linear form, coherent states are used instead of position (quasi-)eigenstates.
For very short time scales, position (quasi-)eigenstates are useful, but on longer time scales
the coherent states provide a much better approximation, in agreement with the findings
in Ref. [���].

While the analysis of Braun et al. [���] provided more insight into time emergence, the
authors did not mention that the cyclic property of the clock is also imprinted on the
system. In other words, only system dynamics within a single clock cycle can be probed in
this case, which is inadequate for the description of the interaction with an electromagnetic
field over typically many cycles. A better description of this scenario can be given with a
more realistic finite laser pulse and is provided in the next section.

�.�.�.� Atomic system interacting with a laser pulse

Instead of using a monochromatic field for the clock, we study an atomic system interacting
with the electric field of a finite laser pulse. To this end, we consider a free heavy non-
relativistic particle with mass M in one dimension as a clock with ĤC = K̂2/(2M) and use
the interaction

V̂ = Ŝ ⌦ F(Q̂) (�.�.���)

for the clock position operator Q̂ and momentum operator K̂. As in the preceding section,
we use a generic system operator Ŝ. The central idea of this section is to employ the
quasi-eigenstate approximation to emulate a classical electric field F(�). To be specific, we
choose the form of the electric field as

F(Q) = exp

✓
�4(ln 2)

Q2

T̄2

◆
· cos(!Q) , (�.�.���)

representing a short pulse centered at Q = 0 with central frequency ! and full width
half maximum T̄ . For an easier notation, we define the rescaled variable T ⌘ T̄/(2

p
ln 2).

Initially, the clock state is taken to be a Gaussian wave packet

�(K , 0)/ exp

⇥
��2

0
(K � K0)2

⇤
exp[iQ0K] (�.�.���)

in momentum space centered at initial momentum K0 > 0, with mean position Q0 < 0 and
initial width �0. In position space, the �-evolved clock state reads [���]

�(Q,�)/ eiK0(Q�Q0)e�iK2

0
�/(2M)

exp


�
(Q�Q0 � K0�/M)2

4(�2

0
+ i�/(2M))

�
(�.�.���)

with normalization constant N(�) =
q

2⇡
�
�2

0
+ (�/(2M�0))

2
�
⌘
p

2⇡�2(�) and has the
density

|�|2(Q,�) =
1

N(�)
exp


�
(Q�Q0 � K0�/M)2

2(�2

0
+ (�/2M�0)2)

�
. (�.�.���)

The time-dependent width �(�) ⌘
q
�2

0
+ (�/2M�0)2 shows the dispersing character and

the center of the wavepacket Q(�) ⌘ Q0 � K0�/M = h�|Q̂|�iC advances linearly in �. For
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the approximate e�ective system potential, the mean value of F(Q̂) with respect to |�iC is
essential and evaluates to

h�(�)|F(Q̂)|�(�)iC =
1

N(�)

Z 1

�1
dQ e�Q2/T2

cos(!Q) exp


�
(Q�Q(�))2

2�2(�)

�
(�.�.���)

=
1p

1+ 2�2(�)/T2

exp


�

!2�2(�)
2(1+ 2�2(�)/T2)

�

· exp


�
Q2(�)

T2
·

1

1+ 2�2(�)/T2

�
cos

ï
!Q(�)

1+ 2�2(�)/T2

ò
(�.�.���)

6= F
�
h�|Q̂|�iC

�
= F

�
Q(�)

�
. (�.�.���)

At this point, it becomes already apparent that, in order to match the original electric field,
the width �(�) must be small for � at which F(Q(�)) di�ers significantly from zero. In
this limit, we obtain h�|F(Q̂)|�iC ⇡ F(Q(�)). A simplification of the expression above is
certainly wanted and the equation above suggests the first condition

2 ·
2�2(�)

T2
⌧ 1 for

Q2(�)
T2

< 1 , (�.�.���)

which yields

h�(�)|F(Q̂)|�(�)iC ⇡ e�
!2�2(�)

2 e�
Q2(�)

T2 cos [!Q(�)] (�.�.���)

in zeroth order. The inclusion of an additional factor of two becomes intelligible with the
mean value

h�(�)|F(Q̂)2|�(�)iC =
1

N(�)

Z 1

�1
dQ e�2Q2/T2

cos
2(!Q) exp


�
(Q�Q(�))2

2�2(�)

�

(�.�.���)

=
1p

1+ 4�2(�)/T2

e�2Q2(�)/[T2·(1+4�2(�)/T2)]

·
1

2

ß
1+ e�2!2�2(�)/[1+4�2(�)/T2]

cos

Å
2!Q(�)

1+ 4�2(�)/T2

ã™

(�.�.���)

⇡
1

2
e�2Q2(�)/T2

·
¶

1+ e�2!2�2(�)
cos

⇥
2!Q(�)

⇤©
(�.�.���)

of the squared clock operator F(Q̂)2, in which the last line was obtained with the zeroth
order expansion in 4�2(�)/T2. Subsequently, the clock variance reads

Var�(�)[F(Q̂)]⇡ e�2Q2(�)/T2

ï
1

2

Ä
1+ e�2!2�2(�)

cos(2!Q)
ä
� e�!

2�2(�)
cos

2(!Q)
ò
(�.�.���)

for Q2(�)< T2 and suggests the second condition

2!2�2(�)⌧ 1 for
Q2(�)

T2
< 1 . (�.�.���)

Typically, the inverse frequency 1/! of a pulse is smaller than the extension T and, in this
case, condition (�.�.���) also supersedes the previous requirement (�.�.���). With the help
of the trigonometric relation cos

2(y) = (1+ cos(2y))/2, we find

Var�(�)[F(Q̂)]⇡!2�2(�) e�2Q2(�)/T2

sin
2(!Q) for Q2(�)< T2 (�.�.���)
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for the first order expansion in 2!2�2(�). Clearly, demanding inequality (�.�.���) leads
to a vanishing clock variance for F(Q̂), which also permits an easy interpretation. For a
wavepacket to be able to sample the form of the function F(Q̂) requires wavepacket widths
smaller than the extension T and the inverse frequency 1/! of the laser pulse.

So far only the situation Q2 < T2 has been considered and we briefly show the vanishing
of Var�(�)[F(Q̂)] in the limit of large �. More specifically, we start with an analysis of the
case �2(�)� T2 for which the mean values yield

h�(�)|F(Q̂)|�(�)i2C ⇡
T2

2�2(�)
e�

!2�2(�)
2 e�

Q2(�)
�2(�) cos


!Q(�)T2

2�2(�)

�


T2

2�2(�)
, (�.�.���)

h�(�)|F(Q̂)2|�(�)iC ⇡
T

4�(�)
e�

Q2(�)
2�2(�)

✓
1+ e�

!2�2(�)
2 cos


!Q(�)T2

2�2(�)

�◆


T
2�(�)

.

(�.�.���)

Given the always increasing width �(�!1)/ �, both terms converge toward zero and,
consequently, the variance as well.

A very narrowwavepacket requires a broad distribution inmomentum space and, therefore,
a large spread in energy distribution. However, if the initial width is too small and the
momentum distribution very broad, then the wavepacket expands very fast on the time
scale of traversing the potential. We infer this behavior from the width formula

�(�)⌘
q
�2

0
+ (�/2M�0)2 , (�.�.���)

and its two asymptotic regions

�(�)⇡ �0 for
�2

4M2�4

0

⌧ 1 , (�.�.���)

�(�)⇡
1

2M�2

0

·� for
�2

4M2�4

0

� 1 . (�.�.���)

The second asymptote leads to a fast increase of the clock variance for very small initial
widths�0⌧ �2/M2. In turn, choosing a large initial width leads to a constant width, but at
the expanse of having a large error. Therefore, the condition for an appropriate clock state
is a small width of the wavepacket for the typical scale �traversal ⌘ T/(K0/M) of traversing
the central part of F(Q). Hence, an optimal initial width and a corresponding initial energy
distribution exist for a given F(Q). Having an even broader energy distribution does not
decrease the error, but actually increases it. However, another possible way to reduce the
error is to use a more massive particle and a slower spreading of the wavepacket. From a
relativistic viewpoint, the low momentum approximation of the relativistic energy

Erelativistic =
r
(M c2

light)
2 + (K clight)2 =M c2

light

vuut
1+

 
K clight
M c2

light

!2

(�.�.���)

⇡M c2

light

 
1+

1

2

K2

M2 c2

light

!
=M c2

light +
K2

2M
(�.�.���)

shows an energy increase for an increase in mass. Despite the usual omission in the Hamil-
tonian, the rest mass energy term M c2

light naturally contributes to the energy distribution.
For this reason, the clock must have a large mean energy for very slow wavepacket spread-
ing and a broad energy distribution for a small wavepacket width, in order to allow us
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Figure �.� – The evolving clock state (blue lines) and the electric field function
F(Q) (black line) used in the numerical example are displayed. Two additional
initial widths, shown in red and orange color and employed in the numerical
calculations, provide means for a comparison and assessment of the accuracy of
the quasi-eigenstate approximation.

to make use of the quasi-eigenstate approximation. In addition, if the clock variance is
indeed small, then the Taylor expansion of the mean value

h� |F(Q̂)|�iC = F(Q) + F 0(Q) h� |(Q̂�Q)|�iC| {z }
=0

+
1

2
F 00(Q) h�|(Q̂�Q)2|�iC| {z }

=Var� [Q̂]=�2(�)

+ . . .

(�.�.���)

can be used to simplify the expression of the e�ective system potential.

We corroborate our findings and demonstrate the usefulness of the error quantifier Z from
Sec. �.�.�.� by a numerical example in which we take a simple two-level atom as the system.
The system Hamiltonian is chosen as ĤS = "�̂z/2 with the energy scale " and we use the
energy eigenstates of a large box for the clock in order to have a finite-dimensional clock
Hilbert space HC. We choose the coupling to the electric field as

V̂ = g �̂x ⌦ F(Q̂) (�.�.���)

with the coupling constant g and we use the parameters " = 0.84, ! = 0.90, T = 5.60,
g = 1, M = 1400, K0 = 1400 and Q0 = �13.61, given in atomic units (Appendix D). The
dynamics of the corresponding clock wavepacket is illustrated in Fig. �.�. After numer-
ically diagonalizing the Hamiltonian, we pick an energy level that contains significant
population on clock energy levels for which the clock state has a large population as
well. In general, many di�erent energy eigenstates can serve the same purpose, but our
choice ensures numerical stability. For each time step, we calculate the normalized system
state |'(�)iS from the partial clock state projection (�.�.�) onto the global state | i and
the approximate evolution, due to the Schrödinger equation i d

��'approx(�)
↵�

d� =
Ä
ĤS +

h�(�)|V̂ |�(�)i
ä ��'approx(�)

↵
with the initial state

��'approx(0)
↵
S = |'(0)iS/ h�(0)| iC. We

denote them by “projected” and “sequential”, because the propagation with the TDSE has
to be performed in a sequential manner. In addition, we compute the norm deviationsq��1� h�(�)|�(�)iS / h�(0)|�(0)iS

��, the standard deviation
q
Var�(�)[F(Q̂)] and the error

Z(�). Figure �.� contains the time-dependent coe�cients of the ground and excited state,
as well as the error quantifiers for three di�erent initial clock wavepacket widths (Fig. �.�).
The smallest width fulfills the derived inequalities and demonstrates excellent agreement
between both procedures. Before concluding with this example, we mention another way
of modeling the finite pulse through an extension of the model in Ref. [���], considered
in the previous section. It is possible to keep the harmonic oscillator degree and instead
promote the envelope to a function of an additional clock degree of freedom. In such a
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(a)

(d)

(g)

(b)(b)

(e)(e)

(h)(h)

(c)(c)

(f)(f)

(i)(i)

(j) (k) (l)

Figure �.� – The coe�cients ci(�) for the ground (i = 0, orange/red) and excited
state (i = 1, blue) of a two-level system interacting with the electric field of a laser
pulse are shown in panels (a) to (i). They emphasize a direct comparison between
the relational system state |'(�)iS (thicker transparent lines) and the sequential
evolution (thin solid lines), due to the TDSE with the e�ective system Hamiltonian
ĤS + h�(�)|V̂ |�(�)i. The presentation of the complex coe�cients separates into
real parts (a), (d), (g), imaginary parts (b), (e), (h) and absolute values (c), (f), (i).
In decreasing order, each of the first three rows represents a di�erent initial width
from the set {0.112, 0.781,1.340}, which appears in Fig. �.� as well. We note that
the coe�cients di�er slightly across rows because the e�ective system potential is
slightly di�erent for each initial width. Additionally, the deviation from the exact
dynamics of |'(�)iS, due to the quasi-eigenstate approximation, are quantified in
the last row. Panel (j) corresponds to the relative norm change of |�(�)iS and
panel (k) shows the standard deviation of F(Q̂) with respect to the clock state
|�(�)iC. Lastly, the full error (�.�.���) in panel (l) designates the most accurate
measure for the deviation. Solid, dashed and dotted lines represent the di�erent
initial widths in increasing order. As expected, Z(�) is smaller for a narrow initial
clock wavepacket and indicates a remarkable agreement between both methods.
The case of an even smaller initial width is not shown here, but would correspond
to a rapidly increasing error, potentially even exceeding the largest error in (l).

case, the interaction would read V̂ = g �̂x ⌦ (â+ â†)⌦ f (Q̂).

Not only do these results prove the correctness of our analytical results, but also show the
potential computational advantage of finding a single energy eigenstate of an enlarged
system and obtaining at once the time evolution of a system at all (relevant) times instead
of sequentially computing each small time step.
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�.�.�.� Semiclassical clock state

The influential works of Briggs and Rost [��, ��] showed how the TDSE can be derived
from a static global state when an interaction between clock and system exists. This task
was accomplished by the use of a semiclassical treatment. In this section, we connect our
results to such a formulation and reveal its relation to the quasi-eigenstate approximation.

Since semiclassical formulations are typically derived in orders of ~h, we reinstate ~h in this
section. Following reference [���], the TISE (�.�.�) is solved in the form

 (q,Q) =
X

m
'm(q) �̄m(Q) (�.�.���)

in position representation, for which we assume a one-dimensional position space for
system and clock, respectively. The set {|'miS} describes an orthonormal basis for the
system, which are chosen as the eigenstates of ĤS, i.e., ĤS |'miS = "m |'miS. We note that
h�̄m|�̄niC 6= �mn. Furthermore, the clock Hamiltonian

ĤC =
1

2M
K̂2 + VC(Q̂) (�.�.���)

describes a non-relativistic particle in the potential VC(Q). According to reference [���],
the clock states in Eq. (�.�.���) can be expressed as

�̄m(Q)⌘ cm(Q) eiWm(Q)/~h , (�.�.���)

in the position basis, for which the Wm(Q) are chosen as real-valued functions. After
projecting h'n|S from the left onto the TISE (�.�.�) [���], we choose for the zeroth-order
in ~h, that Wn fulfills

1

2M

Å
@Wn(Q)
@Q

ã2

+ VC(Q)� (E � "n) = 0 . (�.�.���)

This is the classical Hamilton-Jacobi equation for the clock Hamiltonian andWn are classical
reduced actions. The action functions have the form

Wn(Q) =W (Q, E � "n) , (�.�.���)

because of the structure of Eq. (�.�.���). Since these are classical equations, we also define
the classical momentum

Kcl(Q, E)⌘
@W (Q, E)
@Q

. (�.�.���)

Still exact, the global state reads

| i=
Z

dQ
X

m
cm(Q) eiW (Q,E�"m)/~h |'miS ⌦ |QiC (�.�.���)

in bra-ket notation. A central element in the derivation of the TDSE is the �-evolved clock
state

|�(�)iC = e�i�(ĤC�E)/~h |�0iC (�.�.���)

=
Z

dE e�i�(E�E)/~h g(E ) |EiC (�.�.���)
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with |�0iC =
R

dE g(E ) |EiC. Energy eigenstates |EiC of ĤC with clock energy E can be
approximated by a WKB-solution

hQ|EiC ⇡ h(Q,E ) eiW (Q,E )/~h
, (�.�.���)

in which the reduced action W (Q,E ) is the same as in Eq. (�.�.���), the classical Hamilton-
Jacobi equation for the same clock Hamiltonian ĤC. The clock state

�(Q,�) =
Z

dE e�i�(E�E)/~h g(E )h(Q,E ) eiW (Q,E )/~h (�.�.���)

further simplifies with the use of the stationary phase approximation (SPA) [���]
Z

dx ei f (x)/�g(x) �!0=

vt 2⇡i�
f 00(xSPA)

ei f (xSPA)/� g(xSPA) for f 0(xSPA) = 0 . (�.�.���)

For simplicity, we assume only a single stationary point xSPA, which proves su�cient in
the following. Such an approximation becomes particularly well-suited, when the classical
reduced action is much larger than ~h. The stationarity condition

@

@ E

ï
W (Q,E )
~h �

�(E � E)
~h

ò

E=ESPA
=

1

~h

ï
@W (Q,E )
@ E

��
ò

E=ESPA

!= 0 (�.�.���)

must be solved for ESPA and, therefore, depends on the knowledge of @W (Q,E )/@ E . As
a result, the stationary point ESPA(Q,�) becomes a function of Q and �. For the one-
dimensional case, the reduced action reads

W (Q,E ) =
Z Q

dQ0 Kcl(Q0,E ) =
Z Q

dQ0
∆

2M(E � VC(Q0)) (�.�.���)

which gives

@W (Q,E )
@ E

=
Z Q

dQ0
M

Kcl(Q0,E )
. (�.�.���)

The last equation depends implicitly on the clock potential VC(Q) and in order to simplify
the treatment, we assume a free particle with VC(Q) = 0, as in Refs. [��,��, ���, ���, ���].
In this instance, analytical results are possible, namely

W (Q,E ) = Kcl(Q,E )Q =
p

2MEQ , (�.�.���)

@W (Q,E )
@ E

=
MQ

Kcl(Q,E )
=

MQ
p

2ME
=

vtM
2E

Q . (�.�.���)

Without loss of generality, we set the additional integration constant to zero. A dependence
on the position Q is no longer present in the classical momentum Kcl(Q,E ) =

p
2ME and

the stationary energy becomes

ESPA(Q,�) =
M
2

Å
Q
�

ã2

, (�.�.���)

which resembles the kinetic energy for a classical point particle with velocity Q/�. Without
emphasis on the prefactors, which we describe collectively in a new coe�cient g1, the
semiclassical clock state reads

�(Q,�)⇡ g1(Q,�) exp

ï
i
~hW

�
Q,ESPA(Q,�)

�
�

i
~h�
�
ESPA(Q,�)� E

�ò
(�.�.���)
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= g1(Q,�) exp


i
~h

✓
MQ2

2�
+�E

◆�
. (�.�.���)

The unnormalized system state |�(�)iS = h�(�)| iC, conditioned on the clock state
|�(�)iC, yields

|�(�)iS = e�i�E/~h
Z

dQ g⇤
1
(Q,�) e�iMQ2/(2�~h)

X

m
cm(Q) ei

p
2M(E�"m)Q/~h |'miS , (�.�.���)

with the use of the result from above. At this point, another SPA can be employed. However,
the phase information of the coe�cients g1 and cm remains unknown, but we assume the
clock to be semiclassical and highly energetic. In particular, its classical reduced action
changes rapidly with Q and dominates any other phase change. Accordingly, the stationary
point QSPA can be approximated from

@

@Q

p
2M(E � "m)Q
~h �

MQ2

2�~h

�

Q=QSPA

=
1

~h

ï∆
2M(E � "m)�

MQ
�

ò

Q=QSPA

!= 0 , (�.�.���)

and its solution

QSPA(�, E � "m) =
�

M

∆
2M(E � "m) (�.�.���)

represents a classical linear motion. As a result, we find

|�(�)iS ⇡ e�i�E/~h
X

m
fm(�, E � "m) e�i�(E�"m)/~h ei2�(E�"m)/~h |'miS (�.�.���)

=
X

m
fm(�, E � "m) e�i�"m/~h |'miS (�.�.���)

with the new complex-valued coe�cients fm(�, E � "m). In the spirit of semiclassics, we
assume the system energies "m to be small compared to the typical energy scale of the
clock and, for this reason, the influence of "m on the change of the coe�cients is rendered
minuscule. Consequently, the unnormalized system state becomes

|�(�)iS ⇡
X

m
fm(�) e�i�"m/~h |'miS , (�.�.���)

in which we omit the dependence of the coe�cients on the total energy E.

The TDSE for the system in the semiclassical context can be derived from a partial projection
with h�(�)|C onto the TISE (�.�.�). It yields

i
d

d�
|�(�)iS = ĤS |�(�)iS + h�(�)|V̂ | iC , (�.�.���)

but the semiclassical form of the last term is not immediately clear. We start with the
assumption that the interaction is solely a function of position operators, namely

V̂ = V ( x̂ , Q̂) . (�.�.���)

This allows us to use the clock position representation for this term in order to derive

h�(�)|V̂ | iC ⇡ e�i�E/~h
Z

dQ g⇤
1
(Q,�) e�iMQ2/(2�~h)
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·
X

m
cm(Q) ei

p
2M(E�"m)Q/~h V ( x̂ ,Q) |'miS . (�.�.���)

Similarly to before, we assume the phase change in dependence of Q to be dominated by
the classical reduced action. In this case, the SPA yields

h�(�)|V̂ | iC ⇡
X

m
fm(�, E � "m)V

Ä
x̂ ,QSPA(�, E � "m)

ä
e�i�"m/~h |'miS . (�.�.���)

As before, the neglect of the system energies "m, due to their weak influence in the
arguments of the coe�cients fm and the interaction V , implies

h�(�)|V̂ | iC ⇡
X

m
fm(�)V

�
x̂ ,QSPA(�)

�
e�i�"m/~h |'miS (�.�.���)

= V
�
x̂ ,QSPA(�)

� X

m
fm(�) e�i�"m/~h |'miS (�.�.���)

⌘ VS( x̂ ,�) |�(�)iS . (�.�.���)

Evidently, Eq. (�.�.���) describes a unitary evolution of the unnormalized system state
within the semiclassical approximation and, accordingly, its norm stays constant. There-
fore, the TDSE

i~h d

d�
|'(�)iS =

⇥
ĤS + VS( x̂ ,�)

⇤
|'(�)iS (�.�.���)

for the normalized system state |'(�)iS emerges in the semiclassical context, in which the
e�ective system potential is �-dependent via the classical path QSPA(�, E) of the clock. In
light of the discussion in Sec. �.�.�.�, we point out that QSPA(�, E) is enough to relate a
property of the clock to �, but does not represent the full information about the clock state.
Though derived di�erently, our final results match those of Briggs and Rost [��,��] for a
one-dimensional clock, without the necessity to invoke a Born-Oppenheimer approxima-
tion.

A further di�erence originates from a small overlooked detail in the previous semiclassical
derivations, namely from the way the clock path enters the formulas and closely relates
to the issue discussed in Sec. �.�.�.�. In the above treatment, it is unambiguously clear
how the �-dependence enters the system change by means of stationary phases. This
dependence ought to hold also in the case of a multi-dimensional clock configuration
space, even if it requires multiple stationary points for the SPA in general. In contrast,
the classical momentum (�.�.���) is used in Refs. [���, ���, ���, ���] in order to find a
mapping R!R from the one-dimensional Q-position space to t-space. We must note that
the classical momentum (�.�.���) is a real-valued function over the whole position space
and not a classical trajectory. The definition @Q(t, E)/@ t ⌘ Kcl(Q, E)/M, or equivalently
t(Q, E) ⌘ @W (Q, E)/@ E , is used in these references to transform the space derivative into
a t-derivative [���], i.e.,

i~h Kcl(Q, E)
M

@

@Q
= i~h @

@ t
. (�.�.���)

Such a mapping is certainly valid, but e�ectively represent just a reparametrization of the
one-dimensional position space. As a result, the derived TDSE in Refs. [���,���,���,���] is
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actually a TISE in disguise, just as in Section �.�.�.�, and also does not determine an initial
system state. Although conceptually unsatisfactory, this methodology is mathematically
consistent for one-dimensional position space. The issue becomes even more pronounced
for a multi-dimensional clock position space RnC, which is considered in Refs. [��,��,���].
In this case, the classical real-valued momentum vector field Kcl(Q, E) is now a function
of the coordinate vector Q. A real-valued “time field” defined on position space can be
introduced by @ /@ t(Q, E) ⌘ (1/M)Kcl(Q, E) ·rQ or t(Q, E)⌘ @W (Q, E)/@ E . In contrast to
the one-dimensional clock case, it is not possible to define @Q(t, E)/@ t ⌘ Kcl(Q, E), because
it would require a one-dimensional parametrization R!RnC of a vector quantity, in other
words a trajectory through position space. Such a trajectory is not part of the fully quantum
Born-Oppenheimer treatment and, therefore, is not available for a parametrization of the
system dynamics. A static multi-dimensional configuration space cannot be reduced to
a simple one-dimensional trajectory. On the same footing, it is not possible to define an
inverse relation like Q�1(t, E) and this poses a conceptual problem in the derivations of
Refs. [��, ��, ���]. All authors place emphasis on the appearance of the first-order time
derivative, but do not explicitly consider how t enters the coe�cients or the e�ective
system potential for multi-dimensional position spaces. For instance, after starting from
the TISE and employing the relevant approximations [��,��, ���], the cited authors end
up with

i~h @

@ t(Q)
fm(Q) =

X

k

h'm|V ( x̂ ,Q)|'kiS fk(Q) exp

ï
�

i
~h("k � "m) t(Q)

ò
, (�.�.���)

where we neglect arguments of the constant total energy E. This equation for the (in-
teraction picture-like) coe�cients fm(Q) : RnC ! C is still defined on the full multi-
dimensional position space RnC. The same holds true for the transition elements
h'm|V ( x̂ ,Q)|'kiS :RnC ! C. Without a more refined analysis, Eq. (�.�.���) is then simply
transformed to

i~h @
@ t

fm(t) =
X

k

h'm|V ( x̂ , t)|'kiS fk(t) exp

ï
�

i
~h("k � "m) t

ò
(�.�.���)

in Refs. [��, ��, ���] under the false premise of having a genuine classical trajectory
available. Despite all this, an additional assumption about the global state could save the
former semiclassical treatments from mathematical inconsistencies. If the particular form
of the global state | i allows for the coe�cients to approximate fm(Q)/

R
ds�[Q�Qcl(s)]

with the classical clock trajectory Qcl(s), then one has a way to facilitate the dimensional
reduction necessary to derive (�.�.���). However, assuming such a form for | i is either a
very crude approximation or severely limits the set of admissible global states.

For a further illustration without additional global restrictions, let us consider the very
simple example of a two-dimensional clock position space, but with the clock Hamiltonian
ĤC = K̂2

x/(2M) depending only on the momentum in Qx -direction. Eq. (�.�.���) becomes

i~h
vt

2E
M

@

@Qx
fm(Qx ,Q y) =

X

k

h'm|V ( x̂ ,Qx ,Q y)|'kiS fk(Qx ,Q y) e�i("k�"m) t(Qx ,Q y )/~h ,

(�.�.���)

which can be transformed to

i~h @
@ t

fm(t,Q y) =
X

k

h'm|V ( x̂ , t,Q y)|'kiS fk(t,Q y) exp

ï
�

i
~h("k � "m) t

ò
(�.�.���)
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with t = t(Qx) = Qx
p
M/2E. Surely, we got an equation that features a first order

derivative in t, but what about the remaining clock position variable Q y? It cannot be
eliminated from the equation, because the e�ective potential depends explicitly on it and
the coe�cients can vary for di�erent Q y too. This contradiction confirms our arguments
and shows that the framework of this thesis, in which a specific clock state is chosen,
should be preferred for time emergence with interactions.

One last example for this general misconception is Ref. [���], already encountered in
Sec. �.�.�.�. The authors express the clock part of the TISE in the over-complete coherent
state basis {|↵iC}↵2C, which corresponds to a representation in two-dimensional space
(Re↵, Im↵). Thus, the global state | i is given as a complex-valued function on the system
basis and the two-dimensional complex plane. Without any further explanation, the
authors reduce the two-dimensional complex plane to the trajectory ↵(t) = ↵0 exp(�i!t),
a one-dimensional object. No mathematical justification is given for this reduction in their
approach. A more consistent treatment has been presented in Sec. �.�.�.�, where the use
of such a trajectory originates from the choice of the clock state in our framework and, in
addition, does not depend on the coherent state basis.

Finally, it is interesting to compare the semiclassical results with the Taylor expanded
form of the quasi-eigenstate approximation. As already mentioned in Section �.�.�.� and
presented by Eq. (�.�.���), the e�ective potential can be Taylor expanded around the clock
mean position as

h�|V ( x̂ , Q̂)|�iC = V
�
x̂ , h�|Q̂|�iC

�
+

1

2
Var�[Q̂] · V 00

�
x̂ , h�|Q̂|�iC

�
+ . . . . (�.�.���)

The partial derivative of the potential function V is taken with respect to the second
argument, the clock position and the same procedure can be applied to the Ehrenfest
theorem for the clock, namely

d

d�
h�|K̂ |�iC = �h� |V 0C(Q̂)|�iC (�.�.���)

= �V 0C
�
h�|Q̂|�iC

�
+

1

2
Var�[Q̂] · V 000C

�
h�|Q̂|�iC

�
+ . . . . (�.�.���)

Neglecting all orders higher than zero in both expressions yields an e�ective system po-
tential V̂S which becomes �-dependent by virtue of a classical trajectory, similar to the
semiclassical approximation. In detail, the mean clock position h�|Q̂|�iC follows the clas-
sical trajectory given by Newton’s classical equation of motion

d
2

d�2
h�|Q̂|�iC (�) = �

1

M
V 0C
�
h�|Q̂|�iC (�)

�
. (�.�.���)

�.�.� Time-energy uncertainty

An important topic, whenever the issue of time is raised, concerns uncertainty relations.
Their examination has a long history, dating back to the beginning years of quantum
mechanics [��] in the early twentieth century and is still relevant in today’s research [���,
���–���]. Due to its characteristic appearance and for dimensional reasoning, ~h is used
explicitly within this section. Initially made famous by Heisenberg’s inequality �q ·�p �
~h/2 [���, ���], the more general uncertainty relation

Var(Â) ·Var(B̂)�
1

4

���
¨î

Â, B̂
ó∂���

2

+
1

4

⌦�
Â, B̂

 
+

↵
� 2

⌦
Â
↵
·
⌦
B̂
↵�2

(�.�.���)
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for two Hermitian operators Â and B̂ has been provided by Schrödinger [���, ���]. This
relation holds for pure, as well as for mixed states and relies, in general, on the non-
commutability of two observables. The anti-commutator is denoted by {Â, B̂}+ ⌘ ÂB̂ + B̂Â.
A modern formulation borrows from the language of mathematics, specifically probability
theory, and expresses the inequality in terms of a generalized covariance matrix [���]. In
particular, the generalized covariance

Cov(Â, B̂)⌘
⌦
{Â� hÂi, B̂ � hB̂i}+

↵
/2=

⌦
{Â, B̂}+

↵
/2� hÂi · hB̂i= Cov(B̂, Â) (�.�.���)

applies also to non-commutating observables and is still real-valued. Consequently, the
uncertainty principle reads

det�[Â, B̂]�
1

4

���
¨î

Â, B̂
ó∂���

2

(�.�.���)

with the determinant of the generalized covariance matrix

�[Â, B̂]⌘
✓

Var(Â) Cov(Â, B̂)
Cov(Â, B̂) Var(B̂)

◆
. (�.�.���)

For simple scalars X and Y , the inequality reduces to the standard result Var(X ) ·Var(Y )�
Cov(X , Y ) in probability theory [���]. Neglecting the covariance, the second term in
Eq. (�.�.���), yields the more well-known Robertson uncertainty relation [���] Var(Â) ·
Var(B̂) �

��h[Â, B̂]i
��2/4, from which the Heisenberg inequality can be derived by means of

[q̂, p̂] = i~h. The inequality (�.�.���) does hold for mixed states as well�. Since many
decades (Chapter �), a strong motivation exists to find similar uncertainty principles for
time and energy [��], in the form of

�t�E ¶ ~h , (�.�.���)

based on the same dimensionality as the product of position and momentum. In view
of the fact that a universal time operator does not exist, it has been argued that �t in
Eq. (�.�.���) must describe an actual time interval and not an uncertainty due to quantum
fluctuations [���]. Also the Mandelstam-Tamm uncertainty [��]

�E ·⌧A � ~h/2 , (�.�.���)

which relies on (�E)2 = Var(Ĥ) and the variance (�A)2 = Var(Â) of another observable Â,
includes a time interval ⌧A ⌘�A/

��dhÂi
�
dt
�� describing the time needed to change the mean

value hÂi by one standard deviation �A. Relations of type (�.�.���) are generally called
“speed limits” [���,���] and they exist for quantum, as well as for classical mechanics [���,
���]. In essence, they describe the limits of the dynamical evolution between an initial and
a final state. Concise surveys and reviews of all the di�erent kinds of speed limits in the
literature can be found in Refs. [���, ���]. For our purpose, it is only relevant that such
quantum speed limits depend on parameter time and not a time operator. As a result, they
apply independently to the system and the clock in our framework. At the same time, it
raises the question if an uncertainty relation or quantum speed limit can be found, which
relates both subsystems.

�The proof relies on the general inequality tr

�
⇢̂ F̂ F̂ †

�
� 0 with F̂ = Â+ zB̂ for a complex number z 2

C. A variation of z and z⇤ yields the minimum value for the left-hand side of the inequality and implies
tr

�
⇢̂ÂÂ†

�
tr

�
⇢̂B̂B̂†

�
�
��tr
�
⇢̂ÂB̂†

���2.
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�.�.�.� Approach by Briggs et al.

Briggs et al. [��, ���] approach this idea through a consideration of the energy constraint
E = ES + EC and the equality of the energy variances �E2

S =�E2

C. Using the Mandelstam-
Tamm relation (�.�.���) for a heavy particle ĤC = K̂2/(2M), they derive

�EC ·⌧Q =�ES ·⌧Q �
~h
2

, (�.�.���)

where the time interval is determined from the change of the mean clock position hQ̂i.
Unfortunately, it is neither explicitly mentioned how the mean energies or the energy
variances are obtained in this formulation, nor how the coupling between system and clock
enters the spectral analysis. In Ref. [���], Briggs provides an additional assumption for the
energy considerations, namely that one determines the energy distributions only when the
interaction vanishes. This would imply that (�.�.���) only holds true asymptotically or in
certain regions in clock position space.

�.�.�.� Approach by Fadel and Maccone

Alternatively, Fadel and Maccone [���] formulate a time-energy uncertainty in the context
of PW, based on the Robertson inequality for two non-commutating variables. They
consider the specific setting of two non-interacting systems, in which the clock Hamiltonian
is the momentum operator, ĤC = K̂, and the position operator e�ectively functions as a
“time operator” T̂C = Q̂, such that [T̂C, ĤC] = [Q̂, K̂] = i~h. Furthermore, a projector ⇥̂S = ⇥̂2

S
is introduced, corresponding to some “event happening” [���] in the system, and it shall
commute with the generic system Hamiltonian ĤS, i.e., [⇥̂S, ĤS] = 0. Comprehending
mean values as a conditional statement connected to the occurrence of an event ⇥S is the
central idea of their analysis. For instance, the mean clock position

⌦
Q̂
↵
⇥S
⌘
Z

dQ Q p(Q|⇥S) =
Z

dQ Q
h |
Ä
⇥̂S ⌦ |QihQ|C

ä
| iC

h |
Ä
⇥̂S ⌦ 1̂C

ä
| iC

, (�.�.���)

stems from the conditional probability p(x |y) = p(x , y)/
R

dx p(x , y) [���]. More generally,
the conditional mean value can be expressed as

⌦
ÂS ⌦ B̂C

↵
 ,⇥S
⌘
h |
Ä
⇥̂S ⌦ 1̂C

äÄ
ÂS ⌦ B̂C

äÄ
⇥̂S ⌦ 1̂C

ä
| iC

h |
Ä
⇥̂S ⌦ 1̂C

ä
| iC

(�.�.���)

for any operator ÂS ⌦ B̂C. For the mean energy follows the relation
⌦
1̂S ⌦ ĤC

↵
 ,⇥S

= �
⌦
ĤS ⌦ 1̂C

↵
 ,⇥S

(�.�.���)

and the conditional energy variance reads

Var ,⇥S
(1̂S ⌦ ĤC) =

h |
Ä
⇥̂S ⌦ Ĥ2
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ä
| iC

h |
Ä
⇥̂S ⌦ 1̂C

ä
| iC

3
5

2

(�.�.���)

=
h |
Ä
⇥̂SĤ2
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= Var ,⇥S
(ĤS ⌦ 1̂C) . (�.�.���)
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Using the Robertson inequality yields

Var ,⇥S
(ĤS ⌦ 1̂C) ·Var ,⇥S

(1̂S ⌦ T̂C)�
1

4

������
h |
î
⇥̂S ⌦ T̂C, ⇥̂S ⌦ ĤC

ó
| i

h |
Ä
⇥̂S ⌦ 1̂C

ä
| iC

������

2

=
~h2

4
(�.�.���)

with [⇥̂S⌦ T̂C, ⇥̂S⌦ ĤC] = ⇥̂S⌦ [T̂C, ĤC] = i~h⇥̂S⌦ 1̂C. Additionally, it is claimed in Ref. [���]
that the same relations hold for [⇥̂S, ĤS] 6= 0. Yet, we could not find this statement to be
true. Obviously, from ⇥̂S = 1̂S follows the standard uncertainty relation

Var (ĤS ⌦ 1̂C) ·Var (1̂S ⌦ T̂C)�
1

4

��� h |
Ä
1̂S ⌦

⇥
T̂C, ĤC

⇤ä
| i
���
2

=
~h2

4
(�.�.���)

with an unconditional character. This inequality also holds, except for the last equal sign,
for any clock operator other than T̂C. Unfortunately, the authors of Ref. [���] abstain from
discussing system-clock uncertainty relations without a conditional characteristic. Instead,
they state that the event ⇥S can be associated with a photon detection on a screen for ex-
ample, but, as we have already argued in Section �.�.�, there is no additional environment
surrounding the composite of clock and principal system. Furthermore, any detection or
actual measurement presupposes time, a problem we already alluded to in Chapter �. If
one accepts the special nature of the clock in this treatment, then inequality (�.�.���) is a
valid statement connecting the uncertainty in the position of the clock with the uncertainty
in the system through the energy constraint of the global state | i. Using Schrödinger’s
original inequality, we can provide an even tighter bound than (�.�.���), by addition of the
covariance term Cov(ĤC, T̂C) = h |(ĤS � hĤSi)⌦ T̂C| i

2 on the right-hand side.

The statement (�.�.���) can be generalized to arbitrary clock Hamiltonians ĤC by the use
of Pegg’s age operator, which is explained in Appendix E. Such a generalization becomes
useful for finite dimensional Hilbert spaces, for which commutator relations like [q̂, p̂] =
i~h 1̂ do not exist. This can be easily seen from the cyclic property of the trace, namely
tr

⇥
Â, B̂

⇤
= 0 6= i~h tr 1̂ = i~hd, in which the finite dimension d of H appears�. Introduced

by Pegg [���] in ����, the operator ↵̂C(↵0) is used to track the elapsed time, or “age”, for
a generic clock state evolving under a time-independent Hamiltonian. Its form depends
explicitly on the initial clock state itself by virtue of the populated energy levels and on the
unnormalized ket vectors |↵i. They describe a state which is initially in an equally weighted
superposition of all relevant energy levels and, subsequently, evolves until � = ↵ (App. E).
The free parameter ↵0, characteristic to each age operator, designates a specific choice for
the zero point. In our case, all relevant energy levels are the associated eigenvalues of the
elements in the set (�.�.��), which encompasses all clock energy eigenstates contained in
| i. With an explicit reference to the redefinitions (�.�.��), the appropriate age operator
for our case has the commutation relation

⇥
↵̂C(↵0), ĤC

⇤
= 1̂C � |↵0ih↵0|C , (�.�.���)

which correctly yields zero on both sides under the trace operation, due to the norm
h↵0|↵0iC = dC (App. E). As a side note, Pegg’s operator also appears in the context of
PW in Ref. [���]. By replacing the clock operator T̂C with the age operator ↵̂C(↵0), the
inequality (�.�.���) becomes

Var (ĤS ⌦ 1̂C) ·Var 
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(�.�.���)

�The same analysis does not apply in infinite-dimensional Hilbert spaces, because the trace of the identity
operator does not exist in these spaces [���].
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with the reduced density operator ⌥̂C = trS(| ih |). Inequality (�.�.���) represents a static
relation and choosing an ↵0 that minimizes h↵0|⌥̂C|↵0iC brings the right-hand side close
to ~h2/4. However, the more general Schrödinger uncertainty (�.�.���) should be used for
a tighter bound.

�.�.�.� Alternative approach

Even though (�.�.���) is already encouraging, it does not make reference to a clock state
|�(�)iC. One could argue that the approach by Fadel and Maccone [���] presumes the use
of |�(�)iC = |Q+�iC, which represents an eigenstate of the position operator Q̂. In this
case, the position operator, disguised as "time operator" T̂C, contains all possible positions
and is in some way a reference to the specific clock states, which advance through all
possible positions for � 2 (�1,1). Anyway, as we have already stated, their work relies
on a special setting and more general expressions are still missing. To this end, we consider
an uncertainty relation, which depends explicitly on the state of the clock. However, the
age operator must di�er from the one used in the previous section, because the energy
levels populated by |�iC can di�er from the ones contained in ⌥̂C. To remedy the situation,
we use the modified age operator ↵̂�(↵0) given in Appendix E, for which the uncertainty
relation reads

Var�(�)(ĤC) ·Var�(�)
Ä
↵̂�(↵0)

ä
�
~h2

4

����1�
1
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��h�(�)|�(↵0)iC
��2
����
2

. (�.�.���)

Here, D� is the cycle-averaged absolute squared autocorrelation function of |�(�)iC. Im-
portantly, relation (�.�.���) does not make any reference to | i so far, in contrast to the
aforementioned approaches. By following the idea of connecting the clock energy variance
with the system energy variance, the global state | i enters the picture via the system
state. For simplicity, we consider only V̂ = 0 here and express the mean system energy

h'|ĤS|'iS = E �
h |P̂� ĤC| i
h |�ih�| i

= E � h�|ĤC|�iC �
h |P̂� ĤC

ˆP� | i
h |�ih�| i

(�.�.���)

in terms of the clock state. The last term is real-valued and indicates a deviation from the
energy relation E =

⌦
ĤS
↵
'
+
⌦
ĤC
↵
�
in general. For arbitrary clock states, this correction

term does only vanish for global MES | i, even in the case of V̂ 6= 0 (Appendix G). Similarly,
the system energy variance
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Figure �.� – Two non-interacting two-level systems with equal energy splitting
" = 2 are described by the Hamiltonian Ĥ = �̂S,z+�̂C,z and possess the global energy
eigenstates | i=

p
a |"S#Ci+

p
1� a |#S"Ci with energy E = 0. All numerical values

are given in atomic units (Appendix D) and the chosen clock state has the simple
form |�iC =

p
1� b |"iC +

p
b |#iC with the non-negative coe�cients a, b 2 [0, 1].

The left panel shows the energy correction E � hĤSi' � hĤCi� and the right panel
the di�erence Var'(ĤS)�Var�(ĤC) between the energy variances. Clearly, no strict
inequality can be found and the signs of the correction terms depend on the specific
global state and the chosen clock state. An exception is indicated by the dashed
horizontal line, which describes the MES. All corrections simultaneously vanish for
this special state (Appendix G).

�
h |P̂� ĤC P̂� ĤC

ˆP� | i
h |�ih�| i

(�.�.���)

features a deviation from the exact equality of the energy variances too. As before,
maximally entangled states | i with trS | ih | = 1̂C/dC lead to a vanishing of all correc-
tion terms (Appendix G). We must investigate the sign of the variance correction for a
further assessment of the uncertainty relation. Instead of continuing an analytic treat-
ment, we provide a simple, but illustrative numerical example in Figure �.�. It shows
that the correction terms are neither non-negative nor non-positive and, hence, our at-
tempt to derive a general uncertainty relation with variances depending on |'[�]iS
and |�iC fails. Only the inequality Var'(ĤS) � Var�(ĤC) would allow us to derive

Var'(�)(ĤS) · Var�(�)
�
↵̂�(↵0)

�
� ~h2

��1� |h�(�)|�(↵0)i|
2/D�

��2/4. Unfortunately, such a re-
lation does not hold in general.

�.� Quantum mechanics - Mixed states

After the successful treatment of pure states in the previous section, we attempt a gen-
eralization to mixed states. Such an investigation is considered in this section, where
the guiding core principles (I)-(III) are translated to the framework of mixed state at the
beginning. Subsequently, the change of the system state is derived for V̂ = 0 and V̂ 6= 0,
respectively, and we examine a newly appearing non-Hermitian term. All results derived
in this section become essential for a comparison with the associated classical framework
and, to this end, we give a formulation of Wigner functions at the end.
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�.�.� Energy constraint

For pure global states | i, only one global constraint exists, but nonetheless generates
two di�erent kinds of transformations, namely exp

⇥
i�(Ĥ � E)

⇤
and exp

⇥
�(Ĥ � E)

⇤
. The

first can be understood as changing the complex phase of the coe�cients in the energy
eigenbasis, while the second changes the magnitude. A change in the absolute value
corresponds to imaginary time evolution, a concept treated in the subsequent Chapter �.
Di�erent from the pure state treatment, we need two constraints to achieve two similar
transformations for mixed states. They can be derived from the known transformations on
the pure state vector | i and their counterparts for the global pure state density | ih |.
First, we convert (�.�.�) to

ei�(Ĥ�E) | ih | e�i�(Ĥ�E) = ei�[Ĥ�E,•] | ih |= ei�[Ĥ,•] | ih | (�.�.�)

and, after requiring the invariance exp

�
i�[Ĥ,•]

�
⇢̂ 

!= ⇢̂ for a general density operator
⇢̂ , the constraint becomes

0=
⇥
Ĥ, ⇢̂ 

⇤
. (�.�.�)

For a valid representation of a quantum state, the density operator ⇢̂ must be a Her-
mitian operator with non-negative eigenvalues. Even though we do not attach a prob-
abilistic interpretation to the global state (Sec. �.�.�), ⇢̂ is normalized, such that its
trace equals unity (tr ⇢̂ = 1). Second, the non-unitary, but Hermitian transformation
exp

⇥
�(Ĥ � E)

⇤
| i= | i yields

e�(Ĥ�E) | ih | e�(Ĥ�E) = e�{Ĥ�E,•}+ | ih | (�.�.�)

and we find

0=
�

Ĥ � E, ⇢̂ 
 
+ =

�
Ĥ, ⇢̂ 

 
+ � 2E⇢̂ (�.�.�)

for general invariant global states. For the sake of being able to compare our results
for subsystem density operators with the pure states result, we keep ⇢̂ = | ih | = P̂ 
for postulate (I) with (Ĥ � E) | i = 0. The mixed state nature enters our treatment
through the use of mixed clock density operators instead, which subsequently induce
mixed system states, as we show in the following. Constraints (�.�.�) and (�.�.�) are
then automatically fulfilled. Notwithstanding our choice, we explore the space of possible
mixed state solutions for completeness. To this end, Eq. (�.�.�) yields
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��Em,↵m
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for a general state ⇢̂ =
P

m,n

P
↵m,↵n

cmn,↵m↵n

��Em,↵m

↵⌦
En,↵n

��, where ↵i labels possible energy
degeneracies. We find that

cmn,↵m↵n
= 0 for Em 6= En (�.�.�)
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and the matrix form in energy basis reduces to block form, where each block corresponds
to a degenerate energy subspace. The other constraint (�.�.�) gives

0=
X

m,n

X

↵m,↵n

cmn,↵m↵n

��Em,↵m

↵⌦
En,↵n

�� (Em + En � 2E) (�.�.�)

and, in combination with (�.�.�), further limits the coe�cients to

cmn↵m↵n
= 0 for Em 6= E . (�.�.�)

Hence, only a single block of the density operator can be non-zero in the energy eigenbasis,
namely the one associated with energy E. If this energy level possesses a degeneracy, then
a mixed state is possible for postulate (I) in general, i.e.,

⇢̂ =
X

↵m↵n

c̃↵m↵m

��E↵m

↵⌦
E↵n

�� . (�.�.�)

At any rate, we do not pursue this line of thought here in order to directly compare our
mixed state results to the pure state vector formalism. Nevertheless, we compare this
expression with the classical equivalent in Section �.�.

In this chapter, we focus on the unitary changes and use only the invariance generated by
Eq. (�.�.�), namely

ei�[Ĥ,•] | ih |= | ih | . (�.�.��)

To provide a di�erent perspective on the energy constraints, we mention that the Hermitic-
ity ⇢̂†

 = ⇢̂ and (Ĥ � E)⇢̂ = 0 imply constraints (�.�.�) and (�.�.�), respectively, which
corresponds to the vanishing of the Hermitian and anti-Hermitian part of (Ĥ � E)⇢̂ =
{Ĥ � E, ⇢̂ }+/2+ [Ĥ, ⇢̂ ]/2. The anti-Hermitian part is responsible for the generation of
real-time dynamics, whereas the Hermitian counterpart is later used for imaginary time
evolution (Sec. �.�).

�.�.� Conditional system state

The relational system state from proposition (III) can be deduced from the density operator
form (�.�.�) of the pure state case. Upon substitution of the general mixed clock state ⇢̂C
for |�ih� |C, the system density operator becomes

⇢̂S ⌘
trC

Ä
⇢̂C P̂ 

ä

h |
�
1̂S ⌦ ⇢̂C

�
| i

(�.�.��)

and constitutes a mixed state in general. Regardless of the exact form of the clock state,
the system state is always normalized to trS ⇢̂S = 1 with the partial trace trS over the system
degree of freedom. As before, we omit the identity operator in the denominator in the
following treatment.

��
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�.�.� Time emergence

Straightforwardly, the interaction-free case V̂ = 0 is resolved by application of trC
�
⇢̂C(0)•

�

to Eq. (�.�.��), yielding

e�i�ĤS trC

Ä
⇢̂C(0) P̂ 

ä
ei�ĤS = trC

Ä
e�i�ĤC ⇢̂C(0) ei�ĤC P̂ 

ä
, (�.�.��)

in close analogy to the pure state case. Here, ⇢̂C(0) denotes a fixed initial state associ-
ated with � = 0. Since no norm changes occur for trC

�
⇢̂C(0) P̂ 

�
under transformations

generated by ĤS, the von Neumann equation

i
d

d�
⇢̂S(�) =

î
ĤS, ⇢̂S(�)

ó
(�.�.��)

follows immediately with the �-evolved mixed clock state

⇢̂C(�) = e�i�ĤC ⇢̂C(0) ei�ĤC . (�.�.��)

All remarks for the pure state setting from Sec. �.�.�.� directly carry over to mixed
states. In particular, the ability to deparametrize the system evolution in terms of a
clock property AC(�) ⌘ trC[ÂC⇢̂C(�)] with a suitable Hermitian clock operator ÂC is un-
altered by the use of mixed clock states. One notable di�erence does however exist.
Previously, the use of a pure clock state implied a strictly pure system state, but utiliz-
ing mixed clock states does not inevitably lead to mixed system states. To demonstrate
this fact, we assume the existence of a Hermitian clock operator M̂C, which commutes
with the clock Hamiltonian ([ĤC, M̂C] = 0) and connects two pure initial clock states
through the unitary transformation |�2(0)iC = exp

�
iM̂C

�
|�1(0)iC. This additional (con-

tinuous or discrete) symmetry of the clock implies that both clock states can be related
at all times �, i.e., |�2(�)iC = exp

�
iM̂C

�
|�1(�)iC. If the global state is simultaneously

invariant under 1̂S ⌦ exp

�
iM̂C

�
, then the relational system states conditioned on |�1iC

and |�2iC are the same, because h�2(�)| iC = h�1(�)| iC. Thus, any mixed clock state
⇢̂C = a |�1ih�1|C + (1� a) |�2ih�2|C for a 2 (0,1) induces a pure system state for all �. The
presence of an interaction term V̂ does not change this fact, as can be seen from h�2|V̂ | iC
= h�1|V̂ | iC + h�2|[ĤC, M̂C]| iC = h�1|V̂ | iC. We treat generally interacting subsystems
in the analysis below.

As shown in Section �.�, the �-dependent change of the clock did not transform with the
introduction of an interaction V̂ and, for this reason, we assume this property to hold
also for mixed states. It can be rigorously shown using infinitesimal transformation steps
in a fashion similar to the pure state case, but this tedious derivation does not provide
any additional insight. Instead, we start with the �-evolved clock state and derive the
equation of motion for the system from it. Whenever appropriate, we omit the �-argument
in the following. Taking the derivative of the system state with respect to � and using the
TISE (�.�.�) yields

i
d

d�
⇢̂S =

trC

Ä⇥
ĤC, ⇢̂C

⇤
P̂ 
ä

h |⇢̂C| i
�

tr

Ä⇥
ĤC, ⇢̂C

⇤
P̂ 
ä

h |⇢̂C| i
⇢̂S (�.�.��)

TISE=
î
ĤS, ⇢̂S

ó
+

trC

Ä
⇢̂C
⇥
V̂ , P̂ 

⇤ä

h |⇢̂C| i
+
h |
⇥
V̂ , ⇢̂C

⇤
| i

h |⇢̂C| i
⇢̂S . (�.�.��)
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The numerator of the last term was transformed with h |
⇥
ĤC, ⇢̂C

⇤
| i =

h |
⇥
E � V̂ � ĤS, ⇢̂C

⇤
| i = �h |

⇥
V̂ , ⇢̂C

⇤
| i. In the current form, it remains unclear if

Eq. (�.�.��) describes a unitary evolution of the system state. Encouraged by the suc-
cessful application for pure states, we seek an e�ective potential V̂S that captures as much
of the unitary contribution to the system evolution as possible. To this end, we define

i
d

d�
⇢̂S =

î
ĤS + V̂S, ⇢̂S

ó
+ �̂+ 2i Im(a) ⇢̂S (�.�.��)

with the remainder term

�̂ ⌘
trC

Ä
⇢̂C
⇥
V̂ � V̂S, P̂ 

⇤ä

h |⇢̂C| i
=

trC

Ä
⇢̂C
⇥
V̂ , P̂ 

⇤ä

h |⇢̂C| i
�
î
V̂S, ⇢̂S

ó
⌘ M̂ �

î
V̂S, ⇢̂S

ó
. (�.�.��)

and the complex scalar a ⌘ h |V̂ ⇢̂C| i/ h |⇢̂C| i. As is shown later, the last term in
Eq. (�.�.��) must not be included in �̂. The trace of the newly defined operator M̂ ⌘
trC
�
⇢̂C
⇥
V̂ , P̂ 

⇤�
/ h |⇢̂C| i compensates the purely imaginary term, namely

trS M̂ =
h |
⇥
⇢̂C, V̂

⇤
| i

h |⇢̂C| i
= �2i Im(a) (�.�.��)

and preserves the norm of ⇢̂S. A Hermitian conjugation of the remainder term leads to

�̂† =
trC

Ä
⇢̂C
⇥
V̂S � V̂ , P̂ 

⇤ä

h |⇢̂C| i
= ��̂ , (�.�.��)

which renders �̂ anti-Hermitian.

To find the optimal V̂S, we use a variational approach to identify a minimum in the norm
of the remainder term, equivalent to the pure state case. We define the aforementioned
norm as

���̂
��2

S ⌘ trS
�
�†�̂

�
= � trS

�
�̂2
�
� 0 . (�.�.��)

The variation of the e�ective system potential is facilitated by a small, but arbitrary her-
mitian term ”�V S, i.e., V̂S �! V̂S +”�V S, and the variationally induced change of �̂ reads

��̂ = �
⇥”�V S, ⇢̂S

⇤
. (�.�.��)

Using the last relation and exploiting the cyclic property of the trace, we can express the
variational change of the norm as

�
���̂
��2

S = �� trS
�
�2
�
= �2 trS

�
�̂ ·��

�
= 2 trS

Ä
�̂
⇥”�V S, ⇢̂S

⇤ä
(�.�.��)

= 2 trS

Ä”�V S
⇥
⇢̂S, �̂

⇤ä
!= 0 . (�.�.��)

As stated above, the variation ”�V S is arbitrary and therefore the norm change can only be
zero if the commutator in the last expression vanishes. This leads to

0
!=
⇥
⇢̂S, �̂

⇤
=
⇥
⇢̂S, M̂

⇤
�
î
⇢̂S,

⇥
V̂S, ⇢̂S

⇤ó
(�.�.��)

or
î⇥

V̂S, ⇢̂S
⇤
, ⇢̂S

ó
= ⇢̂2

S V̂S + V̂S⇢̂
2

S � 2⇢̂SV̂S⇢̂S
!=
⇥
M̂ , ⇢̂S

⇤
= M̂ ⇢̂S � ⇢̂SM̂ (�.�.��)

��
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as the constraint for V̂S. Evidently, the term 2i Im a⇢̂S in Eq. (�.�.��) has no relevance for
the system potential, because [2i Im a⇢̂S, ⇢̂S] = 0. Unfortunately, no general solution exists
for this equation and we must revert to a basis-dependent form for V̂S.

For later reference, we give the constraint in terms of quantum Liouville operators

L̂(qm)
A ⌘

⇥
Â,•

⇤
, (�.�.��)

also called “superoperators” [���,���] in order to distinguish them from the usual operators
in quantum mechanics. To give an example, the energy anticommutator equation (�.�.�)
becomes L̂(qm)

H ⇢̂ = 0 in this notation. For an operator Â=
P

n an |nihn|, we can express the
eigenoperators of such a quantum Liouville operator as |nihm| with eigenvalues an � am.
Constraint (�.�.��) becomes

Ä
L̂(qm)
⇢S

ä2

V̂S
!= � L̂(qm)

⇢S
M̂ . (�.�.��)

Furthermore, we can expand the e�ective system potential in terms of the eigenoperators
|'mih'n|S by virtue of

V̂S =
X

m,n
|'mih'n|S trS

Ä
|'mih'n|S V̂S

ä
=
X

m,n
|'mih'n|S h'n|V̂S|'miS . (�.�.��)

�.�.�.� Eigenbasis of system state

In order to solve Eq. (�.�.��) for V̂S, one needs a suitable basis. Since the system state

⇢̂S =
KSX

m=1

qm |'mih'm|S (�.�.��)

appears on both sides of the equation, we use the eigenbasis {|'miS}0mdS to find a
solution for the e�ective potential. Here, the rank KS  dS of ⇢̂S is lower or equal to
the Hilbert space dimension dS of the system space, which implies qm = 0 for m > KS.
The eigenvalues are probabilities with

P
m qm = 1 and the associated basis vectors are

orthonormal, i.e., h'm|'niS = �mn. Even though not explicitly stated, it is important to
remember that KS, qm and |�miS depend on �. Projecting h'm|S from the left and |'niS
from the right onto Eq. (�.�.��) yields

�
q2

m + q2

n � 2qmqn
�

| {z }
=(qn�qm)2=|qn�qm|

2

h'm|V̂S|'niS =
�
qn � qm

�
h'm|M̂ |'niS , (�.�.��)

) h'm|V̂S|'niS = sgn(qn � qm)
|qn � qm|
|qn � qm|

2
h'm|M̂ |'niS 8qn 6= qm

(�.�.��)

=
1

qn � qm
h'm|M̂ |'niS 8qn 6= qm . (�.�.��)

For qn = qm, the matrix elements of the e�ective system potential are undetermined and
can be arbitrarily chosen, similar to the pure state case in Sec. �.�.�.�. Although we set
them to zero in the following, this freedom provides means to choose a convenient form
for the e�ective system potential. Ultimately, we find the e�ective system potential

��
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V̂S =
dSX

m=1

n=1

qm 6=qn

|'mih'm|S M̂ |'nih'n|S
qn � qm

(�.�.��)

in the eigenbasis of the system density operator ⇢̂S.

�.�.�.� System potential for pure state case

As a useful consistency check, we evaluate the e�ective system potential (�.�.��) for pure
states and compare the result to Eq. (�.�.��). In this case, only one system eigenstate
|'1iS = h� | iC /

p
h |�ih�| i with q1 = 1 exists, while all other coe�cients vanish, i.e.,

qm 6=1 = 0. Furthermore, the clock density operator reads ⇢̂C = |�ih�|C, giving

M̂pure =
h�|V̂ | iC h |�iC � h� | iC h |V̂ |�iC

h |�ih� | i
=
h�|V̂ | iC h'1|S � |'1iS h |V̂ |�iCp

h |�ih�| i
.

(�.�.��)

Therefore, we get

V̂S = �
dSX

n=2

|'1ih'1|S M̂pure |'nih'n|S +
dSX

m=2

|'mih'm|S M̂pure |'1ih'1|S (�.�.��)

= � |'1ih'1|S M̂pure

î
1̂S � |'1ih'1|S

ó
+
î
1̂S � |'1ih'1|S

ó
M̂pure |'1ih'1|S (�.�.��)

= M̂pure |'1ih'1|S � |'1ih'1|S M̂pure (�.�.��)

=
h�|
Ä
V̂ P̂ + P̂ V̂

ä
|�iC

h |�ih�| i
� (a+ a⇤)| {z }

=2 Re a

|'1ih'1|S , (�.�.��)

which matches the result from the pure state case, up to a scalar shift. The second term
has no influence on the dynamics of the system and, in fact, any additional part Ô of the
interaction which commutes with the system ([Ô, ⇢̂S] = 0) is irrelevant. In our case, Ô is
proportional to the system state, which obviously commutes with itself.

�.�.�.� Remainder term for optimal system potential

After finding the e�ective potential (�.�.��) in terms of the system eigenbasis, we need to
determine the remainder

�̂ = M̂ �
⇥
V̂S, ⇢̂S

⇤
=

dSX

m=1

n=1

|'mih'n|S Mmn �
⇥
V̂S, ⇢̂S

⇤
(�.�.��)

with the components Mmn = h'm|M̂ |'niS. The individual terms

V̂S⇢̂S =
KSX

m=1

n=1

qm 6=qn

|'mih'n|S
Mmn qn

qn � qm
+

dSX

m=KS+1

KSX

n=1

Mmn |'mih'n|S (�.�.��)

��
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and

⇢̂SV̂S =
�
V̂S⇢̂S

�† =
KSX

m=1

n=1

qm 6=qn

|'mih'n|S
qm Mmn

qn � qm
�

KSX

m=1

dSX

n=KS+1

Mmn |'mih'n|S (�.�.��)

yield the commutator

[V̂S, ⇢̂S] =
KSX

m=1

n=1

qm 6=qn

|'mih'n|S Mmn +

 
dSX

m=KS+1

KSX

n=1

+
KSX

m=1

dSX

n=KS+1

!
Mmn |'mih'n|S , (�.�.��)

which we use to express the remainder term as

�̂ =
KSX

m=1

n=1

qm=qn

|'mih'n|S Mmn +
dSX

m=KS+1

n=KS+1

|'mih'n|S Mmn (�.�.��)

=
KSX

m=1

n=1

qm=qn

|'mih'n|S Mmn +
ˆPSM̂ ˆPS (�.�.��)

with the projectors P̂S ⌘
PKS

m=1
|'mih'm|S and ˆPS ⌘ 1̂S � P̂S =

PdS
m=KS+1

|'mih'm|S. In the
following, we show that the second term vanishes. It is helpful to express the clock state
in its unnormalized eigenbasis, i.e., ⇢̂C =

PKC
m=1
|�mih�m|C, which remains normalized with

trC ⇢̂C =
P

m h�m|�miC = 1. Similar to before, we denote the rank of ⇢̂C by KC, which fulfills
the relation KC � KS. The system state reads

⇢̂S =
1

h |⇢̂C| i

KCX

m=1

h�m|P̂ |�miC =
1

h |⇢̂C| i

KCX

m=1

h�m| iC h |�miC (�.�.��)

and the individual system vectors in the sum can be expressed in the system eigenbasis,
namely

h�m| iCp
h |⇢̂C| i

=
dSX

a=1

fma |'aiS (�.�.��)

with complex coe�cients fma. We find

⇢̂S =
dSX

a=1

b=1

KCX

m=1

fma f ⇤mb |'aih'b|S =
dSX

a=1

b=1

|'aih'b|S
KCX

m=1

fma f ⇤mb (�.�.��)

!=
KSX

a=1

qa |'aih'a|S (�.�.��)

and the constraints on the coe�cients fma become

KCX

m=1

fma f ⇤mb
!= �ab

®
qa for a  KS

0 for a > KS
. (�.�.��)

One of them is
KCX

m=1

| fma|
2 != 0 8a > KS (�.�.��)
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and can only be fulfilled if

fma = 0 8m,8a > KS , (�.�.��)

because Eq. (�.�.��) is a sum of positive semi-definite real numbers. The immediate
consequence

ˆPS
h�m| iCp
h |⇢̂C| i

= 0 (�.�.��)

follows, because of h�m| iC =
PKS

a=1
fma |'aiS for all m. This result is anticipated, because

⇢̂S is an incoherent sumofmutually non-orthogonal projectors h�m|P̂ |�miC / h |�mih�m| i.
Such a state must live in the subspace associated with projector P̂S and, hence, cannot have
contributions in the complement space. As a consequence, the block

ˆPSM̂ ˆPS =
1

h |⇢̂C| i
ˆPS trC

Ä
⇢̂C
⇥
V̂ , P̂ 

⇤ä
ˆPS (�.�.��)

=
1

h |⇢̂C| i

KCX

m

ˆPS h�m|
Ä
V̂ P̂ � P̂ V̂

ä
|�miC

ˆPS (�.�.��)

= 0 (�.�.��)

of M̂ vanishes and, furthermore, the trace of M̂ reduces to

trS M̂ = trS

î
M̂(P̂S +

ˆPS)
ó
= trS

�
M̂ P̂S

�
=

KSX

m=1

Mmm . (�.�.��)

Overall, the remainder becomes

�̂ =
KSX

m=1

n=1

qm=qn

|'mih'n|S Mmn =
KSX

m=1

|'mih'm|S Mmm +
KSX

m=1

n=1

n6=m
qm=qn

|'mih'n|S Mmn (�.�.��)

and its trace reads

trS �̂ = trS M̂ . (�.�.��)

For a verification of (�.�.��) as a solution of Eq. (�.�.��), we evaluate the commutator

⇥
⇢̂S, �̂

⇤
=

KSX

m=1

n=1

qm=qn

Mmn

KSX

k=1

qk

î
|'kih'k|S , |'mih'n|S

ó
(�.�.��)

=
KSX

m=1

n=1

qm=qn

Mmn |'mih'n|S
�
qm � qn

�
= 0 (�.�.��)

and its vanishing confirms our result. The di�erential equation for the system state becomes

i
d

d�
⇢̂S =

⇥
ĤS + V̂S, ⇢̂S

⇤
+ �̂� trS(�̂) ⇢̂S| {z }

⌘ ê�

(�.�.��)
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with the modified remainder

ê� ⌘
KSX

m=1

|'mih'm|S
�
Mmm � trS(�̂)qm

�
+

KSX

m=1

n=1

n6=m
qm=qn

|'mih'n|S Mmn . (�.�.��)

Before a further analysis of this operator, we use the pure state limit once again in order to
check our results for consistency. If correct, the modified remainder is expected to vanish.

�.�.�.� Remainder term for pure states

As in Sec. �.�.�.�, a pure system state reads |'1iS = h�| iC /
p
h |�ih� | i with q1 = 1

and its density operator has the rank KS = 1. In this case, only a single component of M̂
contributes to (�.�.��), namely

M11 = h'1|M̂ |'1iS =
h |
⇥
⇢̂C, V̂

⇤
| i

h |⇢̂C| i
= �2i Im(a) = trS M̂ . (�.�.��)

Additionally, the number of summands in the second term in Eq. (�.�.��) equals zero,
because of KS = 1, which results in the absence of any o�-diagonal elements Mmn. We find
the new remainder term to vanish, i.e.,

ê� = |'1ih'1|S
�
M11 � trS M̂

�
= |'1ih'1|S

�
trS M̂ � trS M̂

�
= 0 , (�.�.��)

and confirm its correctness for pure system states.

�.�.�.� Anti-Hermitian part of a Hamiltonian

Although Eq. (�.�.��) is already in a general form, we aim to gain a better understanding
of the modified remainder ê�. Its form in terms of �̂ indicates the structure of an anti-
Hermitian Hamiltonian and the general influence of such an operator on the state dynamics
requires a brief review. To this end, we present the evolution equation for a density operator
governed by a Hamiltonian featuring a Hermitian term Ĥ = Ĥ† and an anti-Hermitian term
�iB̂/2 with B̂† = B̂. Such a Hamiltonian changes an initial state ⇢̂0 to

ˆ̃⇢(�)⌘
Å
T e�i

R �
d�0
⇥

Ĥ(�0)�iB̂(�0)/2
⇤ã
⇢̂0

Å
T ei

R �
d�0
⇥

Ĥ(�0)+iB̂(�0)/2
⇤ã

(�.�.��)

and has the associated di�erential equation

i
d

d�
ˆ̃⇢(�) =

⇥
Ĥ(�), ˆ̃⇢(�)

⇤
�

i
2

�
B̂(�), ˆ̃⇢(�)

 
+ . (�.�.��)

Clearly, the norm tr

�
ˆ̃⇢(�)

�
is not conserved, because

d

d�
tr ˆ̃⇢(�) = � tr

⇥
B̂(�) ˆ̃⇢(�)

⇤
(�.�.��)

is non-vanishing in general. To remedy the situation, we define the normalized state

⇢̂(�)⌘
ˆ̃⇢(�)

tr ˆ̃⇢(�)
(�.�.��)

and obtain the corresponding di�erential equation

i
d

d�
⇢̂(�) =

⇥
Ĥ(�), ⇢̂(�)

⇤
�

i
2

¶
B̂(�)�

⌦
B̂
↵
⇢̂
(�), ⇢̂(�)

©
+

(�.�.��)

with mean value
⌦
B̂
↵
⇢̂
⌘ tr

�
⇢̂B̂
�
. In the following, we show that the modified remainder ê�

can take the form of such an anti-Hermitian Hamiltonian part in the evolution equation.
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�.�.�.� Derivation of anti-Hermitian term

Despite the existence of a constructive way to derive the anti-Hermitian part, we first
present the final outcome explicitly in the system eigenbasis in order to understand its
general working. Afterward, the same result is derived in a basis-independent way. Ac-
cordingly, we define the conjectured Hermitian term appearing in the anti-Hermitian part
as the operator

B̂S ⌘ i
KSX

m=1

n=1

qm=qn

|'mih'n|S
Mmn

qn
, (�.�.��)

which acts on the system state ⇢̂S as B̂S⇢̂S = ⇢̂SB̂S = i�̂ and has the mean value hB̂Si⇢̂S =
i trS �̂ = i trS M̂ . Using these properties yields

�
i
2

¶
B̂S �

⌦
B̂S
↵
⇢̂S

, ⇢̂S
©
+
= �i

Ä
B̂S �

⌦
B̂S
↵
⇢̂S

ä
⇢̂S = �̂� trS(M̂) ⇢̂S = ê� (�.�.��)

and confirms the status of B̂S as the correct operator in the anti-Hermitian term of the
system Hamiltonian. Its direct derivation uses the orthogonality of �̂ to ˆPS and the
Moore-Penrose inverse [���, ���] ⇢̂ S (or “pseudoinverse”) of the system density ⇢̂S with
the property ⇢̂ S ⇢̂S = ⇢̂S⇢̂

 
S = P̂S. Specifically, the modified remainder can be expressed as

ê� = �̂� trS(M̂) ⇢̂S (�.�.��)

= �̂
⇣

P̂S +
ˆPS

⌘
� trS(M̂) ⇢̂S (�.�.��)

= �̂P̂S � trS(M̂) ⇢̂S (�.�.��)

= �̂⇢̂ S ⇢̂S � trS(M̂) ⇢̂S (�.�.��)

=
✓
�̂⇢̂ S � trS(M̂)

◆
⇢̂S (�.�.��)

Eq. (�.�.��)
= (�i)

i
2

⇢
�̂⇢̂ S � trS(M̂), ⇢̂S

�

+
, (�.�.��)

which implies the Hermitian operator B̂S ⌘ i�̂⇢̂ S by way of comparison with Eq. (�.�.��).
This basis-independent form of Eq. (�.�.��) has the same mean value

⌦
B̂S
↵
⇢̂S
= trS(B̂S⇢̂S) = i trS

�
�̂P̂S

� (�.�.��)= i trS �̂
Eq. (�.�.��)
= i trS M̂ (�.�.��)

with respect to the system state ⇢̂S. We emphasize that B̂S always commutes with the
system state, which finally leads to the von Neumann equation

i
d

d�
⇢̂S =

î
ĤS + V̂S, ⇢̂S

ó
�

i
2

¶
B̂S �

⌦
B̂S
↵
⇢̂S

, ⇢̂S
©
+

(�.�.��)

=
î
ĤS + V̂S, ⇢̂S

ó
� i
Ä
B̂S �

⌦
B̂S
↵
⇢̂S

ä
⇢̂S . (�.�.��)

Even though the additional non-Hermitian term would technically promote this equation
to the status of a “master equation”, we still call it a “von Neumann equation” for two
reasons. First, we obtain unitary dynamics for pure states, which is untypical for master
equations and, second, the non-Hermitian term is of a special form, which almost never
occurs in open system dynamics.
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�.�.� Quasi-eigenstate approximation

An equivalent of the quasi-eigenstate approximation of the pure case can be thought of as

V̂ ⇢̂C =
ˆV S⇢̂C 8� (�.�.��)

with the system-operator-valued eigenvalue ˆV S. In this case, the clock state commutes
with the full interaction, namely

î
V̂ , ⇢̂C

ó
= 0 (�.�.��)

and, in addition, we get

M̂ =
î

ˆV S, ⇢̂S
ó

. (�.�.��)

The imaginary part of a vanishes, i.e,

2i Im a =
h |
⇥
V̂ , ⇢̂C

⇤
| i

h |⇢̂C| i
= 0 (�.�.��)

and the remainder �̂ as well. It is immediately clear, that the system evolution is described
by the von Neumann equation

i
d

d�
⇢̂S =

î
ĤS +

ˆV S, ⇢̂S
ó

, (�.�.��)

which induces strictly unitary system motion.

�.�.� Wigner function formalism

Before closing the section about time emergence in the quantum density operator frame-
work and commencing the same analysis in the realm of classical mechanics, we seek to
emphasize a connection between both theories [���]. “Quasi-probability distribution func-
tions” on classical phase space have been proven to provide a strong link and many formal
similarities between quantum and classical mechanics [���]. Though not the only trans-
form to phase space, we use the Wigner representation [���,���] to express our framework
in terms of phase space coordinates (q,p) and (Q,K) for system and clock, respectively. The
dimension of each continuous configuration space is denoted by ni for i 2 {S,C}. Discrete
versions of the Wigner function do exist for finite-dimensional Hilbert spaces [���–���],
but, for simplicity, only the continuous case is considered here. Quantum-classical transi-
tions are intimately related to the smallness of Planck’s reduced constant ~h and, therefore,
we reinstate it in this section.

Any quantum mechanical state ⇢̂ can be transformed to the Wigner function

W⇢(q, p)⌘
1

2⇡~h

Z 1

�1
dx

D
q�

x
2

���⇢̂
���q+ x

2

E
eipx/~h (�.�.��)

for a simple two-dimensional phase space (q, p). Its generalization to higher dimen-
sions is straightforward and requires, besides the transition to vectors, only a change
of the denominator to (2⇡~h)ni . The marginal distributions

R
dp W⇢(q, p) = hq|⇢̂|qi andR

dq W⇢(q, p) = hp|⇢̂|pi provide genuine probability densities, even though W⇢(q, p) itself
does not constitute one, because W⇢(q, p)< 0 is possible [���]. Nevertheless, it provides a
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direct comparison with classical probability distributions. For any operators Â other than
a state density, the representation is defined as

W A(q, p)⌘
Z 1

�1
dx

D
q�

x
2

���Â
���q+ x

2

E
eipx/~h (�.�.��)

with a di�erent prefactor. We use a bar over the same symbol to indicate the di�erence of
this so-called “Weyl transform” [���] to (�.�.��). The prefactors are chosen such that

⌦
Â
↵
⇢̂
= tr

�
⇢̂Â
�
=
Z 1

�1
dq
Z 1

�1
dp W⇢(q, p)W A(q, p) (�.�.��)

and

tr(⇢̂) = tr

�
⇢̂1̂
�
=
Z 1

�1
dq
Z 1

�1
dp W⇢(q, p) = 1 (�.�.��)

with W1(q, p) = 1. These transformations from operators to phase space representations
are also called “Weyl-Wigner correspondences” and always yield real-valued functions
for Hermitian operators. In addition, the Wigner representations take simple forms for
operators diagonal in either momentum or position space. For example, the potential⌦

q
��V̂
��q0
↵
= V (q)�(q� q0) has the Wigner representation W V (q, p) = V (q).

Equipped with the appropriate algebraic tools, we translate the essential equations of our
framework to their representations on a classical phase space. The relational system state
is

W⇢S(q,p) =
1

h |⇢̂C| i

Z
d

nCQd
nCKW⇢C(Q,K)W| ih |(q,p,Q,K) (�.�.��)

and details of the calculation are given in appendix F. We note that ~h does not appear and,
hence, we expect this form to hold equivalently in the classical framework. Moreover, the
energy anticommutator constraint (�.�.�) for the global state | ih | reads

W H(q,p,Q,K) cos

Å~h
2

 !
⇤

ã
W| ih |(q,p,Q,K) = E W| ih |(q,p,Q,K) (�.�.��)

and contains ~h explicitly in the cosine function. Here, the derivatives in the Poisson bracket
operator

 !
⇤ ⌘

 �
@ (q,Q)

�!
@ (p,K) �

 �
@ (p,K)

�!
@ (q,Q) (�.�.��)

act on functions to the left and to the right, indicated by the arrows above (App. F). We
point out that W H and W| ih | are real-valued functions on phase space. In the limit ~h! 0,
we would naively expect to obtain

Ä
W H(q,p,Q,K)� E

ä
W| ih |(q,p,Q,K) = 0 , (�.�.��)

but this only holds true if the derivatives of W H and of W| ih | do not become singular in
this limit [���, ���]. Transforming the second energy constraint (�.�.�) to Wigner form
corresponds to

W H(q,p,Q,K) sin

Å~h
2

 !
⇤

ã
W| ih |(q,p,Q,K) = 0 . (�.�.��)

To lowest order in ~h, we approximate

sin

Å~h
2

 !
⇤

ã
⇡
~h
2

 !
⇤ (�.�.��)
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and guess the classical equivalent to have a form identical to

W H(q,p,Q,K)
 !
⇤ W| ih |(q,p,Q,K) =

¶
W H(q,p,Q,K), W| ih |(q,p,Q,K)

©
= 0 . (�.�.��)

As before, this only holds if no derivative term scales with positive orders of 1/~h. Even
though the lowest order expansion is linear in ~h, the final equation does not contain ~h. In
other words, Eqs. (�.�.��) and (�.�.��) do not contain Planck’s reduced constant and, thus,
their forms are available in the realm of classical mechanics.

For completeness, we also present the Weyl-Wigner correspondence for the von Neumann
equation i~h@�⇢̂ = [Ĥ, ⇢̂], which yields

@

@ �
W⇢ =

2

~h W H sin

Å~h
2

 !
⇤

ã
W⇢ ⌘ �i L

(qm)
H W⇢ (�.�.��)

with the quantum Liouville operator [���]

L
(qm)
H ⌘

2i
~h W H sin

Å~h
2

 !
⇤

ã
(�.�.��)

in Wigner representation. Its lowest order expansion in ~h reads L
(qm)
H ⇡ iW H

 !
⇤ and is

a precursor of the classical version. Further discussions about the classical equations are
given in the following section.

�.� Classical mechanics

The emergence of time in quantum mechanics relies fundamentally on the linearity of the
theory. Since classical mechanics is a limiting case of quantum mechanics, one strongly
suspects a similar emergence in a purely classical setting. But how can we transfer results
from a linear theory to one which is famously known for nonlinear dynamics? The answer
lies in the way in which the dynamics is represented. Even though classical trajectories in
configuration space are archetypal objects in classical mechanics, they only constitute one
class of admissible states. In particular, they represent classical probability distributions
which, for a fixed point in time, are proportional to a single delta-function on classical
phase space, while the most general class of states is actually one containing arbitrary
phase space probability densities. For the latter, the classical theory becomes inherently
linear and, as a remarkable consequence, allows for convex combinations. For example, the
fundamental dynamical equation for probability densities, the “Liouville equation”, fea-
tures a linear operator containing only first order derivatives. The reason for this linearity
originates from the di�erent character of the dynamical objects. For probability densities,
the Hamilton function and the states depend only on the static background coordinates,
while for classical trajectories the arguments of the Hamilton function are taken as the
dynamical objects themselves, i.e., the position and momentum of the point particle. The
importance of such a distinction has also been highlighted by Hilgevoord [���]. As a con-
sequence, the classical treatment in this section is based on classical probability densities
instead of classical trajectories. In addition, it has been pointed out that the classical limit of
quantum states is not a single classical trajectory, but an ensemble of classical orbits [���].
We note in passing that the quantum mechanical evolution equation (�.�.��) for mixed
states does indeed feature a non-linear term, however, it simply ensures normalization
and does not induce physical change. Remarkably, the idea to map nonlinear dynamics to
linear ones has matured into a full-fledged framework, called “Koopman theory”, and is
utilized even outside traditional fields of physics [���].
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The general treatment of the classical case is formulated in a Hilbert space formulation of
classical mechanics, which is introduced in Section �.�.�. In this regard, the main idea is to
treat classical probability densities on phase space as basis-independent objects, similar to
a state vector | i with its representation  (x) on configuration space. In Section �.�.�, we
translate the three guiding principles from Chapter � into the Hilbert space formalism and,
subsequently, show time emergence without and with an interaction term in Sections �.�.�
and �.�.�, respectively. The classical analysis concludes with the examination of a pure
state counterpart for the system in Sec. �.�.�, a brief consideration of the quasi-eigenstate
approximation in Sec. �.�.� and an explicit example for unitary dynamics in Section �.�.�.
As it is turns out, the classical and the quantum formalism are strongly related, which
is brought forth by comparison with basis-dependent Wigner representations and basis-
independent quantum mechanical expressions in “Liouville space” [���].

�.�.� Hilbert space formulation of classical mechanics

The beginning of a Hilbert space formulation for classical mechanics reaches back to the
����s with the pioneering works by Koopman and von Neumann [���,���] and the utiliza-
tion by Hopf [���]. Since then the formalism has been further developed and extensively
used [���, ���–���], for example in the description of non-equilibrium statistical mechan-
ics [���]. Its close connection to quantum mechanics did not go unnoticed [���, ���, ���]
and is present even in modern research. For instance, Bondar et al. [���] formulate an
operational dynamical modeling in a Hilbert space formulation applying to quantum and
classical mechanics and Okuyama and Ohzeki [���] use the classical Hilbert space lan-
guage for the formulation of classical speed limits as the analog of quantum speed limits
(Sec. �.�.�). Knowing of this close association, it is not surprising that diagrammatic per-
turbation techniques, more well-known from quantum mechanics, have been applied in
classical mechanics as well [���–���].

Even though not strictly necessary, we present our framework for classical mechanics in
terms of abstract vectors by following the ideas of Refs. [���, ���, ���, ���]. This pro-
vides us with the advantage of having elegant and basis-independent formulas at our
disposal, without the need for long and bulky integral expression. Nevertheless, basis-
dependent formulas in phase space coordinates (q, p) can be obtained at any time when
necessary and we specifically use them to connect to the Wigner function representation
from Sec. �.�.�. Thus, as promised in the beginning, the general point of view shifts
from single trajectories to the evolution of distributions and allows for a representation
in more useful basis sets. One such example is the set of eigenfunctions of the Liouville
operator [���, ���, ���, ���, ���], for which the time evolution of an initial distribution can
be easily expressed by use of the associated eigenvectors. For instance, regions in phase
space that can be accessed at later times by an initial distribution can be read o� from the
expansion into the Liouville eigenfunctions (for a time-independent Hamilton function)
for which the overlap does not vanish [���]. An excellent resource for further technical
details is Ref. [���].

For simplicity, only a two-dimensional phase space is used for now, but the generalization to
higher dimensions is almost e�ortless. We define the inner product of two complex-valued
functions f , g on phase space (q, p) as

h f |gi ⌘
Z

dq dp f ⇤(q, p) g(q, p) = hg| f i⇤ . (�.�.�)

Furthermore, a basis {|q, pi} on Hilbert space with
⌦
q0, p0

��q, p
↵
= �(q� q0)�(p� p0), repre-

senting single points in phase space, is defined. With the use of this basis, any function
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f (q, p) on phase space (q, p) can be represented as an element of the Hilbert space as

| f i=
✓Z

dq dp |q, pihq, p|
◆
| f i ⌘

Z
dq dp f (q, p) |q, pi . (�.�.�)

The representation

|⇢i=
Z

dq dp⇢(q, p) |q, pi (�.�.�)

of a classical probability density ⇢(q, p)� 0 needs to be supplemented by the normalization
condition

h1|⇢i=
Z

dq dp⇢(q, p) = 1. (�.�.�)

Here, we used the constant unit function� with hq, p|1i = 1. We note that such a formu-
lation for the probability density is not the only possible mapping to vectors in a Hilbert
space. Some modern investigations, for example [���–���, ���–���, ���], use the proba-
bility amplitude r(q, p) with ⇢(q, p) = |r(q, p)|2 instead to define |ri with hr|ri = 1. The
motivation for this formulation stems from the aspiration to show a formal equivalence to
complex-valued pure state quantum mechanics and the fact that r(q, p,�) and ⇢(q, p,�)
fulfill the same Liouville equation, due to the linearity of the classical Liouville operator in
first-order derivatives [���,���,���]. In any case, the formulation in terms of the probabil-
ity density ⇢ is favored in this thesis, because it is less mathematically involved and closely
matches the quantum mechanical formulation for mixed states, if we were to define the
inner product

⌦
Â
��B̂
↵
⌘ tr

�
Â†B̂

�
on the space of operators. Likewise, the correspondence

due to Wigner functions is given in terms of the probability density and not its amplitude.
Especially, the definition of the relational system state, defined below, would not match
the Wigner representation (�.�.��).

In the Hilbert space formulation, two kinds of operators are needed, which both derive from
an arbitrary function A(q, p) on phase space. First, we define “multiplicative operators” Â
as

⌦
f
��Âg

↵
⌘
Z

dq dp f ⇤(q, p)A(q, p) g(q, p) =
⌦
Â⇤ f

��g
↵

, (�.�.�)

indicated by a caret above the function variable. They are diagonal in the {|q, pi}-basis and
may, alternatively, be expressed as A(q̂, p̂). Hence, the phase space average of a real-valued
A(q, p) with respect to a state ⇢ reads

hAi⇢ = hA|⇢i=
Z

dq dp A(q, p)⇢(q, p) (�.�.�)

and is the classical equivalent of the quantum mechanical mean value in terms of Wigner
functions, namely

⌦
Â
↵
⇢
= tr

�
Â⇢̂ 

�
=
R

dq dp W A(q, p)W⇢(q, p) . The second kind of operator
is responsible for canonical transformations on phase space [���], namely

⌦
q, p

�� L̂A f
↵
⌘ iA(q, p)

 !
⇤ f (q, p) = i

✓
@ A(q, p)
@ q

@ f (q, p)
@ p

�
@ A(q, p)
@ p

@ f (q, p)
@ q

◆
(�.�.�)

�|1i is not strictly an element of Hilbert space, but an “improper state”. These are also encountered
in quantum mechanics, for example as momentum eigenstates and require an extension to “rigged Hilbert
spaces” [���, ���, ���], as is routinely done in quantum mechanics. This issue is however of a mathematical
nature and shall not be of any concern for the physical considerations here.
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These operators are of the “Liouville type” and, accordingly, we denote them by L̂A for
generating functions A(q, p). It holds that

⌦
f
�� L̂Ag

↵
= �

⌦
L̂Ag

�� f
↵

(�.�.�)

for real-valued f , g, A and
⌦

f
�� L̂Ag

↵
=
⌦
L̂A⇤ f

��g
↵

(�.�.�)

for generation functions A with commuting second partial derivatives. Furthermore, the
application of the Liouville type operators on a ket vector has the property

L̂A | f i= � L̂ f |Ai , (�.�.��)

which is the equivalent of [Â, f̂ ] = �[ f̂ , Â] for quantum mechanical operators. Using that

⌦
q, p

�� L̂p f
↵
= �i

@

@ q
f (q, p) , (�.�.��)

⌦
q, p

�� L̂q f
↵
= i

@

@ p
f (q, p) (�.�.��)

holds, any Liouville type operator can also be written as

L̂A =
d@ A
@ q

L̂q +
d@ A
@ p

L̂p . (�.�.��)

Any canonical transformation on phase corresponds [���] to exp

�
�i� L̂A

�
| f i or, in phase

space coordinates,

e�{A(q,p),•} f (q, p) = f (q, p)+�
¶

A(q, p), f (q, p)
©
+
�2

2!

¶
A(q, p),

¶
A(q, p), f (q, p)

©©
+. . . (�.�.��)

for � 2R. The classical Liouville equation @ ⇢/@ � = {Ĥ,⇢} is now readily available in the
basis-independent form

d

d�
|⇢i= �i L̂H |⇢i (�.�.��)

with the formal solution

|⇢(�)i= e�i� L̂H |⇢(0)i (�.�.��)

for �-independent Hamilton functions H. For later use, we list some properties of both
types of operators for Liouville type operators, namely

L̂�A = � L̂A for � 2 C , (�.�.��)

L̂A+�1 = L̂A for � 2 C , (�.�.��)

L̂A+B = L̂A+ L̂B . (�.�.��)

�.�.� Subsystems, energy constraints and relational system state

Postulate (II) corresponds to splitting the phase space coordinates into system and clock
coordinates, i.e., the pairs (q,p) and (Q,K). As in Section �.�.�, we denote the number of
continuous degrees of freedom by nS and nC for system and clock, respectively, and the
dimension of the global phase space is 2(nS + nC).
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We have already established in Section �.� that two independent equations are necessary
to express the desired global energy constraint for postulate (I). From Section �.�.�we take
the classical limits of the quantum mechanical constraints as the corresponding classical
equivalents. To this end, we require

Ä
H(q,p,Q,K)� E

ä
⇢ (q,p,Q,K) = 0 (�.�.��)

with the Hamilton function H(q,p,Q,K) = HS(q,p) + HC(Q,K) + V (q,p,Q,K) or

�
Ĥ � E

�
|⇢ i= 0 (�.�.��)

for the global state ⇢ , as the equivalent of (�.�.��). This equation is fulfilled for densities
⇢ that can only be non-zero at points where the Hamilton function is equal to E or must
vanish otherwise. Simultaneously, one quickly realizes that Ĥ � E generates the Hermitian
transformations exp

�
�(Ĥ � E)

�
, which results in the invariance exp

⇥
�(Ĥ � E)

⇤
|⇢ i = |⇢ i

for all �.� The consequences of this type of invariance are examined in Chapter �, but
it should be clear that it does not provide a pathway to the sought-after Liouville equa-
tion (�.�.��) for the system. Thus, we need the second classical equation (�.�.��) from
section �.�.� to propose a classical counterpart, namely

L̂H |⇢ i= 0 . (�.�.��)

It generates the invariance

exp

�
i� L̂H

�
|⇢ i= |⇢ i 8� 2R (�.�.��)

and is indeed the correct starting point, as is shown in the next section. The total energy
E does not appear, because the shift Ĥ ! Ĥ � E1̂ leaves L̂H invariant, due to Eq. �.�.��.
Interestingly, the only eigenfunctions of L̂Ĥ satisfying the probability requirements are
the ones with eigenvalue zero [���]. An open question is how the quantum mechanical
demand for a global pure energy eigenstate translates to classical mechanics.

For the purpose of gaining intuition about the global states fulfilling both energy con-
straints, namely Eqs. (�.�.��) and (�.�.��), we present a simple, but illustrative exam-
ple [���]. To this end, the Hamilton function

H(q, p) =
1

2
(p2 + q2) (�.�.��)

�The transformation
��⇢0
↵
= exp

⇥
i�(Ĥ � E)

⇤
|⇢i would not preserve the reality of a state in phase space.

In particular,
�
⇢0(q, p)

�⇤
= exp

⇥
�i�(H(q, p)� E)

⇤
⇢(q, p) 6= ⇢0(q, p). While it may be true that the invariance

|⇢ i= exp

⇥
i�(Ĥ � E)

⇤
|⇢ i still holds for states fulfilling Eq. (�.�.��), it does not yield valid transformations for

the subsystem states. Specifically, the real-valuedness of their phase space representations would be violated.
For V = 0, h⇢C|ei�(Ĥ�E)|⇢ iC = h⇢C|⇢ iC becomes |⇢S(�)iS = exp

�
�i�ĤS

�
|⇢S(0)iS after proper normalization.

Clearly, ⇢S(q,p,�) = exp

�
�i�HS(q,p)

�
⇢S(q,p, 0) takes on complex values and only modifies the complex phase

at each phase space point.
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q

p

q

p

Figure �.�� – Phase space representation of the type of solutions allowed under the
constraint L̂H |⇢i = 0 are shown on the left. Each of the concentric circles lies on
an energy hypersurface with constant probability density along each circle. These
constant values can however di�er between di�erent energy shells, as indicated
by the di�erent line widths. The right plot constitutes a depiction of a typical
element of the class of states fulfilling (Ĥ � E) |⇢i = 0. Their support is restricted
to one energy shell (dotted line) with energy E, but the distribution on this shell
is arbitrary. This fact is illustrated by lines of di�erent widths and the absence of
lines on parts of the dotted circle.

of the harmonic oscillator is used. The associated Liouville operator

⌦
q, p

�� L̂H f
↵
= i

Å
q
@

@ p
� p

@

@ q

ã
f (q, p) (�.�.��)

is the generator of rotations in the (q, p) plane and it is useful to express everything in
polar coordinates (r,') with q = r cos' and p = r sin'. The Hamilton function becomes
H(r,') = r2/2 and the phase space representation of L̂H is i @ /@ ' . Clearly, the eigenfunc-
tions ⇢n,↵ are of the form

⇢n,↵ =
1

2⇡
e�in' f↵(r) n 2 Z (�.�.��)

for some radial function f↵(r), which is undetermined and indicates the degeneracy ↵ of
the eigenspace [���]. Here, we can use fE(r)/ �

�
E � r2/2

�
for simplicity, which corre-

sponds to a classification of the degeneracies according to (Ĥ� E)
��⇢0,↵=E

↵
= 0. Hence, the

constraint L̂H |⇢ i = 0 corresponds to a superposition of concentric circles in (q, p), i.e.,
⇢ /

R1
0

dE c(E)�
�
E� r2/2

�
, a radial distribution with rotational symmetry. On the other

hand, (Ĥ�E) |⇢ i= 0 corresponds to an arbitrary angular density g(') on the energy shell
with constant energy E. Both behaviors are illustrated in Fig. �.��. The combination of
both constraints yields a single circle in phase space (q, p), which is, at the same time, the
microcanonical ensemble for this simple system. In general, such ensembles always fulfill
both constraints, but do not exhaust the set of all possible solutions. Guided by these re-
sults, it is apparent that, in general, the energy constraint (�.�.��) dictates on which energy
surface ⇢ lives and the Liouville constraint (�.�.��) governs the functional form on these
energy surfaces. Ref. [���] provides with the one-dimensional pendulum another example
for a full spectral analysis of the Liouville operator L̂H . General evaluations of the spectral
content regarding integrable and fully chaotic systems have been treated in [���, ���]. In
the special case of pure quantum energy eigenstates of ergodic systems, which are solutions
to Eq. �.�.�, the classical limit converges to microcanonical ensembles [���] and further
supports our arguments above.
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Lastly, the relational system state from proposition (III) is straightforwardly defined as

|⇢SiS ⌘ |⇢S[⇢C]iS ⌘
h⇢C|⇢ iC
h1S ⌦⇢C|⇢ i

, (�.�.��)

where ⇢ , ⇢S and ⇢C denote the probability density of the global state, the system and
the clock, respectively. The additional argument [⇢C] shows the conditional dependence
on the specific clock state ⇢C. Expressed in terms of the phase space coordinates (q,p),
the system state reads

hq,p|⇢SiS = ⇢S(q,p) =
1

h1S ⌦⇢C| i

Z
d

nC Qd
nC K ⇢C(Q,K)⇢ (q,p,Q,K) , (�.�.��)

and the nature of a conditional probability for the system is evident. The denominator,
which ensures the normalization of |⇢SiS, can also be expressed as an integral over the
global phase space, but was taken in its abstract form for better readability. This classical
system state is formally equivalent to the quantum mechanical system state Eq. (�.�.��) in
terms of Wigner functions for pure and mixed states. As in Sec. �.�.�.�, we have to assume
h⇢C|⇢ iC 6= 0 for a non-trivial behavior. The completed translation of the postulates into
the mathematical language for classical mechanics enables us to show in the next two
sections how time can emerge within this framework.

�.�.� Time emergence without interaction

In view of the structure of the quantummechanical treatments, the first derivation proceeds
without an interaction between both subsystems, i.e., V = 0. Hence, for a given global
state |⇢ i, the invariance equation (�.�.��) reads

ei L̂H� |⇢ i= e�i L̂HS�e�i L̂HC� |⇢ i= e�i L̂HC�e�i L̂HS� |⇢ i (�.�.��)

for all � 2 R and follows from [ L̂HS
, L̂HC

] = 0. Straightforwardly, we calculate the partial
projection of the clock state

��⇢�0

↵
C onto invariance (�.�.��) to be

⌦
⇢�0

��⇢ 
↵
C =

¨
⇢�0

���ei L̂H�⇢ 
∂
C

(�.�.��)

= ei L̂HS�
¨
⇢�0

���ei L̂HC� ⇢ 
∂
C

(�.�.��)

= ei L̂HS�
¨
e�i L̂HC�⇢�0

���⇢ 
∂
C

(�.�.��)

⌘ ei L̂HS� h⇢C(�)|⇢ iC . (�.�.��)

Here, we define the �-evolved clock state |⇢C(�)iC ⌘ e�i L̂HC�
��⇢�0

↵
C and note the rela-

tion L̂HS

��⇢�0

↵
C = 0. Applying the inverse operator e�i L̂HS� and dividing by the constant

h1S ⌦⇢C(�)|⇢ i= h1S ⌦⇢C(0)|⇢ i on both sides yields the �-evolved system state

|⇢S(�)iS = e�i L̂HS�
��⇢'0

↵
S =

h⇢C(�)|⇢ iC
h1S ⌦⇢C(�)|⇢ i

. (�.�.��)
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That h1S ⌦⇢C(�)|⇢ i is constant follows from L̂HS
|1SiS = 0 and exp

�
�i� L̂HS

�
|1SiS = |1SiS.

The classical Liouville equation is obtained by means of a di�erentiation with respect to �
and gives

d

d�
|⇢S(�)iS = �i L̂HS

|⇢S(�)iS . (�.�.��)

It shows that the emergent time evolution in classicalmechanics originates from the classical
correlations between system and clock, contained in the global state |⇢ i. Astonishingly,
all remarks from Sec. �.�.�.� regarding the properties of this derivation do also hold for the
classical setting. Moreover, the special circumstance of a one-dimensional point particle
being a clock and its position trajectory being a “time-indicating variable” [��] is readily
included by using the state hQ, K |⇢C(�)iC = �[Q�Q(�)] ·�[K �K(�)] and the mean value
QC(�) ⌘ h1C|Q̂|⇢C(�)iC = Q(�). As before, we continue with the treatment of interacting
subsystems.

�.�.� Time emergence with interaction

For the time emergence with interaction, we follow the route taken in Sec. �.�.�. Namely,
we take the �-evolution of the clock from the previous section as given and derive the
di�erential equation for the system state with an optimal e�ective system potential. The
derivative of system state (�.�.��) with respect to � reads

i
d

d�
|⇢SiS =

i d h⇢C|⇢ iC
�
d�

h1S ⌦⇢C|⇢ i
� |⇢SiS

i d h1S ⌦⇢C|⇢ i/d�
h1S ⌦⇢C|⇢ i

(�.�.��)

= �

⌦
⇢C
�� L̂HC

⇢ 
↵
C

h1S ⌦⇢C|⇢ i
+ |⇢SiS

⌦
1S ⌦⇢C

�� L̂HC
⇢ 
↵

h1S ⌦⇢C|⇢ i
(�.�.��)

(3.3.22)
= L̂HS

|⇢SiS +

⌦
⇢C
�� L̂V⇢ 

↵
C

h1S ⌦⇢C|⇢ i
� |⇢SiS

⌦
1S ⌦⇢C

�� L̂V⇢ 
↵

h1S ⌦⇢C|⇢ i| {z }
2iR

(�.�.��)

for L̂H = L̂HS
+ L̂HC

+ L̂V , where we use
⌦
1S,⇢C

�� L̂HS
⇢ 
↵
= 0 and �i d h⇢C|C

�
d� =

⌦
L̂HC
⇢C
��
C.

Following our notation from the quantum framework, we introduce

|MiS ⌘

⌦
⇢C
�� L̂V⇢ 

↵
C

h1S,⇢C|⇢ i
(�.�.��)

and rewrite the di�erential equation as

i
d

d�
|⇢SiS = L̂HS

|⇢SiS + |MiS � |⇢SiS h1S|MiS . (�.�.��)

The system norm changes as

i
d

d�
h1S|⇢S(�)iS =

î
1� h1S|⇢S(�)iS

ó
h1S|M(�)iS (�.�.��)

and is conserved, because h1S|⇢S(0)iS = 1.

��



�.� Classical mechanics

As before, we employ a variational approach to obtain an optimal system potential VS by
minimizing the norm of the remainder vector

|�iS ⌘

⌦
⇢C
��� L̂V � L̂VS

�
⇢ 
↵
C

h1S,⇢C|⇢ i
=

⌦
⇢C
�� L̂V⇢ 

↵
C

h1S,⇢C|⇢ i
� L̂VS |⇢SiS = |MiS � L̂VS |⇢SiS (�.�.��)

for arbitrary �. The variation VS ! VS + �VS with a real-valued function �VS induces the
vector change

|��iS = � L̂�VS |⇢SiS = L̂⇢S |�VSiS (�.�.��)

and norm change

�h�|�iS = 2Re h��|�iS
!= 0 . (�.�.��)

Setting this norm change to zero yields an equation for the e�ective system potential VS
that minimizes the term which induces non-unitary evolution in the system. Specifically,
we find

h��|�iS =
⌦
L̂⇢S�VS

��
S ·

⌦
⇢C
��� L̂V � L̂VS

�
⇢ 
↵
C

h1S ⌦⇢C|⇢ i
(�.�.��)

= h�VS|S · L̂⇢S
Ä
|MiS � L̂VS |⇢SiS

ä
(�.�.��)

= h�VS|S · L̂⇢S
Ä
|MiS + L̂⇢S |VSiS

ä
, (�.�.��)

which is purely real, since all involved functions are real-valued and imaginary units are
squared, yielding a minus sign. The function �VS is arbitrary and, hence, the defining
equation for the system potential is

L̂2

⇢S
|VSiS

!= � L̂⇢S |MiS , (�.�.��)

which is the classical analog of the quantum mechanical Eq. (�.�.��). Unfortunately, the
correspondence between quantum and classicalmechanics does also extend to the unability
to find a general, basis-independent solution for equation (�.�.��). In the same manner
as in the quantum setting, we proceed with the use of a set of basis vectors, which derives
from the system state by virtue of the eigenvectors of L̂⇢S . Refs. [���,���] provide us with
the correct treatment of eigenfunctions of Liouville type operators and, therefore, we do
not dwell on the mathematical details. The spectrum of these Liouville type operators is
degenerate and we classify them further by their eigenvalue with respect to ⇢̂S, because
this operator commutes with L̂⇢S , and we recognize that further degeneracies can occur if
a larger set of commuting operators exist [���]. The eigenfunctions form a complete basis
and we denote them by

��⇢⌫µ⇣
↵
S, such that

L̂⇢S
��⇢⌫µ⇣

↵
S = ⌫

��⇢⌫µ⇣
↵
S , (�.�.��)

⇢̂S
��⇢⌫µ⇣

↵
S = µ

��⇢⌫µ⇣
↵
S (�.�.��)

and the index ⇣ denotes additional degeneracies. In the following, we suppress a possibly
occurring unilateral dependence of these indices in the notation, but keep the order of
summations or integration fixed. Such a notation is well-known from the bound hydrogen
wavefunctions, in which the three quantumnumbers n, l and m are often appearingwithout
the explicit dependence on themselves, such as l = l(n) or m = m(l). All eigenstates
with non-vanishing eigenvalue ⌫ 6= 0 have the curious property

⌦
1S
��⇢⌫µ⇣

↵
S = 0 [���].

Furthermore, we find that the system state ⇢S has no overlap with µ = 0 eigenstates,

��
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i.e.,
⌦
⇢S
��⇢⌫0⇣

↵
S = 0 and, through the previous relation, that

⌦
⇢S
��⇢⌫µ⇣

↵
S = 0 for ⌫ 6= 0.

Expressing Eq. (�.�.��) in system phase space coordinates (q,p) reveals the non-negativity
of µ � 0 and that ⇢⌫µ⇣(q,p) is only non-vanishing on the support of ⇢S(q,p) for µ > 0. In
other words, the conditions µ > 0 and µ = 0 split the phase space into two regions, the
support of ⇢S and its complement, respectively. Thus, the expansion of the system state in
this eigenbasis reads

|⇢SiS =
XZ

µ>0

XZ

⇣

��⇢0µ⇣

↵
S

⌦
⇢0µ⇣

��⇢S
↵
S . (�.�.��)

For quantummixed state, the analogs of the classical eigenfunctions are the eigenoperators
of L̂(qm)

⇢S = [⇢̂S,•] and of {⇢̂S,•}+/2, which are |'mih'n|S [���,���] with eigenvalues qm�qn
and (qm + qn)/2, respectively (Sec. �.�.�). In the system eigenbasis, we find

⌦
⇢⌫µ⇣

��VS
↵
S = �

1

⌫

⌦
⇢⌫µ⇣

��M
↵

for ⌫ 6= 0 (�.�.��)

or

|VSiS = �
XZ

⌫ 6=0

1

⌫

XZ

µ

XZ

⇣

��⇢⌫µ⇣
↵
S

⌦
⇢⌫µ⇣

��M
↵
S . (�.�.��)

The associated remainder vector is

|�iS = |MiS � L̂VS |⇢SiS (�.�.��)

= |MiS + L̂⇢S |VSiS (�.�.��)

= |MiS �

0
@
XZ

⌫ 6=0

XZ

µ

XZ

⇣

��⇢⌫µ⇣
↵⌦
⇢⌫µ⇣

��
S

1
A |MiS (�.�.��)

=

0
@1̂S �

XZ

⌫ 6=0

XZ

µ

XZ

⇣

��⇢⌫µ⇣
↵⌦
⇢⌫µ⇣

��
S

1
A |MiS (�.�.��)

=
XZ

µ

XZ

⇣

��⇢0µ⇣

↵
S

⌦
⇢0µ⇣

��M
↵
S (�.�.��)

and can immediately be associated with the quantum remainder (�.�.��). In contrast, the
sum over quantum eigenstates in Eq. (�.�.��) extends only to terms with non-vanishing
eigenvalues due to ˆPSM̂ ˆPS = 0. This gives the important clue to seek the classically
equivalent relation

0=
⌦
⇢⌫0⇣

��M
↵

(�.�.��)

/
⌦
⇢⌫0⇣ ⌦⇢C

�� L̂V⇢ 
↵

(�.�.��)

= i
Z

d
nSqd

nSp⇢⌫0⇣(q,p)
Z

d
nCQd

nCK ⇢C(Q,K)
¶
⇢ (q,p,Q,K), V (q,p,Q,K)

©
.

(�.�.��)
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for ⌫ 6= 0, which is proven in the following. We start with a closer examination of the
relation

0=
⌦
⇢⌫0⇣

��⇢S
↵
/
⌦
⇢⌫0⇣ ⌦⇢C

��⇢ 
↵

. (�.�.��)

This inner product equals zero because the support of ⇢S and ⇢⌫0⇣ do not overlap in system
phase space. The phase space representation

⇢S(q,p)/
Z

d
nCQd

nCK ⇢C(Q,K)⇢ (q,p,Q,K) (�.�.��)

of the system state depends explicitly on the support of the product ⇢C(Q,K) ·⇢ (q,p,Q,K).
Since both functions are probability densities, it becomes clear that any product involving
⇢C and any first-order derivatives of ⇢ cannot have a larger support, because

supp

Å
@ ⇢ 
@ x

ã
✓ supp (⇢ ) for x 2 {qi , pi ,Qi , Ki} . (�.�.��)

Specifically, any points (q,p,Q,K) 2 supp (⇢ ), where ⇢ (q,p,Q,K) = 0, are automatically
local minima and it follows that @ ⇢ (q,p,Q,K)/@ x = 0 at these points for any x 2
{qi , pi ,Qi , Ki}. In addition, multiplying two functions f and g can only make the support
smaller than that of any of the original ones, namely

supp ( f · g) = supp ( f )\ supp (g) ✓ supp ( f ) . (�.�.��)

All things considered, we state

supp

✓Z
d

nCQd
nCK ⇢C(Q,K)

@ ⇢ (q,p,Q,K)
@ x

f (q,p,Q,K)
◆
✓ supp

�
⇢S(q,p)

�
(�.�.��)

for any function f (q,p,Q,K) and any x 2 {qi , pi ,Qi , Ki}. A quick comparison of this relation
with Eq. (�.�.��) shows a sum of terms with a support lying within supp

�
⇢S(q,p)

�
and

implies

supp

�
M(q,p)

�
✓ supp

�
⇢S(q,p)

�
. (�.�.��)

As a result, the last relation proves the sought-after equation (�.�.��), because of
⌦
⇢⌫0⇣

��⇢S
↵
=

0, which is facilitated by supp

�
⇢⌫0⇣(q,p)

�
\ supp

�
⇢S(q,p)

�
= ;. The close similarities

between classical and quantum mechanics have proven very useful and the associated
remainder vector in its final form reads

|�iS =
XZ

µ>0

XZ

⇣

��⇢0µ⇣

↵
S

⌦
⇢0µ⇣

��M
↵
S . (�.�.��)

Additionally, its support in (q,p) fulfills

supp

�
�(q,p)

�
✓ supp

�
⇢S(q,p)

�
(�.�.��)

and we note that the full expansion of M reads

|MiS =
XZ

⌫

XZ

µ>0

XZ

⇣

��⇢⌫µ⇣
↵
S

⌦
⇢⌫µ⇣

��M
↵
S . (�.�.��)

With these insights, the system evolution equation becomes

d

d�
|⇢SiS = �i L̂HS+VS |⇢SiS � i

0
@
XZ

µ>0

XZ

⇣

��⇢0µ⇣

↵⌦
⇢0µ⇣

��
S � |⇢Sih1S|S

1
A |MiS . (�.�.��)

and is the classical analog of the quantum mechanical Eq. (�.�.��). Since a further investi-
gation of the term in brackets has proven useful in the quantum case, we attempt the same
in the following.
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�.�.�.� Anti-Hermitian part of the Hamilton function

The determination of the term generating non-unitary dynamics can be addressed in two
di�erent representations, namely the phase space representation and the system state
eigenbasis. In particular, the first method proceeds with the introduction of the system
projector

P̂S ⌘
Z

supp(⇢S)

d
nSqd

nSp |q,pihq,p|S (�.�.��)

=
Z

supp(⇢S)

d
nSqd

nSp
⇢S(q,p)
⇢S(q,p)

|q,pihq,p|S (�.�.��)

⌘
Z

d
nSqd

nSp ⇢S(q,p)⇢ S (q,p) |q,pihq,p|S (�.�.��)

= ⇢̂ S ⇢̂S (�.�.��)

with the scalar pseudo-inverse

f  (x)⌘

®
1

f (x) for f (x) 6= 0

0 otherwise
. (�.�.��)

Subsequently, we can derive

i |�iS = i P̂S |�iS = i⇢̂ S ⇢̂S |�iS = i⇢̂ S �̂ |⇢SiS = i�̂⇢̂ S |⇢SiS ⌘ B̂S |⇢SiS (�.�.��)

with [�̂, ⇢̂ S ] = 0 and a newly defined operator

B̂S ⌘ i�̂⇢̂ S . (�.�.��)

The similarity with the quantum mechanical version (�.�.��) is striking and, in addition,
we find

⌦
B̂S
↵
⇢S
= h⇢S|BSiS = i h1S|�iS = h1S|MiS +

⌦
1S
�� L̂VS⇢S

↵
S| {z }

=0

= h1S|MiS . (�.�.��)

Inspired by the quantum mechanical result in Section �.�.�.�, an alternative form in terms
of system eigenfunctions can be found as well, namely

|BSiS = i
XZ

µ>0

1

µ

XZ

⇣

��⇢0µ⇣

↵
S

⌦
⇢0µ⇣

��M
↵
S . (�.�.��)

A simple calculation yields

⇢̂S |BSiS = i
XZ

µ>0

1

µ

XZ

⇣

⇢̂S
��⇢0µ⇣

↵
S| {z }

=µ|⇢0µ⇣iS

⌦
⇢0µ⇣

��M
↵
S = i

XZ

µ>0

XZ

⇣

��⇢0µ⇣

↵
S

⌦
⇢0µ⇣

��M
↵
S , (�.�.��)

⌦
B̂S
↵
⇢S
= h1S|⇢̂S|BSi (�.�.��)

= i
XZ

µ>0

XZ

⇣

⌦
1S
��⇢0µ⇣

↵
S

⌦
⇢0µ⇣

��M
↵
S (�.�.��)

= i
XZ

⌫

XZ

µ

XZ

⇣

⌦
1S
��⇢0µ⇣

↵
S

⌦
⇢0µ⇣

��M
↵
S (�.�.��)
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= i h1S|MiS (�.�.��)

and shows the validity of this form in the specific basis derived from the system state. Thus,
the final form for the di�erential equation governing the change in the classical system
state is

d

d�
|⇢SiS = �i L̂HS+VS |⇢SiS �

Ä
B̂S �

⌦
B̂S
↵
⇢S

ä
|⇢SiS . (�.�.��)

At this point, it should come as no surprise that this equation is completely analogous to
the quantum version (�.�.��) for mixed state, given the many parallels pointed out in the
derivation above. It is worth mentioning that the appearance of a non-Hermitian term
is not inherent to quantum mechanics, but a common element in both theories. In the
following, we consider three situations in which the second term on the right-hand side
vanishes and purely unitary evolution takes place.

�.�.� Pure state equivalent

The pure state studies in Sections �.�.�, �.�.�.� and �.�.�.� have remarkably shown the
exact unitarity of the e�ective system evolution in quantum mechanics. As we have
already mentioned above, the equivalent conditions for a classical state being pure are not
entirely clear. Nevertheless, since we established that |'mih'n|S are the eigenoperators of
L̂(qm)
⇢S and only one eigenstate |'1iS with q1 = 1 exists for a pure state density operator
⇢̂S = |'1ih'1|S, our guess for a classical equivalent is

|⇢SiS =
��⇢0µ̄0

↵
S (�.�.��)

for a fixed value µ̄. We assume that no degeneracy ⇣(⌫ = 0,µ = µ̄) = 0 exists. While a
further investigation including possible degeneracies is interesting, it is not pursued in the
following for simplicity. As a consequence of this assumption, it follows that

|�iS =
��⇢0µ̄0

↵
S

⌦
⇢0µ̄0

��M
↵
S (�.�.��)

and

|⇢SiS h1S|MiS =
��⇢0µ̄0

↵
S h1S|MiS (�.�.��)

=
��⇢0µ̄0

↵
S

XZ

⌫

XZ

⇣

⌦
1S
��⇢⌫µ̄⇣

↵
S| {z }

/�0⌫

⌦
⇢⌫µ̄⇣

��M
↵
S (�.�.��)

=
��⇢0µ̄0

↵
S

⌦
⇢0µ̄0

��M
↵
S (�.�.��)

= |�iS , (�.�.��)

because ⇣(⌫= 0,µ= µ̄) = 0. Therefore, the term leading to a non-unitary system evolution
vanishes and the e�ective system change follows

d

d�
|⇢SiS = �i L̂HS+VS |⇢SiS (�.�.��)

with

VS = �
XZ

⌫ 6=0

1

⌫

XZ

⇣

��⇢⌫µ̄⇣
↵
S

⌦
⇢⌫µ̄⇣

��M
↵
S (�.�.��)
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as the analog of Eq. (�.�.��). This is a surprising result and certainly demands closer
examination in future work. It should be noted that a full treatment should start with
pure global state and a pure clock state, from which a pure system state can potentially
be derived. In any case, here we content ourselves with the conceptual verification of
pure state unitary evolution at some �, even though a comprehensive proof for unitarity
and ⇢S-purity for all � is missing. Later, we surmise in Sec. �.�.� how a general classical
condition for purity might be established.

�.�.� Quasi-eigenstate approximation

Analogous to Sec. �.�.�, we briefly touch upon the quasi-eigenstate approximation. If the
clock is approximately an eigenstate of the interaction, in the sense of

⌦
⇢C
�� L̂V⇢ 

↵
C

h1S,⇢C|⇢ i
⇡ L̂V S

h⇢C|⇢ iC
h1S,⇢C|⇢ i

= L̂V S
|⇢SiS , (�.�.��)

then the last term of Eq. (�.�.��) vanishes, i.e.,
⌦
1S,⇢C

�� L̂V⇢ 
↵

h1S,⇢C|⇢ i
=
¨

L̂V S
1S

���⇢S
∂
S
= 0 . (�.�.��)

Straightforwardly, Eq. (�.�.��) becomes

i
d

d�
|⇢SiS = L̂HS+V S

|⇢SiS (�.�.��)

and, again, induces only unitary dynamics in the system. A specific example of this
situation is considered in the following section, in which Eq. (�.�.��) is even exact.

�.�.� Example for unitary dynamics

In this section, we present a classical model exhibiting unitary system dynamics. To this
end, we consider the global Hamilton function

H = HS(q, p) +HC(Q, K) + V (q,Q) (�.�.��)

representing two subsystems which are coupled via their positions. The clock shall be a
harmonic oscillator

HC(Q, K) =
1

2

Ä
K2 +Q2

ä
(�.�.��)

and its state is that of a point particle with clock density

⇢C(Q, K ,�) = �
Ä
Q�Q(�)

ä
�
Ä
K �K(�)

ä
. (�.�.���)

A simple form of the phase space trajectories is chosen, namely

Q(�) =Q0 cos� = �
dK(�)

d�
(�.�.���)

K(�) = �Q0 sin� =
dQ(�)

d�
(�.�.���)

with the initial values Q(0) = Q0 and K(0) = 0. Consequently, the potential term in the
evolution reads

⌦
q, p,⇢�

�� L̂V⇢ 
↵

h1S,⇢C|⇢ i
=

i
h1S,⇢C|⇢ i

@ V (q,Q)
@ q

·
@ ⇢ (q, p,Q,K)

@ p
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+
i

h1S,⇢C|⇢ i
@ V (q,Q)
@Q

����
Q

·
@ ⇢ (q, p,Q, K)

@ K

����
K

. (�.�.���)

A definition of an e�ective system potential is hindered by the last term, which is not
composed of system variable derivatives of the relational system state ⇢S/ ⇢ (q, p,Q,K).
We try to use Eq. (�.�.��) in order to find an alternative expression for the clock momentum
derivative of the global state. Specifically, the equation

0=
@

@ K
hq, p,Q, K |(Ĥ � E)|⇢ i (�.�.���)

=
Ä
H(q, p,Q, K)� E

ä @ ⇢ (q, p,Q, K)
@ K

+
@ H(q, p,Q, K)

@ K| {z }
= @ HC(Q,K)/@ K

⇢ (q, p,Q, K) (�.�.���)

provides an expression for the clock momentum derivative of the global state, namely

@ ⇢ (q, p,Q, K)
@ K

=
@ HC(Q, K)
@ K| {z }
=K

⇢ (q, p,Q, K)
E � H(q, p,Q, K)

. (�.�.���)

The same energy equation can also be used to find

1

@ HS(q, p)/@ p
@ ⇢ (q, p,Q, K)

@ p
=

⇢ (q, p,Q, K)
E � H(q, p,Q, K)

(�.�.���)

and, thus, the problematic term can be written as

@ ⇢ (q, p,Q, K)
@ K

=
K

@ HS(q, p)/@ p
@ ⇢ (q, p,Q, K)

@ p
. (�.�.���)

As a result, the potential term becomes
⌦
q, p,⇢�

�� L̂V⇢ 
↵

h1S,⇢C|⇢ i
= i
@ V (q,Q)
@ q

·
@ ⇢S(q, p,�)

@ p

+ i
@ V (q,Q)
@Q

����
Q

·
K

@ HS(q, p)/@ p
@ ⇢S(q, p,�)

@ p
(�.�.���)

= i

ñÇ
@ V (q,Q)
@ q

+
@ V (q,Q)
@Q

����
Q

·
K

@ HS(q, p)/@ p

å
@

@ p

ô
⇢S(q, p,�)

(�.�.���)

and we can define

@ VS(q, p,�)
@ q

⌘
@ V (q,Q)
@ q

+
@ V (q,Q)
@Q

����
Q

·
K

@ HS(q, p)/@ p
(�.�.���)

with the solution

VS(q, p,�) = V (q,Q)� V (q0,Q) +K

Z q

q0

dq0
@ V (q0,Q)
@Q

����
Q

·
1

@ HS(q0, p)/@ p
. (�.�.���)

The integration point q0 can be chosen arbitrarily, because it does not change the equations
of motion. However, the additional momentum-dependence of the second term poses a
problem. Given that Eq. (�.�.���) does not feature a derivative of the system state with
respect to q, we require @ VS/@ p = 0. It induces the constraint

0
!=
@ VS(q, p,�)

@ p
(�.�.���)
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= �K
Z q

q0

dq0
@ V (q0,Q)
@Q

����
Q

·
1

⇥
@ HS(q0, p)/@ p

⇤2
·
@ 2HS(q0, p)
@ p2

, (�.�.���)

which is only non-trivially fulfilled for system Hamilton functions linear in p. This rep-
resents a very restricted class with @ HS(q, p)/@ p = ↵ for some ↵ 2 R. In this case, the
e�ective potential becomes

VS(q, p,�) = V (q,Q)� V (q0,Q) +
K
↵

Z q

q0

dq0
@ V (q0,Q)
@Q

����
Q

(�.�.���)

and it is clear at this point, that we are specifically searching for a combination of clock
states and interactions, such that the quasi-eigenstate approximation (�.�.��) becomes an
exact relation. To make it explicit, we choose the system Hamilton function

HS(q, p) = p+
q2

2
(�.�.���)

and the simple coupling

VS(q,Q) = qQ . (�.�.���)

This is arguably a rather special case due to the linear kinetic term, but it su�ces to
demonstrate the possibility for exact unitary evolution. For the specific aforementioned
Hamilton functions, the e�ective potential (�.�.���) reads

VS(q, p,�) = qQ(�) +
1

2
K(�)q2 (�.�.���)

with the integration limit q0 = 0. The last missing element for displaying the system
dynamics corresponding to (�.�.���) and the e�ective potential (�.�.���) is a suitable
global state, which we take to be the microcanonical ensemble

⇢ / �
î
E � H(q, p,Q, K)

ó
. (�.�.���)

Consequently, the system state

⇢S(q, p,�)/ ⇢ (q, p,Q,K) (�.�.���)

⌘ �


ES �
✓

p+
q2

2
+ qQ0 cos�

◆�
(�.�.���)

also represents a microcanonical ensemble for fixed energy ES ⌘ E �Q2

0
/2 and �-varying

Hamilton function p+q2/2+qQ0 cos�. In contrast, we derive the system Hamilton function

HS(q, p) + VS(q, p,�) = p+
1

2
q2 + qQ0 cos��

1

2
q2Q0 sin� , (�.�.���)

which features the additional term �q2Q0 sin(�)/2 not showing up in Eq. (�.�.���). This
is a curious characteristic of our model and, even though the goal of achieving unitary
system dynamics is reached, we investigate the dynamics a bit further. To this end, single
point particle trajectories

�
q(�),p(�)

�
are examined and their evolution is determined

from Hamilton’s equations of motion, i.e., dq/d� = d(HS + VS)/dp = 1 and dp/d� =
� d(HS + VS)/dq = �q(1+K)�Q= dK/d� � q(1+ dQ/d�). The corresponding solutions
read

q(�) = q0 +� , (�.�.���)
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p(�) = p0 � q(�)
î
�+Q(�)

ó
+
�2

2
+ q0Q0 (�.�.���)

and do not exhibit the periodic nature of the system state (�.�.���). Fixing of the initial
positions q0 simultaneously determines the initial momenta p0 by means of the energy re-
quirement HS(q0,p0)+VS(q0,p0,� = 0) = ES. That the whole ensemble of single trajectories
for all q0, collectively representing ⇢S, can still show periodic behavior is shown in Fig. �.��.

Figure �.�� – The classical evolution under the system Hamilton function (�.�.���)
for single trajectories (continues color scale) and the microcanonical ensem-
ble (�.�.���) (gray lines) is shown for one clock period TC = 2⇡. The global energy
value is fixed at E = 0. Furthermore, Q0 = 4 sets the initial clock position and
the initial position of the system point particle trajectories are taken from the set
q0 2 {�15,�10,�5, 0,5, 10}. For a direct comparison of the changing microcanon-
ical ensemble to the collection of single trajectories, the former is plotted for � = 0

(dashed lines) and � = ⇡ (dotted lines).

�.� Unified formulation

In Section �.�.�, we introduced a quantum mechanical formulation on phase space in order
to be able to directly compare to our results for probability densities in classical mechanics.
Such a procedure depends explicitly on the chosen basis in phase space and is, thus,
rendered basis-dependent. As demonstrated in the literature, for example in Refs. [���,
���], it is nevertheless useful to compare and to interpret dynamics in both mechanics and
to better understand quantum to classical transitions. However, our treatment in Sec. �.�
has shown the e�ectiveness and the simplicity of a Hilbert space formulation in classical
mechanics. For this reason, we introduce a common basis-independent notation for both
theories in terms of vectors |Aii in Hilbert space, “. . . since a good notation can be of great
value in helping the development of a theory . . . ” [���]. It allows us to directly point out
the common features in quantum and classical mechanics. Each individual framework,
classical or quantum, is obtained by explicitly defining the form of the inner product and
the involved operators. This remarkable property has already been pointed out in Ref. [���]
with the statement that “this great unity is one of the most striking features of this method”.
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�.�.� Inner product and operators

To elaborate, we introduce a general inner product hhA|Bii, which is either taken to be the
classical version (�.�.�) or the quantum mechanical inner product

hhA|Bii ⌘ tr

Ä
Â†B̂

ä
= hhB|Aii⇤ (�.�.�)

for two quantum mechanical operators Â and B̂, respectively. Equation (�.�.�) is known as
the “Hilbert-Schmidt inner product” [���]. The usual quantum mechanical operators are
now considered as vectors and so-called “superoperators” take the place of operators in our
unified formalism. An excellent source for details of the quantum mechanical formulation
in “Liouville space” [���] is given in Ref. [���]. At this point, the pure state vector for-
malism of Sec. �.� is not used any longer, but readily included in the quantum mechanical
density operator formalism.

Furthermore, the derivations in Sections �.�.� and �.� have shown that Liouville-type
operators L̂A are necessary and, therefore, we take L̂A to be either (�.�.�) or (�.�.��) in
classical and quantum mechanics, respectively. These operators have the properties

⌦⌦
B
�� L̂AC

↵↵
=
⌦⌦

L̂A† B
��C
↵↵

, (�.�.�)

L̂A|Bii= � L̂B|Aii , (�.�.�)

L̂A|1ii= 0 , (�.�.�)

where the Hermitian conjugate reduces to the complex conjugate in the classical frame-
work.

In order to complete the set of necessary elements for our unified formulation, a second
class of operators needs to be introduced. As part of the quantum mechanical energy con-
straint in Section �.�, Equation (�.�.�) hints at the definition of an operator complementary
to the Liouville type operators. In particular, we use K̂A ⌘ {Â,•}+/2 for quantummechanics
and the classical equivalent hhq,p|K̂ABii ⌘ {A(q,p), B(q,p)}+/2 = A(q, p)B(q, p), matching
the multiplicative operators defined in Eq. (�.�.�). In contrast to the Liouville operators, a
minus sign is absent in

hhB|K̂ACii= hhK̂A† B|Cii , (�.�.�)

K̂A|Bii= K̂B|Aii , (�.�.�)

K̂A|1ii= |Aii , (�.�.�)

regardless of a classical or quantum character.

�.�.� States

Having established the mathematical groundwork, the only missing part is a set of con-
ditions that distinguish Hilbert space vectors |⇢ii representing states from the rest. It is
straightforward to give the normalization condition as

hh1|⇢ii= 1 , (�.�.�)

which should not require any further explanation. In both theories, states possess a
non-negativity property. Classical probability densities are required to fulfill ⇢(q,p) =
hq,p|⇢i � 0, whereas (mixed) quantum states ⇢̂ must have non-negative eigenvalues. In
particular, tr(|⌘ih⌘| ⇢̂) � 0 must hold for any normalized state |⌘ih⌘|. However, the last
relation can be expanded to include not only pure states |⌘ih⌘|, but any valid state ⇢̂1, such

��
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that tr(⇢̂1⇢̂) � 0
�. Along the same line of thought, we recognize that the non-negativity

of classical states hhq,p|⇢ii on phase space is also a statement about the inner product of
two valid states, because |q,pii is the state of a classical point particle. Due to this fact,
any two general states |⇢ii and |⇢1ii must satisfy

hh⇢ |⇢1ii � 0 . (�.�.�)

This relation contains the implicit condition that classical states are real-valued functions on
phase space and quantum states are Hermitian. Otherwise, the inner product in Eq. (�.�.�)
could take on complex values, which are known to possess no order�. Using the classical
case as an illustration, Eq. (�.�.�) could also be fulfilled for phase space densities that are
entirely non-positive, because their product yields non-negative values. Despite this possi-
bility, the normalization condition (�.�.�) enforces the non-negativity. The combination of
Eqs. (�.�.�) and (�.�.�) has another interesting consequence concerning the upper limit of
the scalar product hh⇢ |⇢1ii for any two states ⇢ and ⇢1. In classical mechanics, the prob-
ability density can take arbitrary large values on phase space, but for finite-dimensional
quantum states the inner product has an upper limit of unity, hh⇢ |⇢1iiQM  1, due to the
non-negativity and the normalization. In other words, the eigenvalues of ⇢̂ are confined
to the range [0,1], as expected.

In addition, Ja�e and Brumer [���] also require for classical mechanics that��R d
nqd

np A(q,p)⇢(q,p)
��<1 for any measurable function A on phase space [���]. Here,

we take the liberty to use the absolute value of the integral, in contrast to its original form
in Ref. [���]. This condition can be accommodated in our unified formulation via

|hhA|⇢ii|<1 (�.�.��)

for any vector |Aii. The mathematical details of the equivalent for the measurability
condition in Ref. [���] shall not be of any concern here, as we do not aim for strict
mathematical exactness, but rather for physical understanding.

As an example, we can give the uncertainty relation (�.�.���)

�A2 ·�B2 �
1

4

��⌦⌦⇢
�� L̂AB

↵↵��2 +
��⌦⌦⇢

��K̂AK̂B1̂S
↵↵
�
⌦⌦
⇢
��K̂A1

↵↵
·
⌦⌦
⇢
��K̂B1

↵↵��2 (�.�.��)

completely in terms of the unified formalism for classical and quantum mechanics with
the variances �A2 = hh⇢ |K̂2

A1ii � hh⇢ |K̂A1ii2 = hh⇢ |A2ii � hh⇢ |Aii2. Moreover, the generalized
covariance (�.�.���) from Sec. �.�.� reads

Cov(A, B) =
⌦⌦
⇢
��K̂AK̂B1̂S

↵↵
�
⌦⌦
⇢
��K̂A1

↵↵
·
⌦⌦
⇢
��K̂B1

↵↵
. (�.�.��)

�.�.� Time emergence

Equipped with the general formulation from above, the important equations for the time
emergence can be readily given and, therefore, briefly summarized. The global energy
constraints read

Ä
K̂H � E

ä
|⇢ ii= 0 , (�.�.��)

�The validity can be simply proven for two arbitrary states in their respective eigenbasis with ⇢̂ =P
m am |amiham| and ⇢̂1

=
P

n bn |bnihbn|. The inner product reads hh⇢
1
|⇢ii = tr(⇢̂

1
⇢̂) =

P
m,n am bn|ham|bni|

2 � 0

for 0 am, bn  1.
�More specifically, no order exists for the complex field (C,+, ·) in the mathematical sense, which can turn

it into an ordered field [���].
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L̂H |⇢ ii= 0 (�.�.��)

and the latter generates the global invariance

exp

⇥
i� L̂H

⇤
|⇢ ii= |⇢ ii . (�.�.��)

A quantummechanical pure global state fulfills L̂⇢ |⇢ iiQM = 0 and K̂⇢ |⇢ iiQM = |⇢ iiQM.
Based on this observation, we speculate that the energy constraints must be complemented
by the requirements

L̂⇢ |⇢ ii= 0 , (�.�.��)

K̂⇢ |⇢ ii= a|⇢ ii (�.�.��)

for a > 0, if the global state shall be pure. In the classical case, this would correspond to a
constant probability density on the support in phase space. The Hamilton function has a
constant energy on this support, but the global state must not necessarily be a microcanon-
ical ensemble. Nevertheless, such a state represents an allowed global state under the
constraints and is in accordance with previous findings [���, ���, ���], which established
a link between energy eigenstates and microcanonical ensembles for ergodic systems.
For integrable systems, Wigner functions of quantum mechanical energy eigenstates corre-
spond to constant probability densities on particular tori in the classical limit [���,���,���].

Focusing on the system part, the evolution of the relational system state

|⇢SiiS ⌘
hh⇢C |⇢ iiC
hh1S,⇢C |⇢ ii

(�.�.��)

follows the di�erential equation

i
d

d�
|⇢SiiS =

î
L̂HS+VS + K̂BS

� hh⇢S |BSiiS
ó
|⇢SiiS . (�.�.��)

As shown in this chapter, the quantities appearing in this equation must be expressed in
the eigenbasis of the system, which is determined from

L̂⇢S |⇢⌫µ⇣iiS = ⌫|⇢⌫µ⇣iiS , (�.�.��)

K̂⇢S |⇢⌫µ⇣iiS = µ|⇢⌫µ⇣iiS (�.�.��)

with index ⇣ denoting additional degeneracies. Consequently, the e�ective system potential
reads

|VSiiS = �
XZ

⌫ 6=0

1

⌫

XZ

µ

XZ

⇣

��⇢⌫µ⇣
↵↵
S

⌦⌦
⇢⌫µ⇣

��M
↵↵
S , (�.�.��)

while the term

|BSiiS = i
XZ

µ>0

1

µ

XZ

⇣

��⇢0µ⇣

↵↵
S

⌦⌦
⇢0µ⇣

��M
↵↵
S (�.�.��)

generates a non-unitary contribution to the system evolution.
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Chapter �

Temperature emergence

In the beginning of this thesis (Chapter �) we have alluded to an intriguing connection
between time and inverse temperature. Initially, it was recognized through the formal
similarity of the real-time propagator Û(t) = exp

�
�i t Ĥ

�
and the quantum canonical den-

sity operator ⇢̂can(�) = exp

�
�� Ĥ

�
/Zcan(�) with Zcan(�) = tr exp

�
�� Ĥ

�
. Except for the

prefactor, one can be transformed into the other via the Wick rotation [���] (or analytic
continuation of time to imaginary values [���])

t$�i� . (�.�)

Here, the Boltzmann constant kB = 1 is set to unity. Based on relation (�.�), one also finds
the formal similarity of generating functionals in quantum field theory for dynamical and
statistical descriptions [���, ���]. Some physicists also prefer the name “Euclidean time”
for imaginary time [���, ���, ���], due to the transformation of the Minkowski metric to a
Euclidean one under the Wick rotation in special relativity. Another likeness is provided
by time-energy (see Sect. �.�.�) and temperature-energy uncertainties [���, ���, ���, ���].
With the appearance of time emergence frameworks, the link between both descriptions
became even stronger, because their origin is based on the same two principles. These are
the energy constraint of the global system, postulate (I), and the splitting into subsystems,
postulate (II). Therefore, we show in this chapter how and under which conditions the
parameter � can take the role of inverse temperature � . Only reference to inverse temper-
ature is made, rather than temperature, because it connects to time directly via the Wick
rotation, is the more natural quantity in terms of thermodynamical Legendre transforma-
tions [���] and has a monotonic relationship with the mean energy. The last argument
refers to the possible appearance of negative temperatures [���–���] and is illustrated in
Fig. �.�.

We exclusively treat canonical ensembles without (or negligible) interactions between sys-
tem and complement in this chapter, for which some basics are reviewed in Section �.�. The
Wick rotation (�.�) indicates that one must seek for inverse temperature in the imaginary-
time formulation [���–���] for classical and quantum dynamics. Thus, we derive the
imaginary-time dynamics in Section �.� in an analogous way to the emergence of real-time
dynamics and use it as a stepping stone in Section �.� to achieve the connection to ther-
modynamics. The unified formalism from Section �.� allows us to investigate the relation
to inverse temperature simultaneously for classical and quantum mechanics and, thus, is
used in this chapter.

�.� Inverse temperature and the canonical ensemble

��
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Figure �.� – A comparison between the temperature T and the inverse temperature
� = 1/T is shown for a simple quantum mechanical two-level system with Ĥ =
diag(1, 0) in atomic units. The mean energy reads hĤi(�) = e��/(e�� + 1), and
the corresponding temperature and inverse temperature are represented by the
red and blue line, respectively. Moreover, the vertical dashed line corresponds to
hĤi(0) = 0.5 at which the temperature diverges. Even though the system is quite
simplistic, the general form of these curves is universal for any bounded energy
spectrum. If the energy spectrum is not bound from above, then the mean energy
diverges for � � 0.

�.�.� Derivation

The canonical ensemble (or “Gibbs state”) is characterized by a maximal von Neumann
entropy [���]

S[⇢S]⌘ hh� ln⇢S |⇢SiiS = hh� ln⇢Sii⇢S
!=max (�.�.�)

under the constraint of a given fixed mean energy ES, namely

ES
!=
⌦⌦
1S
��K̂HS

⇢S
↵↵
S = hhHS |⇢SiiS . (�.�.�)

Potential shortcomings of the von Neumann entropy in classical mechanics have already
been discussed in Ref. [���], but shall not be of concern here. The variation with respect
to ⇢S of

W ⌘ hh� ln⇢S |⇢SiiS +↵
Ä
1� hh1S |⇢SiiS

ä
+ �

Ä
ES � hhHS |⇢SiiS

ä
(�.�.�)

with Lagrange multipliers ↵ and � yields

| ln⇢SiiS = �(1+↵)|1SiiS � � |HSiiS (�.�.�)

= �
��(1+↵)1S + � K̂HS

1S
↵↵
S . (�.�.�)

Thus, the canonical ensemble reads

��⇢S,can
↵↵
S =

1

Zcan(�)

�� exp

�
�� K̂HS

�
1S
↵↵
S (�.�.�)

��
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with the partition function Zcan(�) ⌘
⌦⌦
1̂S
��exp

�
�� K̂HS

�
1S
↵↵
S = exp(1+↵) ensuring the

normalization. This state also fulfills L̂HS

��⇢S,can
↵↵
S = 0. The inverse temperature � is

determined from the energy restriction and yields the equation

ES =
⌦⌦

HS

��⇢S,can
↵↵
S = �

@

@ �
ln Zcan(�) (�.�.�)

with the solution � = �(ES). Even though the canonical density (�.�.�) is undisputed, its
origin in terms of a global state of an enlarged system is not unique. For example, it can be
derived as the quantummechanical reduced density of a microcanonical global mixed state
to a fixed global energy E, but also from a “typical” pure global energy eigenstate [���]. In
both cases, the complement of the system is assumed to be large. Another example from
quantummechanics is the thermofield method [���–���], which features a global state that
is obtained via purification [���] of the canonical density. In this case, the complement is a
copy of the original system Hilbert space and once the complement Hamiltonian is chosen
as the negative of the system Hamiltonian, the purified state can constitute an eigenstate
with E = 0. Due to the non-uniqueness of the origin, we inquire about alternative ways of
deriving the same state.

For completeness, the canonical ensemble reads

⇢S,can(q,p) =
exp

⇥
��HS(q,p)

⇤
R

dnSqdnSp exp

⇥
��HS(q,p)

⇤ (�.�.�)

and

⇢̂S,can =
exp

⇥
�� ĤS

⇤

trS exp

⇥
�� ĤS

⇤ (�.�.�)

in classical and quantum mechanics, respectively [���].

�.�.� Changes with respect to inverse temperature

For later reference, we also calculate the change of the canonical state for a change in
inverse temperature � . The derivative of state (�.�.�) yields

�
d

d�

��⇢S,can
↵↵
S =

✓
K̂HS
�
⌦⌦
⇢S,can

��HS
↵↵
S

◆��⇢S,can
↵↵
S . (�.�.��)

Furthermore, the entropy of the canonical ensemble is

S[⇢S,can] = ln Zcan + �
⌦⌦
⇢S,can

��HS
↵↵
S| {z }

⌘hhHSii⇢S,can

(�.�.��)

and has the derivative

dS[⇢S,can]
d�

=
d ln Zcan

d�
+ hhHSii⇢S,can + �

dhhHSii⇢S,can
d�

= �
dhhHSii⇢S,can

d�
. (�.�.��)

In addition, we can determine the mean energy change with

�
d

d�
hhHSii⇢S,can =

⌦⌦
HS

��îK̂HS
� hhHSii⇢S,can

ó��⇢S,can
↵↵
S = hhH

2

Sii⇢S,can � hhHSii2⇢S,can (�.�.��)

��
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= Var⇢S,can(HS) . (�.�.��)

and express the entropy change as

dS[⇢S,can]
d�

= ��Var⇢S,can(HS) . (�.�.��)

The fundamental relation

dS[⇢S,can]
d hHSi⇢S,can

= � (�.�.��)

derives from Eq. (�.�.��) and is compared to the definition

�(U)⌘
dSTD(U)

dU
(�.�.��)

in classical thermodynamics [���–���]. In other words, the inverse temperature � charac-
terizes the change of the entropy STD under a change of the internal energy U .

�.� Imaginary time

So far only the real-time dynamics have been shown to emerge from postulates (I), (II)
and proposition (III) (Chapter �). In contrast, it is the imaginary-time formulation that
is indispensable for a time-temperature connection. For this reason, the emergence of
imaginary time shall be the main subject of this section. We start with the pure state
vector formalism in Sec. �.�.� as a first illustration, even though it does not play a part in
the thermodynamic setting. Afterward, an equivalent analysis is presented in the unified
formalism for classical and quantum mechanics in Sec. �.�.�. We retain the name “clock”
for the complement of the principal system, but use the label “complement” synonymously
when we consider inverse temperature later.

�.�.� Quantum Mechanics - Pure states

The energy constraint from Section �.� is unchanged in our analysis and reads

(Ĥ � E) | i= (ĤS + ĤC � E) | i= 0 (�.�.�)

in the case of non-interacting subsystems. In contrast, the required invariance

exp

î
�(ĤS + ĤC � E)

ó
| i= 0, (�.�.�)

originates from a Hermitian, rather than a unitary transformation. Instead of using a new
symbol for the one-dimensional parameter in this case, � is kept and understood as the
imaginary equivalent of the parameter used in the real-time formalism. Using the same
partial projection with an initial clock state h�0|C as in Sec. �.� leads to

h�0|e�(ĤC�E)| iC = e��ĤS h�0| iC (�.�.�)

and its normalized version

|'(�)iS =
e��ĤS h�0| iCr

h |
î
e�2�ĤS ⌦ |�0ih�0|C

ó
| i
⌘

h�(�)| iCp
h |�(�)ih�(�)| i

. (�.�.�)
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Here, the normalized �-evolved clock state reads

|�(�)iC =
e�(ĤC�E) |�0iCq
h�0|e2�(ĤC�E)|�0iC

=
e�ĤC |�0iCq
h�0|e2�ĤC |�0iC

, (�.�.�)

although a normalization is not strictly needed, due to the normalization factor in the
denominator of Eq. (�.�.�). The derivative of the system state with respect to � is

�
d

d�
|'(�)iS = ĤS |'(�)iS +

1

2
|'(�)iS

d h |�(�)ih�(�)| i/d�
h |�(�)ih�(�)| i

(�.�.�)

= ĤS |'(�)iS � |'(�)iS
h |�(�)iC e��ĤS ĤSe��ĤS h�(�)| iC

h |�(�)ih�(�)| i
(�.�.�)

and we recognize the last term as the system mean energy h'(�)|ĤS|'(�)iS, such that

�
d

d�
|'(�)iS =

î
ĤS � h'(�)|ĤS|'(�)iS

ó
|'(�)iS . (�.�.�)

This is the non-linear imaginary-time TDSE, for which � takes the place of “traditional”
imaginary time. Here, the additional term involving the mean energy of the system en-
sures the normalization of |'(�)iS for all �. One may ask why such a term is absent in the
real-time TDSE. In fact, it can be easily incorporated in the real-time formalism and yields
a di�erential equation that induces only physical changes in the state, or in more mathe-
matical terms [���], parallel transport in the space of normalized Hilbert space vectors�.
Furthermore, stationary states (energy eigenstates) actually have a vanishing time deriva-
tive instead of an irrelevant global time-dependent phase if the mean energy contribution
is included. One could even argue that this additional term should be part of the usual
real-time TDSE as a consequence of the aforementioned points.

In contrast to the real-time formalism, the mean energy for a �-independent Hamiltonian
is not constant and changes with

�
d

d�

⌦
ĤS
↵
'
= 2

⌦
Ĥ2

S

↵
'
� 2

⌦
ĤS
↵2

'
= 2Var'(ĤS) . (�.�.�)

�.�.� Quantum mechanical density operators and classical probability
densities in unified formalism

For general mixed states in the unified formalism, we keep the energy constraints (�.�.��)
and (�.�.��) fromSec. �.�.�. Instead of the invariance (�.�.��) from the real-time formalism,
it is the second, somewhat unusual invariance

exp

î
�K̂H�E1

ó��⇢ 
↵↵
=
��⇢ 

↵↵
8� 2R (�.�.��)

that is needed for the imaginary-time framework. Similar to our treatments from before,
a projection of ⇢C(0) onto the invariance Eq. (�.�.��) yields

e�K̂HS
⌦⌦

e�K̂HC�E1⇢C(0)
��⇢ 

↵↵
C = hh⇢C(0)|⇢ iiC , (�.�.��)

�A U(1) principal fiber bundle with the base space being the space of all normalized pure state density
operators |'ih'|S / h'|'iS for h'|'iS 2HS\{0} [���].
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and the associated normalized version reads

e��K̂HS hh⇢C(0)|⇢ iiC⌦⌦
e��K̂HS1S,⇢C(0)

��⇢ 
↵↵ =

⌦⌦
e�K̂HC�E1⇢C(0)

��⇢ 
↵↵
C⌦⌦

e��K̂HS1S,⇢C(0)
��⇢ 

↵↵ =
⌦⌦

e�K̂HC�E1⇢C(0)
��⇢ 

↵↵
C⌦⌦

1S, e�K̂HC�E1⇢C(0)
��⇢ 

↵↵ .

(�.�.��)

Hence, the system states evolve as

|⇢S(�)iiS =
hh⇢C(�)|⇢ iiC
hh1S,⇢C(�)|⇢ ii

=
e��K̂HS |⇢S(0)iiS
hh1S |e

��K̂HS⇢S(0)iiS
(�.�.��)

with the normalized �-evolved clock state

|⇢C(�)iiC ⌘
e�K̂HC�E1 |⇢C(0)iiC⌦⌦
1C
��e�K̂HC�E1⇢C(0)

↵↵
C

. (�.�.��)

The di�erential equation describing the change of |⇢SiiS is

�
d

d�
|⇢S(�)iiS = K̂HS

|⇢S(�)iiS + |⇢S(�)iiS
dhh1S |e

��K̂HS⇢S(0)iiS
¿
d�

⌦⌦
1S
��e��K̂HS⇢S(0)

↵↵
S

(�.�.��)

= K̂HS
|⇢S(�)iiS � |⇢S(�)iiS

⌦⌦
1S
��K̂HS

e��K̂HS⇢S(0)
↵↵
S⌦⌦

1S
��e��K̂HS⇢S(0)

↵↵
S

(�.�.��)

= K̂HS
|⇢S(�)iiS � |⇢S(�)iiS hh1S |K̂HS

⇢S(�)iiS| {z }
=hhHS |⇢S(�)iiS

(�.�.��)

or

�
d

d�
|⇢S(�)iiS =

î
K̂HS
� hhHSii⇢S

ó
|⇢S(�)iiS (�.�.��)

with mean energy hhHSii⇢S ⌘ hh1S |K̂HS
⇢S(�)iiS = hhHS |⇢S(�)iiS. Curiously, it has the same

form as the pure state version (�.�.�) and the mean energy changes similarly with

�
d

d�
hhHSii⇢S = hhH

2

Sii⇢S � hhHSii2⇢S = Var⇢S(HS)� 0 . (�.�.��)

As a sanity check for the unified notation, we give the di�erential equations in both
theories. The classical version in phase space coordinates (q,p) is

�
d

d�
⇢S(q,p,�) =


HS(q,p)�

Z
d

nSq0 dnSp0 HS(q0,p0)⇢S(q0,p0,�)
�
⇢S(q,p,�) (�.�.��)

and the quantum mechanical density operator (in the usual meaning) changes as

�
d

d�
⇢̂S(�) =

1

2

¶
ĤS, ⇢̂S(�)

©
+
� trS

Ä
ĤS ⇢̂S(�)

ä
⇢̂S(�) . (�.�.��)
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�.� Synthesis

The mean energy of the system decreases monotonically with increasing �, due to the
non-negativity of the right-hand side of Eq. (�.�.��). In order to uphold the global energy
constraint, the clock state (�.�.��) increases in energy. Put di�erently, an energy flow from
system to clock occurs for increasing �. Even though this is a very counter-intuitive notion,
it is an algebraic consequence of our basic assumptions.

�.�.� Rate of change for mean values

The change of any mean value reads

�
d

d�
hhAS |⇢S(�)iiS = hhA|

î
K̂HS
� hhHSii⇢S(�)

ó
|⇢S(�)ii (�.�.��)

= hhA|K̂HS
|⇢S(�)ii � hhHSii⇢S(�)hhAii⇢S(�) (�.�.��)

= Cov⇢S(�)(AS, HS) (�.�.��)

for an arbitrary |ASiiS and is directly connected to the generalized covariance (�.�.��) of
AS and HS with respect to |⇢S(�)iiS.

�.� Synthesis

Remarkably, already the imaginary-time von Neumann equation (�.�.��) is identical to
Eq. (�.�.��), the change of a canonical ensemble with respect to the inverse temperature
� . Nevertheless, it is obvious that not every state evolving under Eq. (�.�.��) represent
a canonical ensemble and appropriate boundary conditions have to be found. From the
outset it is clear that any initial state being a canonical ensemble remains as such, because
of the equality of the evolution equation. Even though this represents a valid boundary
condition, we investigate the rate of the entropy change instead of the entropy itself. Such
an approach corresponds to not knowing the exact form (�.�.�) of the Gibbs state, but
only the inverse temperature definition (�.�.��). The review in Sec. �.� has shown that the
entropy of a canonical ensemble changes in a specific way, namely Eq. (�.�.��). Therefore,
we investigate the entropy rate dS/d� for the imaginary-time evolution and our task is to
find the appropriate conditions in order to justify the connection �$ � . The evaluation
of a term appearing in the von Neumann entropy is treated first.

�.�.� Logarithm of system state

A central element of the following treatment is the logarithm of the system state, namely
| ln⇢S(�)iiS for the state (�.�.��). Unfortunately, a general derivation is missing and we
have to consider the individual formulas for classical and quantummechanics. The classical
state reads

hq,p|⇢S(�)iS =
1

Z(�)
e��HS(q,p)⇢S(q,p, 0) (�.�.�)

with the normalization factor Z(�) ⌘
¨
1S

���e��K̂HS⇢S(0)
∂
S
=
R

d
nSqd

nSp exp[��HS(q,p)]
⇥⇢S(q,p, 0), and its logarithm yields

hq,p|ln⇢S(�)iS = ��HS(q,p) + ln⇢S(q,p, 0)� ln Z (�.�.�)
= hq,p|��HS + ln⇢S(0)�1S ln ZiS . (�.�.�)

The corresponding quantum density operator is expressed as

⇢̂S(�) =
1

Z(�)
e��ĤS/2 ⇢̂S(0) e��ĤS/2 (�.�.�)
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and the logarithm of this product of operators cannot be straightforwardly calculated as
in the classical case. For a better grasp of the logarithm term, we use a variant of the
Baker-Campbell-Hausdor� formula

ln

�
eX eY

�
= X + Y +

1

2
[X , Y ] +

1

12

Ä⇥
X , [X , Y ]

⇤
+
⇥
Y, [Y, X ]

⇤ä
� . . . , (�.�.�)

which is given in Ref. [���] as

ln

�
e�X eY e�X

�
= �2X + Y �

1

6
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360
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1

360
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+
4
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8
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+
6
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(�.�.�)

Thus, the logarithm of the system state reads

ln ⇢̂S(�) = ��ĤS + ln ⇢̂S(0)� ln Z(�) · 1̂S + F̂(�) (�.�.�)

with the newly defined operator

F̂(�)⌘ �
�

6

Ä
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ln⇢S(0)
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360
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+ . . . . (�.�.�)

It is important to note that this remainder term depends explicitly on the term
L̂(qm)

HS
ln ⇢̂S(0) =

⇥
ĤS, ln ⇢̂S(0)

⇤
. Overall, we can express the logarithm of system states

as

| ln⇢S(�)iiS = | ��HSiiS + | ln⇢S(0)iiS � ln Z |1SiiS + |FiiS , (�.�.�)

for which |FiiS vanishes in classical mechanics.

�.�.� Entropy and entropy change

The expression (�.�.�) allows us to express the von Neumann entropy as

S[⇢S(�)] = �hh⇢S |HSiiS � hh⇢S(�)|ln⇢S(0)iiS + ln Z(�)� hhF(�)|⇢S(�)iiS , (�.�.��)

and its derivative with respect to � yields

dS[⇢S(�)]
d�

= �
dhh⇢S(�)|HSiiS

d�| {z }
=�Var(HS)⇢S(�)

+ hh⇢S(�)|HSiiS +
d ln Z(�)

d�| {z }
=0

�
dhhF(�)|HSiiS

d�

+ hhK̂HS
⇢S(�)|ln⇢S(0)iiS � hhHS |⇢S(�)iiS · hh⇢S(�)|ln⇢S(0)iiS . (�.�.��)
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A connection of imaginary time � to inverse temperature � is only be achieved if the change
in entropy matches that of the canonical ensemble, Eq. (�.�.��). Upon closer inspection
of the last equation, it is evident that the only undetermined quantity is the initial state
|⇢S(0)iiS and is determined from the premise of matching the entropy change for the
canonical ensemble. The first thing to notice is the term involving F(�) and one realizes
that it cannot be proportional to Var(HS)⇢S(�), but must vanish. For this to be the case, the
term hhF(�)|HSiiS must be constant for all �. The form of Eq. (�.�.�) indicates that this is
only possible if

L̂HS
| ln⇢S(0)iiS = 0 , (�.�.��)

which then implies

|FiiS = 0 (�.�.��)

in quantum and classical mechanics. In turn, the form of the logarithm of the initial
state can be expressed as a function of HS and additional quantum operators or classical
phase space functions with L̂HS

|AiiiS = 0, collectively denoted by A = {A1, A2, . . . }. Using
| ln⇢S(0)iiS = | f (HS, A)iiS with a function f fulfilling L̂HS

| f (HS, A)iiS = 0, the entropy
change reads
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= ��Var(HS)⇢S(�) +
¨̈ Ä

K̂HS
� hhHSii⇢S(�)

ä
⇢S(�)

��� f (HS, A)
∂∂
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In order to match Eq. (�.�.��), the function f must be linear in HS, i.e.,

| f (HS, A)iiS = �#0|HSiiS � #1|1SiiS + |g(A)iiS . (�.�.��)

for constant real numbers #i 2 R with a new function g. The second term, ensuring the
normalization of |⇢S(0)iiS, always vanishes in Eq. (�.�.��) and, thus,

dS[⇢S(�)]
d�

= �(�+ #0)Var⇢S(�)(HS) +Cov⇢S(�)
Ä

g(A), HS

ä
(�.�.��)

for the state

|⇢S(�)iiS =
e�(�+#0)K̂HS |eg(A)iiS⌦⌦
1S
��e�(�+#0)K̂HS eg(A)

↵↵
S

. (�.�.��)

Consequently, the remaining task is to show under which conditions for g the covariance
term Cov⇢S(�)(g, HS) vanishes. To this end, we exemplarily consider the quantum case and
find the condition

trS

î
ĝ e��ĤS+ ĝ

ó
· trS

î
ĤSe��ĤS+ ĝ

ó
!= trS

î
ĝ ĤSe��ĤS+ ĝ

ó
· trS

î
e��ĤS+ ĝ

ó
8� . (�.�.��)

Both operators, ĝ and ĤS, share a common eigenbasis, because of the vanishing commu-
tator [ ĝ, ĤS] = 0. Hence,

X

m,n
e��("m+"n)egm+gn gm"n

!=
X

m,n
e��("m+"n)egm+gn gn"n 8� (�.�.��)
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for the eigenvalues {"m} and {gm} in the eigenbasis. Since this equation must hold for all
�, it can only be fulfilled if all summands are equal and implies gn

!= gm or

ĝ = g01̂S . (�.�.��)

However, this form of the operator only induces a scalar factor, which drops out through
the normalization factor and we find the condition

g = 0 . (�.�.��)

At last, we get the entropy rate

dS[⇢S(�)]
d(�+ #0)

= �(�+ #0)Var⇢S(�)(HS) (�.�.��)

with system states

|⇢S(�)iiS =
e�(�+#0)K̂HS |1SiiS⌦⌦
1S
��e�(�+#0)K̂HS

↵↵
S

. (�.�.��)

By requiring the entropy rate to match to defining equation (�.�.��) for inverse temperature
under the given imaginary-time evolution (�.�.��), we find the inverse temperature to be
imaginary time (with a possible o�set), i.e.,

� = �+ #0 . (�.�.��)

Like real-valued time, inverse temperature is a manifestation of the entanglement con-
tained in the global state with respect to the subsystem splitting. Simultaneously, the
canonical ensembles emerged as the only states giving rise to the demanded entropy rate,
as revealed by direct comparison of Eq. (�.�.�) with Eq. (�.�.��). The connection between
inverse temperature and imaginary time is made explicit for the first time. Even though the
physical derivation di�ers from traditional approaches, the outcome for the system is the
same. By imposing the global energy constraint and the conditional system state formal-
ism, the derived inverse temperature � acquires a dynamical character. Perhaps it should
not be too surprising, because we set out to connect a dynamical quantity, imaginary time,
with inverse temperature. The complement mean energy retains the property of being
increased with increasing � from the imaginary-time evolution (Sec. �.�.�). Furthermore,
it is not necessary for the complement to be in a canonical ensemble state as well. The par-
ticular case of canonical typicality is naturally included by assuming a large complement
dimension dC� dS and by taking the initial complement state as |⇢̂C(0)ii / |1Cii. Similar
to our remarks in Section �.�.�.�, it should always be possible to find a clock/complement
property that allows us to deparametrize � in terms of a clock/complement mean value.
As a result, the abstract quantity � can be substituted by a physical attribute of the com-
plement.
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Chapter �

Consequences

After the successful derivations in the previous two chapters regarding the real and imagi-
nary time formulation and the connections to inverse temperature, we discuss some further
consequences of our framework in the current chapter. One of the main elements of this
thesis has been the relational system state proposition (III). As demonstrated, it allows
to derive the TDSE, even with time-dependent potentials, without resorting to any ap-
proximations and, thus, motivates further discussions, which appear in Section �.�. Even
though we have already discussed properties of the dynamical features of our framework in
Chapter �, several important issues remain and we shed some light on these in Section �.�.
Afterward, we discuss the possibility to substitute conventional time propagation methods
with a numerical procedure based on our relational formalism in Section �.�. This chapter
concludes with Section �.�, in which some aspects of the temperature formulation are
inspected.

�.� Relational state formalism

Several aspects of the system state definition as a relational statement deserve further
attention. These include the distinguishability relation for clock states and their associ-
ated relational system states, a preference for the classical state vectors and, crucially, a
discussion about the physical meaning of the relational state.

�.�.� Distinguishability

The discussion about the energy relations between system and clock in Sec. �.�.� already in-
dicated that subsystem relations have a non-trivial structure. One of the simplest quantities
to investigate is the overlap between two di�erent pure states. In particular, the magnitude
of the overlap of two clock states, |�1iC and |�2iC, and their associated relational system
states, |'[�1]iS and |'[�2]iS, can be compared via the di�erence

D12 ⌘
��h�1|�2iC

��2 �
��h'[�1]|'[�2]iS

��2 . (�.�.�)

Subsequently, the central question concerns the sign of this di�erence and the simple
example shown in Figure �.� illustrates that no definite inequality exists. Similar to the
energy relations, only for global MES does an equality between the overlaps exist, i.e.,
D12 = 0.

�.�.� Preference for state formulation in classical mechanics

In Section �.� about the classical formulation for time emergence, we have already men-
tioned that often the probability amplitude of a classical state is used in the definition of
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Figure �.� – The overlap di�erence (�.�.�) is shown for a bipartite system, in
which each subsystem possesses only two states. Moreover, the global state
| i=

p
a |"S#Ci+

p
1� a |#S"Ci is characterized by the single real number 0 a  1.

and the clock states |�miC =
p

1� bm |"iC +
p

bm |#iC have a similar parametriza-
tion with 0  bm  1. From left to right, the global states correspond to
a 2 {0.3, 0.6,0.9}. As a special case, the global MES corresponds to a = 0.5 and
exhibits a complete equality between the overlap of di�erent clock and associated
systems states.

a state vector representation. However, as we have argued, a formulation in terms of the
probability amplitude cannot match conditional statements in terms of Wigner functions,
which are known to have a well-defined classical limit. As a result, we find the formulation
in terms of the probability density to be singled out by this condition, even though any
function ⇢� fulfills the classical Liouville equation for an arbitrary exponent �.

�.�.� Interpretation of relational state

A potential drawback of PW, and, in conjunction, also our proposition (III), is the status
of relational states within quantum and classical theory. In Section �.�.�, we have already
alluded to the fact that the relational system state (�.�.�) cannot constitute a measurement
in quantum mechanics, i.e., a physical acquisition of information about the state of the
clock by the system. But how should this definition be understood, if not as a measure-
ment? We believe that the interpretation of the conditional formalism is a major challenge
for the PW approach, even though it is generally not realized as such. Unfortunately, we
cannot resolve this issue, but hope for a resolution in the future. In addition, we elucidate
that the problem is not exclusively quantum in nature.

Although classical mechanics does not feature the interference of di�erent states known
from quantum mechanics, it still upholds the possibility for convex combinations of classi-
cal density probabilities. In conjunction with this fact, the measurement problem persists
in the classical limit of quantum theory. Specifically, a measurement must constitute the
coupling of two subsystems and the accumulation of classical correlation between them
through their interaction, which presupposes time. For example, if a classical coin is
initially in a state of having an even probability to show either heads or tails, then an
interaction with an observing system creates classical correlation (by means of a time evo-
lution). Subsequently, the combined system of coin and observer is in a probabilistic state
of observing heads or tails, similar to the quantum mechanical expression (�.�.��). The
“self-locating uncertainty” issue [���, ���], mentioned in Section �.�.�, remains in classical
mechanics. Clearly, a large overlap on this subject exists in quantum and classical me-
chanics and, thus, the interpretational issue of the conditional system state is not confined
to the quantum realm. Nevertheless, given the successful derivations in this thesis, the
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relational formalism certainly has merit to be investigated further.

The nowadays standard use of partially tracing over a global state in order to obtain a
quantum mechanical reduced density is usually associated with ignoring any information
about the environmental degrees of freedom. In view of relational system state formu-
lation, this statement translates to the conditioning on an environmental state without
any structure, i.e., one being invariant under any conceivable unitary transformation and
having the least amount of information as determined by the von Neumann entropy. Both
interpretations bear a close resemblance with each other and, with this in mind, it may
not be too far-fetched to entertain the idea of relational states being physical elements of
our theories.

�.� Dynamics

The emergence of dynamical equations for a purely real time comprises a major part of this
thesis and it is remarkable that general system dynamics in quantum and classical mechan-
ics can ensue from a set of only three elementary guiding principles. However, this also
raises entirely new questions about the physical nature of our framework. For example,
does a mechanism exist which favors an evolution in real time over one in imaginary time?
After all, both possibilities are algebraic consequences of our framework. Unfortunately,
we cannot provide an answer, but only the phenomenological observation that we perceive
an evolution in real, and not in imaginary time.

Even though many important dynamical aspects of our approach have already been dis-
cussed, several more are addressed here, which include the quantum nature of the clock,
the e�ective system potential, an inherent asymmetry in our framework, a comparison to
open system dynamics, the occurrence of changes in the system entropy and a discussion
on the arrow of time.

�.�.� Quantum nature of clock

One of the most prominent outcomes of Section �.� is the full quantum nature of the clock.
We are able to derive exact (time-local) dynamical system equations, even in the presence
of an interaction V̂ . An immediate consequence is that, contrary to previous arguments, a
clock need not be classical or semiclassical. Nonetheless, one can choose to employ a semi-
classical approximation based on stationary phase approximations (Sec. �.�.�.�). The need
for a Born-Oppenheimer approximation did not arise and, in addition, we have pointed out
flaws in the previous semiclassical treatments. Despite this misconception, we also believe
that our semiclassical treatment is more transparent and sleeker in form, but acknowledge
that this might lie in the eye of the beholder. More importantly, the conventional semiclas-
sical approach [��,��,���,���,���] is not confined to the field of non-relativistic atomic and
molecular physics, but, as stated in Chapter �, features prominent in research on quantum
gravity [��,��,��–��]. An interesting and definitive di�erence in this line of research is
the appearance of a functional derivative with respect to a “time-field”, instead of a conven-
tional time derivative. The e�ective dynamical law is therefore not an ordinary Schrödinger
equation, but rather a “functional Schrödinger equation” or Tomonaga-Schwinger equa-
tion [��, ��, ��]. Having such a distinguished role in gravity research, it should be of
academic interest to apply the analytically exact procedure given in this thesis instead of
using the Born-Oppenheimer treatment and to further understand the di�erence in the
appearing derivatives.
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Furthermore, quantum clocks can live in a finite-dimensional Hilbert space and still provide
a continuous notion of time. An intriguing consequence of this fact is the cyclic character of
such clocks [���], which is imprinted on the system for which time is provided. Any useful
clock must have a much larger natural period than the principal system in order to be able,
for example, to provide time for near-recurrent phenomena of the system. Additionally,
the dimension dC of the clock has an influence on the complexity of the possible system
dynamics. If we consider a two-level system as an example (E = 0), then the unnormalized
system state reads

|�(�)iS = h�(�)| iC =

 
dCX

k=1

b⇤kei�Ek hEk|C

! 
dS=2X

j=1

dCX

l=1

ajl
��" j ⌦El

↵
!

(�.�.�)

=
dS=2X

j=1
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k=1

ei�Ek b⇤kajk

!
��" j
↵
S (�.�.�)

in terms of energy eigenstates. The dynamical evolution of the system coe�cients is a
weighted sum of complex phases. In case the clock possesses only two levels as well,
i.e., dC = 2, each system coe�cient can only exhibit sinusoidal change. Hence, in order
to obtain more complicated behaviors of the energy coe�cients, the clock must be high-
dimensional. This is a general fact holding true for any system dimension dS.

�.�.� E�ective system potential

The aforementioned exactness of the derived system TDSE for interacting subsystems
provides perfect unitary system evolution and, thus, might shed new light on the arguments
given by Marletto and Vedral [���], at least for pure states. They claim that in the presence
of an interaction term the clock cannot properly function and that the system evolution
“will not be a unitary evolution generated by a time-independent Hamiltonian” [���], but
rather has the form

@ ⇢̂S(�)
@ �

= i
î
⇢̂S(�), ĤS

ó
+ terms depending on � (�.�.�)

for the state ⇢̂S(�), adopted to the notation used in this thesis. However, no attempt has
been made to actually derive the form of the additional terms. On this basis and the
assumption that a time operator T̂C with [T̂C, ĤC] = i exists, their argument is that if a
tensor product structure on the global Hilbert space H exists, in which the interaction
term vanishes, then this factorization is unique. First, that a time operator is dispensable
has been shown in this thesis. Second, the example of having a global Hamiltonian
Ĥ = Ĥ1⌦ 1̂2⌦ 1̂3+ 1̂1⌦ Ĥ2⌦ 1̂3+ 1̂1⌦ 1̂2⌦ Ĥ3 of three commuting Hamiltonian terms shows
that at least two possible factorizations
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= H1|{z}
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⌘H 0C
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exist for which no subsystem interaction takes places. Regardless of the non-uniqueness
issue, it is also possible to have an exact time-independent e�ective Hermitian system
Hamiltonian even in the presence of an interaction V̂ . As an example, we take the clock
Hamiltonian to be ĤC = K2

1
/(2M)⌦ 1̂C,2, which operates on the further partitioned clock

Hilbert space HC = HC,1 ⌦ HC,2. The interaction term is V̂ =
�
1̂C,1 ⌦ ÂC,2

�
⌦ ŴS for

arbitrary clock operator ÂC,2 and system operator ŴS. Taking the initial clock state as
|�0iC =

���0,1

↵
C,1
⌦ |aiC,2 with the eigenvector ÂC,2 |aiC,2 = a |aiC,2 yields the system TDSE

i
d

d�
|'(�)iS =

î
ĤS + aŴS

ó
|'(�)iS (�.�.�)
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for an arbitrary system Hamiltonian ĤS, because h�(�)|V̂ | iC = aŴS h�(�)| iC. Clearly,
the evolution is unitary with a time-independent Hamiltonian ĤS + aŴS and thus invali-
dates the statement in Ref. [���]. Moreover, the authors acknowledge that an e�ective
time-dependent Hermitian system Hamiltonian can exist, but only in a semiclassical ap-
proximation. With the determination of the additional terms in Eq. (�.�.�) we have proven
that a unitary evolution is also possible without a semiclassical approximation.

�.�.� Asymmetry of clock and system

Symmetry has played a decisive role in allowing us to base our framework on an invariance
of the global state instead of the TISE. Similar to the symmetry of a circle under rotations,
the global state is symmetric under the transformations generated by the global constraint
operator, because of postulate (I). We note in passing that this set of transformations
may rightfully be called the “symmetry group of the universe”, in reference to the famous
publication by Hartle and Hawking [��]. On the contrary, the emergence of time relies on
a strong asymmetry between clock and system. A relational system state is associated with
a predetermined clock state and, thus, induces an asymmetry through a directionality in
the appearance of states in our framework, a subject closely linked to the interpretational
issues in Sec. �.�.�. As we have previously mentioned in Sec. �.�.�.�, the conditional system
state does not “relate back” to the original clock state in general, except for global MES.
The disparity already occurs on the structural level of the framework without reference
to a specific global Hamiltonian. Having a coupling between system and clock makes the
asymmetry even more pronounced. Our results show that while the clock evolves unitarily
under its own inherent Hamiltonian, the system dynamics are governed by an additional
clock-dependent potential. In other words, the motion of the clock can influence the
dynamics of the system in a significant manner, but any so-called “back-coupling” [��,
��] from the system on the clock is completely absent. Ultimately, the dynamical laws
governing a fraction of the whole emerge through a peculiar combination of symmetry
and asymmetry and understanding this imbalance between system and clock is one of the
open problems of our framework.

�.�.� Comparison to conventional open system dynamics

In the previous sections, we have mainly addressed cases with pure states, but also the
mixed state treatment deserves several remarks. We have already pointed out di�erences
of the relational framework and the conventional theory of open systems in Sec. �.�.�
in terms of the definition of a system state and the energy content of the global state.
Since time is presupposed in open systems theory, the entanglement with respect to the
Hilbert space factorization changes in time, whereas it is constant in our framework and is
actually a prerequisite for the appearance of subsystem dynamics. Despite the di�erences,
there is a remarkable conceptual similarity in the way the e�ective system Hamiltonian is
determined. This has been nicely demonstrated in the very recent publication by Hayden
and Sorce [���], in which they provide a “canonical choice” for the Hamiltonian ĤS(�) in
the quantum master equation

d⇢̂S(�)
d�

= �i
î
ĤS(�), ⇢̂S(�)

ó
+D�(⇢̂S) . (�.�.�)

The “dissipative piece” D�(⇢̂S) is responsible for dissipative evolution under which the
state properties of ⇢̂S are still preserved. In general, infinitely many splittings exist under
which Eq. (�.�.�) is form invariant [���], but a unique preference exists. The “principle
of minimal dissipation” [���] asserts that the minimization of the dissipative term with
an appropriate norm implies a unique choice for the Hamiltonian part. Without going
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Open system theory
in Ref. [���]

Time emergence
for mixed states

Global state ⇢̂ not energy constrained energy constrained and pure

System definition ⇢̂S = trC(⇢̂ ) ⇢̂S = trC(⇢̂C⇢̂ )/ tr(⇢̂C⇢̂ )

Entanglement increasing from zero constant
Minimization of
non-unitary part

averaged over all
possible system states depending on system state

E�ective operators depend on environment depend on clock

Table �.� – The frameworks of conventional open system theory, as presented in
Ref. [���], and the one used in this thesis are compared with regard to certain key
features.

into detail, the norm of D�(⇢̂S) is based on an average over all possible system states
(for a finite-dimensional HS). This concept of minimization of a non-Hermitian term
resembles very closely our procedure for time emergence in quantum mechanics, except
that we minimize with respect to the actual system state and not an average. Another
interesting parallel concerns the notion of e�ective system operators depending on the state
of the clock/complement, which is not foreign to open systems theory. Usually the initial
state is taken as the product ⇢̂ (0) = ⇢̂S(0)⌦ ⇢̂C(0) [���], allowing for the unambiguous
identification of the complement state ⇢̂C(0). Consequently, the resulting operators in
the quantum master equation (�.�.�) depends specifically on the initial state ⇢̂C(0) [���],
very similar to the clock-dependent e�ective system potential and anti-Hermitian term in
Sec. �.�. The individual characteristics of both approaches are summarized in Table �.�.

�.�.� Entropy change of system

In general, the von Neumann entropy (�.�.�) of the system varies for mixed states, due to
the presence of an additional term in the system evolution equation (�.�.��), generating
non-unitary evolution. This change raises two questions, namely how to reconcile a non-
vanishing entropy production rate with the static nature of the global state and how to
understand negative rates necessarily occurring for cyclic clocks.

The former is quite puzzling, because the global state | i is truly static and its entangle-
ment must remain unchanged. A typical measure for entanglement is the entropy of the
reduced density of a subsystem. For bipartite total systems, the entropy of the reduced
densities is always equal for pure global states, i.e., S[trS(| ih |)] = S[trC(| ih |)], regard-
less of the entropy measure [���, ���]. In addition, they are always constant, since the
global state is static. Contrarily, we know that the clock entropy remains constant due
to the unitary evolution with the clock Hamiltonian, while the system entropy changes in
time. This behavior is certainly in contrast with the aforementioned equality of subsystem
entropies. The apparent contradiction can be resolved by recognizing the fundamentally
di�erent definition of subsystem states, proposition (III) and Eq. (�.�.��). In view of the
relational formulation, the reduced subsystem densities correspond to a conditioning on
totally mixed states in the associated complement subsystems and, thus, do not match
the setting used for time emergence. Nevertheless, it is certainly interesting to further
investigate the relation of subsystem entropies and to determine if a constant combination
of both entropies can be found.
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The second question concerns the change of system entropy in real-valued time. We
have not investigated the corresponding equations in Chapter �, but have shown that
for any quantum clock with finite dimension the system must return to its initial state
eventually. Consequently, this recurrence is imprinted on the entropy and implies the
occurrence of negative entropy rates. How the entropy changes for infinite-dimensional
clock Hilbert spaces, or non-cyclic clocks, is unclear and requires further analytical work.
A reduction in system entropy is an interesting phenomena in the field of non-equilibrium
dynamics of open systems. In this regard, one usually considers the entropy production
⌃S(�) [���, ���], which is the sum of system entropy change and the entropy flux from
the system to the complement [���]. Its rate �S(�) ⌘ d⌃S(�)/d� can be used for a
formulation of the second law of thermodynamics [���,���] in physical situations in which
a strict non-negativity exists. Nevertheless, negative entropy production rates can occur,
indicating non-Markovian characteristics, and are at the forefront of research on open
system dynamics [���, ���–���]. It would be intriguing to subject our framework to
a similar analysis in order to find a possibly preferred direction of time. However, the
hurdle of correctly translating notions of entropy relations of open systems theory to our
framework must be overcome first, as discussed above.

�.�.� Arrow of time

The nature of time cannot be discussed without addressing the subject of a preferred
direction of evolution, commonly known as the ”arrow of time”. To be clear, what we
derived in this thesis is a one-dimensional parametrization of the system dynamics and
the corresponding di�erential equations. However, the notion of a distinguished direction
of time cannot originate from our basic principles (Chapter �) and must be deduced from
an additional axiom or postulate. A prime candidate is an entropic principle due to its
prominent role in the second law of thermodynamics [��, ���, ���], which singles out
a preferred arrow of time by demanding ever-increasing entropy. On the one hand, an
intriguing possibility is a demand for increasing von Neumann entropy of the system,
which can potentially be facilitated by the non-Hermitian term appearing for genuine
mixed state (see previous section). On the other hand, the dynamics is always unitary
for pure states and does not induce any entropy change. While this choice is rather
speculative, another reasoning for the potential origin of the observed arrow of time exists,
one which is compatible with our framework. Page states in Ref. [���] that “we cannot
know the past except through its records in the present, ...” and such records are stored
in separate degrees of freedom, possibly in a redundant manner as dictated by Quantum
Darwinism [���–���, ���]. Hence, the Hilbert space HS =

N
iHS,i must be understood as

being composed of many smaller subsystem Hilbert spaces {HS,i}, of which some can act
as measuring devices to record history. As a consequence, the direction of time arises from
a special boundary condition, namely an initial system state with a very low degree of
entanglement between its subsystems. This point is also conveyed by Marletto and Vedral
in Ref. [���] in the context of time emergence.

�.� Computational advantage

The timeless formalism allows for a direct computation of a time-evolved pure system state
|'(�)iS by means of the partial projection h�(�)| iC. This fact was illustrated by two
examples in Sections �.�.� and �.�.�.�, which were of analytical and numerical nature,
respectively. Although fascinating, they can only serve as a proof of concept and we
briefly discuss the elements necessary for a viable numerical alternative to sequential time
propagation. Such an alternative might be particularly promising if it allows to rely on
highly parallelizable algorithms.
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�.�.� Global state as ground state and energy deviation

A crucial element of the timeless framework, derived in this thesis, is the global energy
eigenstate | i of the total Hamiltonian Ĥ. Therefore, one of the major challenges for a
numerical procedure is, therefore, the determination of the global energy eigenstate | i.
A certain energy eigenstate typically plays a special role, namely the ground state. Taking
the ground state of Ĥ is a perfectly reasonable choice for the global state | i. Powerful
numerical methods exist for determining ground states to high accuracy and might there-
fore be useful for a time propagation formalism based on relational states. One just has to
ensure that | i contains the desired initial system state |'(0)iS as a potential system state
(see Sec. �.�.�). An attempt to use global ground states in a timeless formulation has been
undertaken by McClean et al. [���, ���], but has since been criticized to not uphold its
promises [���].

It might be di�cult in numerical applications to find the exact energy eigenstate. However,
often approximations to it are available. For instance, after an imaginary-time evolution of
a random initial state for a su�ciently long time, one obtains the ground state in general,
but a small component of the first excited state may survive in the superposition. As an
example, we take the superposition

| i=
p

1� a |Ei+
p

a |E +�Ei (�.�.�)

of a desired energy state (Ĥ � E) |Ei = 0 and a component |E +�Ei for a nearby energy
level E +�E. Here, the coe�cient a 2 [0, 1] is real-valued for simplicity, but typically
small. If an evolution of duration T is required, then the invariance (�.�.�) is violated by a
correction term, namely

e�i(Ĥ�E)T | i=
p

1� a |Ei+
p

ae�iT�E |E +�Ei (�.�.�)

= | i+
p

a
⇥
e�iT�E � 1

⇤
|E +�Ei . (�.�.�)

Hence, as a long as the product T�E is small, | i still serves as a suitable vector for time
emergence and, as a result, the correction to the expected system dynamics remains small.

�.�.� Finding the correct initial system state

In the usual treatment of di�erential equations such as the TDSE, one can freely choose an
initial state and propagate it forward (or backward) in time. In our framework, the initial
system states depends explicitly on the choice of | i and the initial clock state |�0iC. Thus,
if a specific initial state |'(0)iS is wanted, then |�0iC and | i have to be determined such
that

��|'(0)iS � h�0| iC /
p
h |�0ih�0| i

�� is minimal. In case the quasi-eigenstate approxi-
mation is employed, the clock state |�0iC is typically fixed and only | i can be optimized.
Nevertheless, the global Hilbert space is large and there is a great freedom to choose the
global state. For example, we assume that an orthonormal set {| ii} of energy eigenstates
associated with energies lying in the interval [E ��E, E +�E] can be found. This set
translates to a non-orthogonal set {|'i[�0]iS} of relational system states by means of |�0iC.
The system states may not be linearly independent, but the span of all vectors can still be
used to construct many di�erent initial system states via superposition and allows for a
great variety. Interestingly, di�erent dynamical system evolutions are obtained by simply
changing the superposition | i=

P
i ci | ii.

The authors of Refs. [���,���] used an additional penalty term

Ĉ ⌘
Ä
1̂S � |'(0)ih'(0)|S

ä
⌦ |�0ih�0|C (�.�.�)
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in their global Hamiltonian to break the degeneracy of the ground state energy and enforce
a particular initial system state |'(0)iS. Such an additional term might be useful to obtain
a global energy eigenstate in our framework that yields the correct initial system state,
but can have an undesired side e�ect. Specifically, the e�ective system potential features
an additional term acting mainly around � = 0. As an illustration we assume the quasi-
eigenstate approximation (�.�.���) to hold for the interaction V̂ = V̂0+�Ĉ (� 2R), in which
case the e�ective potential

V̂S ⇡ h�(�)|V̂0|�(�)iC + �
��h�0|�(�)iC

��2 ·
Ä
1̂S � |'(0)ih'(0)|S

ä
(�.�.�)

features an additional term. The clock overlap
��h�0|�(�)iC

��2 typically vanishes rapidly for
� 6= 0, but has support around � ⇡ 0. Assuming also V̂0 = 0 for simplicity, the system
undergoes unwanted evolution, if the initial state |'(0)i is not an eigenstate of ĤS.

�.�.� E�ective system potential

The approximation of a desired system potential ŴS(�) with the e�ective system potential
V̂S(�) in Eq. (�.�.��) is a critical part for a successful numerical simulation. Such a task
requires careful fine-tuning and a minimization of any deviations, i.e.,

Z T

0

d�
��ŴS(�)� V̂S[�0, ](�)

�� !=min (�.�.�)

with a suitable operator norm k•k for a simulation up to time T . Despite the di�culties,
the quasi-eigenstate approximation (Sec. �.�.�.�) for appropriate clock states might help
greatly to disentangle the e�ective potential from the influence of the global state.

Certainly, the implementation of such a numerical procedure is far from being straightfor-
ward and might not work at all, but an investigation in this direction is without a doubt
worth the e�ort. Once one realizes that the additional complexity of the problem allows
also for greater flexibility regarding approximations on a global rather than a local level,
one might be even more inclined to look for possible applications. It is an extraordinary
property that the global state | i contains an infinitely large set of possible solutions to
system dynamics with di�erent e�ective potentials, but finding the right one is the crux of
the matter.

�.� Temperature

As a final reflection, we briefly comment on the consequences of the results for temper-
ature emergence in Chapter �. Once we attach a dynamical meaning to imaginary time
as the counterpart to real time, the revealed identification with temperature implies a
dynamical quality for this quantity as well. Such a notion seems odd, given that one
usually associates a canonical ensemble with an equilibrium situation, a concept in which
(macroscopic) change is absent. The peculiar energy flow between system and comple-
ment under an evolution in imaginary time only adds to the strangeness of this scenario.
For all we know, such a behavior is not part of our physically observed world and does
not lend any explanatory power to the imaginary time framework for the description of
natural phenomena. In spite of this deficiency, the results in Section �.� still contain value
from a theoretical point of view. To be clear, we do not attempt to prove conventional
thermodynamics wrong, neither do we claim to have derived a more fundamental theory
for canonical ensembles. Instead, our derivations show that what has been considered
mere similarities between thermal and temporal formulations thus far evolves to a direct
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relationship, originating from the same set of main principles (Chapter �). Although the
considered physical situation often di�ers, we can still establish the link between both
formulations, because the physical origin is not included in the bare description of a sub-
system as a canonical ensemble. Hence, our treatment is able to shed some light on the
enigmatic connection of time and temperature.
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Chapter �

Outlook

We have successfully applied the three guiding principles from Chapter � in quantum and
classical mechanics to elucidate the emergence of subsystem dynamics. Thus, we are not
only able to bridge the gap between the two prevailing approaches for time emergence
in quantum mechanics, but also to extend the framework to classical mechanics in great
generality. In this way, we prove how a static formulation can give rise to the dynami-
cal equations of motions, namely the TDSE, the von Neumann equation and the classical
Liouville equation. Using our framework for the emergence of imaginary time has also al-
lowed us to finally unveil the origin of the algebraic connection of Euclidean time to one of
the most important quantities in thermodynamics, the temperature of canonical ensembles.

Nevertheless, many new open questions and possible routes for future work have surfaced.
To begin with, an investigation of the non-Hermitian term appearing for quantum mixed
states and classical probability densities is without a doubt wanted. Not only is it vital to
classify under which general conditions such a term vanishes, but also what kind of dy-
namics it generates. This is closely tied to an examination of the induced entropy change
mentioned in Sec. �.�.�, which would facilitate a deeper understanding of the physical im-
plications. Furthermore, a simple example appears in Sec. �.�.�, for which the pure state
system dynamics are invariant under a change of the initial clock state, because of an ad-
ditional symmetry of the clock Hamiltonian. A general classification of invariant dynamics
and invariant e�ective system potentials in terms of symmetry properties of the clock and
the interaction would be useful, especially in the context of numerical time evolution (see
Sec. �.�). Moreover, a thorough feasibility study of a numerical time propagation scheme
based on the relational formalism, in order to bypass sequential time evolution algorithms,
is unquestionably in great demand. On a similar note, further investigation of the timeless
approach for analytically exact energy eigenstates of multipartite interacting systems could
be of considerable interest for the purpose of finding new classes of exact solutions to time-
dependent problems (see Sec. �.�.�). Such examples may be found for any kind of spin
chain. At least from a purely numerical perspective, they are suitable candidates for the
numerical determination of energy eigenstate since powerful methods for the computation
and for the storage of such states exist in the form of tensor networks [���,���].

Other paths toward greater insight are provided by a more sophisticated error analysis
and additional inspections of the time-energy uncertainty relations. The first includes
a detailed quantification of the deviation from exact dynamics, due to the semiclassical
approximation and, furthermore, the determination of an overall error quantifier comple-
menting the instantaneous one for the quasi-eigenstate approximation (Sec. �.�.�.�). Such
a term might prove beneficial for the alternative time propagation method via relational
states (Sec. �.�.�.�). The second path concerns time-energy uncertainty relations, for
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which we did not succeed in finding a general functioning formulation in Sec. �.�.�. With
this in mind, we believe that seeking a working approach is important, especially for non-
vanishing interactions V̂ 6= 0. This includes deriving attainable tighter bounds for mixed
states, such as given in Ref. [���], and a conceivable use of entropic uncertainty rela-
tions [���,���,���]. In particular for the latter, throughout this thesis we have encountered
the special role of MES several times with its special properties in our framework. It would
be very interesting to further explore its role in time emergence, in particular, how compat-
ible MES are with the requirement of being an energy eigenstate to a specific Hamiltonian
and which restrictions arise. Alongside, one could envision a connection to environment-
assisted invariance (or “envariance”) and to emergence of Born’s rule [���,���]. Another
special class of states are pure states in classical mechanics. An analysis of the surmised
conditions given in Sec. �.� may prove useful to derive a complete analog to the quantum
mechanical pure state case, which would guarantee unitary system evolution.

On the conceptual level, several intriguing ideas emerge as well. As a first aspect, we
strongly suspect our framework to provide the necessary link between two apparently
unrelated perturbation theories, namely a connection between a global time-independent
perturbation theory and a time-dependent perturbation theory for system states. Further-
more, we point out resemblances of our framework to open systems theory and decoher-
ence theory, for which a closer study might reveal useful mathematical cross-overs, also
from the field of “quantum steering” [���–���]. Moreover, the fact that a general pure
state of a bipartite system usually has non-vanishing entanglement is well-known and has
been extensively used in this thesis. However, the restrictions on entanglement by the
global energy constraint for a general Hamiltonian are not entirely understood [���–���],
but rather an open research problem. A further understanding of the interplay between
entanglement and energy would also be advantageous for additional insight on the obtain-
able dynamics in the time emergence framework [���]. In light of the global symmetry,
another very intriguing line of thought can be pursued. If we abandon the concept of
a continuous notion of time, then the global state can still be invariant under a discrete
symmetry group. Our relational framework applies nonetheless in this case and leads to
stroboscopic changes in the clock state, which implies an evolution of the system in discrete
time. Astonishingly, this result depends crucially on the invariance perspective employed
in this thesis and cannot be obtained with previous approaches, because the concept of a
global TISE does not exist in this case and a system TDSE does not either. Entertaining
this possibility, one would need to replace the energy constraint in postulate (I) with a
statement about the global symmetry.

Probably one of the greatest issues of the PW approach and of our generalized framework
is the interpretation of the conditional system state, given that it does not correspond to a
measurement of the clock by the system (Sec. �.�.�). Such an understanding is however
critical for the time emergence approach to manifest itself as a serious theory and must be
addressed in subsequent works. Our results certainly render future studies in this direction
worthwhile.

By showing that our three basic principles can be applied to derive imaginary time, we
also found a gateway to connect to inverse temperature in canonical ensembles. As is
common in thermodynamical settings, we assumed the interaction between subsystems to
be negligible. Such a simplification does not always hold in practice and a derivation of
imaginary time for generally coupled subsystems with V̂ 6= 0 would broaden the scope of
our framework. This is especially true for thermodynamics, where the treatment of non-
negligible interactions is still an open problem [���,���–���]. Just as there is no genuine
time operator, a legitimate temperature operator does not exist either, but only tempera-
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ture estimators [���,���]. An examination of the possible connection of these estimators to
time estimators, in the form of age operators (Sec. �.�.�.� and App. E), may allow to further
reinforce the link between time and temperature. So far we have only treated time exclu-
sively along the real or the imaginary axis, but arbitrary paths through the complex plane
provide another interesting extension of our framework. Complex time paths usually arise
in semiclassical approximations for tunneling dynamics [���,���,���] and an embedding
of this process into our framework could help to obtain a better understanding of such a
mechanism. The extension to complex time is straightforward for pure quantum states,
contrary to mixed quantum states and classical probability densities, which need di�erent
generators for real and imaginary time for the global invariance.

Entanglement is arguably one of the most fascinating aspects of quantum theory and has
been a cornerstone for the emergence of time. In a similar fashion, it is hypothesized that
entanglement may also be the foundation for the emergence of space [���, ���]. Thus, we
close with the mesmerizing idea of searching for a joint origin of space-time in abstract
quantum mechanics [���,���].
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Appendix A

E�ective system potential

A.� Determination from variational procedure

The variational approach has led to the equation

h�|
Ä
P̂ V̂ + V̂ P̂ 

ä
|�iC = h�|�iS

Ä
P̂' V̂S + V̂S P̂'

ä
, (A.�.�)

from which we determine V̂S. Using the complementary projector ˆP' = 1̂S � P' helps us
to bring the e�ective system potential to the block form

V̂S = P̂' V̂S P̂' +
ˆP' V̂S P̂' + P̂' V̂S

ˆP' +
ˆP' V̂S

ˆP' =

 
P̂' V̂S P̂' P̂' V̂S

ˆP'
ˆP' V̂S P̂'

ˆP' V̂S
ˆP'

!
. (A.�.�)

As we have stated in themain text, the hermitian term ˆP' V̂S
ˆP' does not a�ect the dynamics

of the system. Eq. (A.�.�) does not provide means to evaluate this term and, for this reason,
we set it to zero, i.e., ˆP' V̂S

ˆP' = 0. Even though it does not influence the system dynamics

either, the term P̂' V̂S
ˆP' is kept in V̂S, as it ensures Hermiticity. The remaining three terms

can be extracted with the use of

P̂' V̂S + V̂S P̂' = 2P̂' V̂S P̂' +
ˆP' V̂S P̂' + P̂' V̂S

ˆP' (A.�.�)

and the appropriate projections from the left and right onto Eq. (�.�.��). In particular, the
diagonal block reads

P̂' V̂S P̂' =
1

h�|�iS
Re

¶
P̂' h�|P̂ V̂ |�iC P̂'

©
(A.�.�)

=
|�ih�|S
h�|�i3S

Re

¶
h |P̂� | i h |V̂ P̂� | i

©
(A.�.�)

= P̂' Re

®
h |V̂ P̂� | i

h |P̂� | i

´
= P̂' Re(a) . (A.�.�)

Here, we use the definition of the complex scalar a(�) ⌘ h |V̂ P̂�(�)| i/ h |P̂�(�)| i 2 C
from the main text. In a similar manner, we determine the o�-diagonal blocks to be

P̂' V̂S
ˆP' =

1

h�|�iS
P̂' h� |

Ä
P̂ V̂ + V̂ P̂ 

ä
|�iC

ˆP' (A.�.�)

=
1

h�|�iS
P̂' h� |P̂ V̂ |�iC| {z }
=h� |P̂ V̂ |�iC

ˆP' (A.�.�)
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h�|P̂ V̂ |�iC
h |P̂� | i

�
h�|P̂ V̂ |�iC
h |P̂� | i

P̂' (A.�.�)

=
h�|P̂ V̂ |�iC
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h |V̂ P̂� | i
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(A.�.��)
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h�|P̂ V̂ |�iC
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h |V̂ P̂� | i

h |P̂� | i
(A.�.��)
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h�|P̂ V̂ |�iC
h |P̂� | i

� a P̂' (A.�.��)

and

ˆP' V̂S P̂' =
Ä
P̂' V̂S

ˆP'
ä†

=
h� |V̂ P̂ |�iC
h |P̂� | i

� a⇤ P̂' . (A.�.��)

Finally, we put the results together and find the optimal e�ective system potential

V̂S = Re(a)P̂' +
h�|
�
V̂ P̂ + P̂ V̂

�
|�iC

h |P̂� | i
� (a+ a⇤)P̂' (A.�.��)

=
h� |
�
V̂ P̂ + P̂ V̂

�
|�iC

h |P̂� | i
�Re(a)P̂' , (A.�.��)

for which the remainder vector becomes

|�iS,min = h�|V̂ | iC � V̂S |�iS (A.�.��)

= h�|V̂ | iC �
î
P̂' V̂S P̂' +

ˆP' V̂S P̂'
ó
|�iS (A.�.��)

= h�|V̂ | iC �


Re(a) |�iS +
h� |V̂ P̂ |�iC
h�|�iS

|�iS
| {z }

=h� |V̂ | iC

� a⇤ |�iS

�
(A.�.��)

= �i Im(a) |'iS . (A.�.��)

A.� Alternative form of TDSE

Making use of the TISE (�.�.�) and the freedom to subtract Re(a)ˆP' allows us to express
the e�ective system potential in the alternative form

V̂S = E �
¶

ĤS, P̂'
©
+
�
h� |
¶

ĤC, P̂ 
©
+
|�iC

h |�ih�| i
+ h'|ĤS|'iS +Re

h |ĤC P̂� | i
h |�ih� | i

. (A.�.�)

Here, {Â, B̂}+ denotes the anti-commutator. Interestingly, the knowledge of V̂ is not needed
to characterize the e�ective potential. The necessary information about V̂ is encoded in
the global state | i. When applied to the system state, as in the system TDSE, we find

î
ĤS + V̂S

ó
|'iS =

2
4E �

h�|
¶

ĤC, P̂ 
©
+
|�iC

h |P̂� | i
+Re

h |ĤC P̂� | i
h |�ih�| i

3
5 |'iS . (A.�.�)

This expression does not depend on ĤS and V̂ any longer.
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Appendix B

Hermite polynomials

The Hermite polynomials read

Hn(x) = n!

bn/2cX

m=0

(�1)m

m!(n� 2m)!
(2x)n�2m (B.�)

for n� 0 in explicit form and constitute a set of orthogonal polynomials by means of
Z 1

�1
dx e�x2

Hm(x)Hn(x) =
p
⇡2

nn!�nm . (B.�)

Some of their characteristic properties are used to solve integrals in the following and we
list them in the next section.

B.� Properties

First, they transform as

Hn(�x) = (�1)n Hn(x) (B.�.�)

under parity transformations, which is a useful property for the evaluation of integrals with
symmetric or antisymmetric integrands. Second, Hermite polynomials can be constructed
from lower order ones through the recurrence relation

Hn+1(x) = 2x Hn(x)� 2n Hn�1(x) . (B.�.�)

Third, a Taylor expansion yields the finite sum

Hn(x + y) =
nX

k=0

✓
n
k

◆
Hk(x) (2y)n�k (B.�.�)

due to the polynomial nature. Fourth, we need the generating function

e2x t�t2

=
1X

n=0

Hn(x)
tn

n!
(B.�.�)

in Sec.B.� for the calculation of Fourier transformations involving Hermite polynomials.

An important integral containing Hermite polynomials is given in Ref. [���] as

I 0nm ⌘
Z 1

�1
dx e�2a2 x2

Hn(x)Hm(x) (B.�.�)
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for Re a2 > 0, a2 6= 1

2
and m + n being even. Here, we denote hypergeometric functions

by 2F1 and the integral yields zero for an odd sum m+ n. For our purpose, we need the
substitution 2a2! a, to get

Inm ⌘
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B.� Fourier transform of Hermite polynomial

In order to determine an important Fourier transformation of a term including the product
of a Hermite polynomial and a Gaussian function, we first derive a simpler version and,
subsequently, use the same underlying procedure to evaluate the full expression.

B.�.� Simple form

To this end, we consider the generating function

e2x t�t2

=
1X

n=0

Hn(x)
tn

n!
(B.�.�)

for all complex x and t. Multiplying by exp

�
�x2/2

�
and taking the Fourier transformation

on both sides yields
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dx e�ikx e�x2/2+2x t�t2
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By comparison of di�erent orders of t, we get the desired Fourier transform
Z 1

�1
dx e�ikx e�x2/2Hn(x) =

p
2⇡ (�i)n e�k2/2 Hn(k) . (B.�.�)

B.�.� Advanced form

The integral necessary for the calculation of a relational system state in Sec. �.�.� requires
a more complicated integral. Nevertheless, the procedure from above allows us to solve it
in a similar way. Again, we start from the generating function (B.�.�), but multiply both
sides by exp

�
�x2/(2a2)

�
for a > 0 instead. Fourier transforming the equations yields

Z 1

�1
dx e�ikx e�x2/(2a2)+2x t�t2
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and we find
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Moreover, we need to solve the integral
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For this purpose, we use the linear transformation

z ⌘ ax + y ) x =
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and a straightforward calculation yields
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with the result from above. In particular, the case n= 1 gives
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Appendix C

Coupled harmonic oscillators

C.� Global Hamiltonian and energy eigenstate

For completeness, we state some important formulas from the main text again, namely the
Hamiltonian

Ĥ =
p̂2

r
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2
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+
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2
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2
ŝ2
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�
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2
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| {z }
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, (C.�.�)

and the corresponding energy eigenstates

 n,k(r, s) =
1

⇡1/4
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e�ik(s cos✓+r sin✓ )Hn
�
r cos✓ � s sin✓
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In particular, the wavefunction reads

 1,k(r, s) =
1

⇡1/4
p
⇡

e�ik(s cos✓+r sin✓ ) �r cos✓ � s sin✓
�

e�(r cos✓�s sin✓ )2/2 (C.�.�)

for n= 1.

C.� Clock state

In the main text, the clock states rely on the coherent states

↵(r,�,!, r0) =
⇣!
⇡

⌘ 1

4

e�i
�
!�+rcl(�)·pcl(�)

�
/2 · e�!

�
r�rcl(�)

�2

/2 · eir · pcl(�) (C.�.�)

evolving under the Hamiltonian Ĥosc = (p̂2

r +!
2 r̂2)/2 with the classical trajectories rcl(�) =

r0 cos(!�) and pcl(�) = �!r0 sin(!�). For later reference in the derivation of relational
system states, we give the definition

h�(�)|riC ⌘ ↵⇤(r,�,!r , r0) · exp

î
� i�E

ó
(C.�.�)

of the clock state once more, in which the complex conjugated form

↵⇤(r,�,!, r0) =
⇣!
⇡

⌘ 1

4

ei
�
!�+rcl(�)·pcl(�)

�
/2 e�ir · pcl(�) e�!

�
r�rcl(�)

�2

/2 (C.�.�)

has to be used.
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C.� Conditional system state

In the following, we solve the integral appearing in the unnormalized conditional system
states

�n,k(s,�) =
⌦
s⌦�(�)

�� n,k
↵

(C.�.�)

=
1

⇡1/4
p

2n+1⇡n!

Å
cos✓

⇡

ã1/4

e�iE�ei
�
� cos✓+rcl(�)·pcl(�)

�
/2e�iks cos✓

·
Z 1

�1
dr e� cos✓

�
r�rcl(�)

�2

/2e�ir
�

k sin✓+pcl(�)
�
· e�(r cos✓�s sin✓ )2/2

·Hn
�
r cos✓ � s sin✓

�
(C.�.�)

in position basis. To this end, we restructure the exponents with

cos✓ (r � rcl)2 + (r cos✓ � s sin✓ )2

= r2(cos✓ + cos
2 ✓ )� 2r cos✓ (rcl + s sin✓ ) + r2

cl cos✓ + s2
sin

2 ✓ (C.�.�)

=
Å

r
p

cos✓ + cos2 ✓ � (rcl + s sin✓ )
cos✓

p
cos✓ + cos2 ✓

ã2

� (rcl + s sin✓ )2
cos✓

1+ cos✓
+ r2

cl cos✓ + s2
sin

2 ✓ (C.�.�)

=

Ç
r
∆

cos✓ (1+ cos✓ )� (rcl + s sin✓ )

vt
cos✓

1+ cos✓

å2

+ r2

cl cos✓
(1+ cos✓ )� 1

1+ cos✓
+ s2

sin
2 ✓

1+ cos✓ � cos✓

1+ cos✓

� 2srcl ·
sin✓ cos✓

1+ cos✓
(C.�.�)

=

Ç
r
∆

cos✓ (1+ cos✓ )� (rcl + s sin✓ )

vt
cos✓

1+ cos✓

å2

+
1

1+ cos✓

Ä
s sin✓ � rcl cos✓

ä2

| {z }
=(1�cos✓ )·(s�rcl cot✓ )2

. (C.�.�)

The modified momentum

K⌘ k sin✓ + pcl (C.�.�)

allows for a compact notation and we get the expression

�n,k =
cos

1/4 ✓
p

2n+1⇡2n!

e�iE�ei
�
� cos✓+rcl·pcl

�
/2e�iks cos✓ e�(s sin✓�rcl cos✓ )2/[2(1+cos✓ )]

Z 1

�1
dr e�irK · e

�
Å

r
p

cos✓ (1+cos✓ )� (rcl+s sin✓ )
p

cos✓
p

1+cos✓

ã
2

/2
Hn
�
r cos✓ � s sin✓

�
. (C.�.�)

Using the linear transformation

z ⌘ r
∆

cos✓ (1+ cos✓ )�
(rcl + s sin✓ )

p
cos✓

p
1+ cos✓

(C.�.�)

and the inverse form

r =
zp

cos✓ (1+ cos✓ )
+

rcl + s sin✓

1+ cos✓
(C.�.��)
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results in

r cos✓ � s sin✓ = z

vt
cos✓

1+ cos✓
+

rcl cos✓ + s sin✓ cos✓

1+ cos✓
� s sin✓ (C.�.��)

= z

vt
cos✓

1+ cos✓
+

rcl cos✓ � s sin✓

1+ cos✓
. (C.�.��)

Consequently, the unnormalized system state takes the form

�n,k =
cos

1/4 ✓p
cos✓ (1+ cos✓ )2n+1⇡2n!

e�iE�ei
�
� cos✓+rcl·pcl

�
/2

· e�iks cos✓ e�(s sin✓�rcl cos✓ )2/[2(1+cos✓ )] e�iK(rcl+s sin✓ )/(1+cos✓ )

·
Z 1

�1
dz e�izK/

p
cos✓ (1+cos✓ ) · e�z2/2 Hn

Ç
z

vt
cos✓

1+ cos✓
+

rcl cos✓ � s sin✓

1+ cos✓

å

(C.�.��)

with dr = dz /
p

cos✓ (1+ cos✓ ). The solution to the integral is given as Eq. (B.�.��) in
Appendix B, with which we find

Z 1

�1
dz e�izK/

p
cos✓ (1+cos✓ ) · e�z2/2 Hn

Ç
z

vt
cos✓

1+ cos✓
+

rcl cos✓ � s sin✓

1+ cos✓

å

=
p

2⇡ e�K
2/[2 cos✓ (1+cos✓ )]

vt
1� cos✓

1+ cos✓

n

·Hn

ñvt
1+ cos✓

1� cos✓

Å
rcl cos✓ � s sin✓

1+ cos✓
� i

K
1+ cos✓

ãô
(C.�.��)

=
p

2⇡ e�K
2/[2 cos✓ (1+cos✓ )]

tan
n
Å
✓

2

ã
Hn

ï
rcl cos✓ � s sin✓ � iK

sin✓

ò
(C.�.��)

=
p

2⇡ e�K
2/[2 cos✓ (1+cos✓ )]

tan
n
Å
✓

2

ã
Hn


rcl cot✓ � s� i

⇣
k+

pcl
sin✓

⌘

| {z }
⌘L

�

(C.�.��)

= (�1)n
p

2⇡ e�(1�cos✓ )L2/(2cos✓ )
tan

n
Å
✓

2

ã
Hn

î
s� rcl cot✓ + iL

ó
. (C.�.��)

The penultimate line features the newly defined modified momentum L ⌘ K/ sin✓ and
we use the parity relation (B.�.�) to arrive at the final solution. Upon substitution of the
integral solution, the wavefunction reads

�n,k =
cos

1/4 ✓p
cos✓ (1+ cos✓ )2n+1⇡2n!

e�iE�ei
�
� cos✓+rcl·pcl

�
/2

· e�iks cos✓ e�(s sin✓�rcl cos✓ )2/[2(1+cos✓ )] e�iL(rcl/ sin✓+s)/(1+cos✓ )

· (�1)n
p

2⇡ e�(k sin✓+pcl)2/[2 cos✓ (1+cos✓ )]
tan

n
Å
✓

2

ã
Hn

î
s� rcl cot✓ + iL

ó

(C.�.��)

=
(�1)n tan

n (✓/2)
cos1/4 ✓

p
(1+ cos✓ )2n⇡n!

e�iE�ei
�
� cos✓+rcl·pcl

�
/2

· exp


� is

✓
k+ pcl

sin✓

1+ cos✓| {z }
=tan(✓/2)

◆�
· exp

ï
�i

rcl(pcl + k sin✓ )
1+ cos✓

ò
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· e�(1�cos✓ )(s�rcl cot✓ )2/2 e�(k sin✓+pcl)2/[2 cos✓ (1+cos✓ )] Hn

î
s� rcl cot✓ + iL

ó
.

(C.�.��)

For a simplified form, we introduce the variables

Nn,k(�)⌘
(�1)n tan

n(✓/2)
cos1/4 ✓

p
(1+ cos✓ )2n⇡n!

exp


�
(k sin✓ + pcl(�))2

2 cos✓ (1+ cos✓ )

�
2R (C.�.��)

= �
tan(✓/2)
p

2n
Nn�1,k(�) , (C.�.��)

⇣(�)⌘
Å

E �
cos✓

2

ã
��

pcl(�)rcl(�)
2

+

Ä
k sin✓ + pcl(�)

ä
rcl(�)

1+ cos✓
2R (C.�.��)

and express the unnormalized system states as

�n,k(s,�) =Nn,k(�) e�i⇣(�)
exp

ï
�
(1� cos✓ )

2

�
s� rcl(�) cot✓

�2

ò

· exp

ï
�is

Å
k+ pcl(�) tan

✓

2

ãò
Hn

î
s� rcl(�) cot✓ + iL(�)

ó
. (C.�.��)

In addition, we can use recurrence relation (B.�.�) to find

�n+1,k = �
2 tan(✓/2)p

2(n+ 1)
Nn,k e�i⇣ e�is

�
k+pcl tan

✓
2

�
e�

(1�cos✓ )
2

�
s�rcl cot✓

�2

·
⇢Ä

s� rcl cot✓ + iL
ä

Hn

î
s� rcl cot✓ + iL

ó
� n Hn�1

î
s� rcl cot✓ + iL

ó�

(C.�.��)

= �

vt
2

n+ 1
tan

Å
✓

2

ãïÄ
s� rcl cot✓ + iL

ä
�n,k +

s
n
2

tan

Å
✓

2

ã
�n�1,k

ò
(C.�.��)

= �

vt
2

n+ 1
tan

Å
✓

2

ãÄ
s� rcl cot✓ + iL

ä
�n,k �

s
n

n+ 1
tan

2

Å
✓

2

ã
�n�1,k

(C.�.��)

or, expressed in state vector form,

���n+1,k
↵
S = �

vt
2

n+ 1
tan

Å
✓

2

ãÄ
ŝ� rcl cot✓ + iL

ä ���n,k
↵
S�

s
n

n+ 1
tan

2

Å
✓

2

ã���n�1,k
↵
S .

(C.�.��)

For example, choosing n= 0 yields

���1,k
↵
S = �

p
2 tan

Å
✓

2

ãÄ
ŝ� rcl cot✓ + iL

ä ���0,k
↵
S . (C.�.��)

C.�.� Mean position

An evaluation of the mean position for any
���n,k

↵
S leads to

⌦
�n,k

�� ŝ
���n,k

↵
S/

Z 1

�1
ds e�(1�cos✓ )(s�rcl cot✓ )2 s |Hn (s� rcl cot✓ + iL)|2 (C.�.��)

=
Z 1

�1
ds e�(1�cos✓ )s2

(s+ rcl cot✓ ) |Hn (s+ iL)|2 (C.�.��)
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/ rcl cot✓
⌦
�n,k

���n,k
↵
S + . . .

Z 1

�1
ds e�(1�cos✓ ) s2

s |Hn (s+ iL)|2

| {z }
=0

.

(C.�.��)

The antisymmetry of the integrand implies the vanishing of the last integral. Closer
inspection of the result already shows that the system does not exhibit its natural frequency
!s = sin✓ , but takes on the periodicity !r = cos✓ of the clock through the classical
trajectory rcl(�). Furthermore, the result does not depend on n or k.

C.�.� Momentum operator

Another useful expression is the action of p̂s on the unnormalized system states. Therefore,
we calculate

⌦
s
��p̂s
���n,k

↵
S = �i@s�n,k (C.�.��)

= �i@sNn,k e�i⇣ e�(1�cos✓ )(s�rcl cot✓ )2/2e�isM Hn

î
s� rcl cot✓ + iL

ó
(C.�.��)

= �
⇢
M� i(1� cos✓ )

�
s� rcl cot✓

��
�n,k

� iNn,k e�i⇣ e�(1�cos✓ )(s�rcl cot✓ )2/2e�isM · @sHn

î
s� rcl cot✓ + iL

ó
| {z }
=2nHn�1

î
s�rcl cot✓+iL

ó

(C.�.��)

= �
⇢
M� i(1� cos✓ )

�
s� rcl cot✓

��
�n,k + i

p
2n tan

Å
✓

2

ã
�n�1,k ,

(C.�.��)

which reads

p̂s
���n,k

↵
S = �

⇢
M� i(1� cos✓ )

�
ŝ� rcl cot✓

�� ���n,k
↵
S+ i
p

2n tan

Å
✓

2

ã���n�1,k
↵
S (C.�.��)

in bra-ket notation.

C.�.� Normalization factor

In order to obtain the normalized system state

��'n,k
↵
S =

⌦
�
�� n,k

↵
Cq⌦

 n,k
���
↵⌦
�
�� n,k

↵ =
���n,k

↵
Sq⌦

�n,k
���n,k

↵
S

, (C.�.��)

one needs to evaluate the norm

⌦
�n,k

���n,k
↵
S =

Z 1

�1
ds
���n,k(s)

��2 (C.�.��)

=N 2

n,k

Z 1

�1
ds e�(1�cos✓ )(s�rcl cot✓ )2 |Hn (s� rcl cot✓ + iL)|2 (C.�.��)

s�rcl cot✓!s
= N 2

n,k

Z 1

�1
ds e�(1�cos✓ ) s2

|Hn(s+ iL)|2 (C.�.��)

⌘N 2

n,k

Z 1

�1
ds e�us2

Hn(s+ iL)Hn(s� iL) . (C.�.��)
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Here, the auxiliary variable is defined as u⌘ 1�cos✓ . Before providing a general derivation,
we give two exemplary solutions. The system norm reads

⌦
�0,k

���0,k
↵
S =N

2

0,k

s
⇡

u
=N 2

0,k

s
⇡

1� cos✓
(C.�.��)

for n= 0, while n= 1 yields

⌦
�1,k

���1,k
↵
S = 2N 2

1,k

p
⇡

u3/2

�
2L2u+ 1

�
=N 2

1,k

s
⇡

u

Å
(2L)2 +

2

u

ã
(C.�.��)

=
s

⇡

1� cos✓
N 2

1,k

Å
(2L)2 +

2

1� cos✓

ã
(C.�.��)

=
N 2

1,k

N 2

0,k|{z}
=tan2(✓/2)/2

⌦
�0,k

���0,k
↵
S

Å
(2L)2 +

2

1� cos✓

ã
(C.�.��)

=
⌦
�0,k

���0,k
↵
S
(2L)2(1� cos✓ ) + 2

2(1+ cos✓ )
. (C.�.��)

Using the Taylor expansion (B.�.�) for

Hn(s± iL) =
nX

m=0

✓
n
m

◆
Hm(s) (±2iL)n�m

, (C.�.��)

allows us to express the norm as

⌦
�n,k

���n,k
↵
S =N

2

n,k

nX

l,m=0

✓
n
m

◆✓
n
l

◆
(2iL)n�m (�2i L)n�l
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�1
ds e�u2s2

Hm(s)Hl(s)

(C.�.��)

=N 2

n,k

nX

l,m=0

✓
n
m

◆✓
n
l

◆
(2L)2n�(l+m) il�m

Z 1

�1
ds e�u2s2

Hm(s)Hl(s)
| {z }

⌘Fl,m

.

(C.�.��)

A further examination requires the evaluation of the integral Fl,m, which is symmetric,
i.e. Fl,m = Fm,l . First, we use the symmetry property of the integrand under parity
transformations to show

Fl,m =
Z 1

0

ds e�u2s2

Hm(s)Hl(s) +
Z 0

�1
ds e�u2s2

Hm(s)Hl(s) (C.�.��)

Eq. (B.�.�)
=

Z 1

0

ds e�u2s2

Hm(s)Hl(s) +
Z 1

0

ds e�u2s2

Hm(�s)Hl(�s) (C.�.��)

=
Z 1

0

ds e�u2s2

Hm(s)Hl(s) + (�1)l+m
Z 1

0

ds e�u2s2

Hm(s)Hl(s) (C.�.��)

=
î
1+ (�1)l+m

ó Z 1

0

ds e�u2s2

Hm(s)Hl(s) (C.�.��)

=

®
Fl,m, for l +m even
0, for l +m odd

. (C.�.��)
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For the case of m+ l being even, the result of the integral is given by Eq. (B.�.�) and reads

Fl,m =
2

m+n
p

u
�

Å
m+ n+ 1

2

ã
·
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1� u

u
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· 2F1

Å
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Å
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Finally, the norm becomes

⌦
�n,k
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=
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with the prefactor

N 2
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N 2
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In the main text, we consider the example n= 1 and, therefore, give the explicit expression

N 2
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For later use, we also provide
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for n= 0 and
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for n= 1 with the specific hypergeometric function 2F1(�1,�1;�1/2; x) = 1� 2x .
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C.�.� Normalized state

Using the derived norm expression from above, one can express the normalized system
states

'n,k(s) =

⌦
s
���n,k

↵
Sq⌦

�n,k
���n,k

↵
S

(C.�.��)

in full generality. However, the expressions are bulky and we provide only the two cases
n= 0 and n= 1, for which we find

'0,k(s) =
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Both states are related by
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and, thus, the n= 1 pure state density reads
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C.�.� E�ective system potential

As mentioned in the main text, we only consider the case | i =
�� n,k

↵
for simplicity, but

superpositions of di�erent
�� n,k

↵
allow for analytical calculations as well. The e�ective

system potential features the term
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and its Hermitian conjugate h� |P̂ V̂ |�iC. Specifically, one needs to determine

sin(2✓ )
⌦
s⌦ r

��r̂
�� n,k

↵
/

r sin(2✓ )
p

2n+1n!

Hn
�
r cos✓ � s sin✓

�
(C.�.��)

=
2 sin✓ cos✓
p

2n+1n! cos✓

�
r cos✓ � s sin✓ + s sin✓

�
Hn
�
r cos✓ � s sin✓

�
.

(C.�.��)

Using the recurrence relation (B.�.�) helps us to express the term from above as
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and it follows that
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Utilizing this result in the bra-ket notation
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we find the essential term
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Instead of using three di�erent system states, we use the recurrence relation (C.�.��) to
express one of them in terms of the other two, i.e.,
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It reduces the previous expression to a form with only two system states, namely
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ŝ
���n�1,k

↵
S

�
⇢

sin
2 ✓| {z }

=1�cos2 ✓
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ŝ
����n,k

↵
S (C.�.��)

= �(1� cos✓ )
¶

cos✓ ŝ2 +
Ä
rcl cot✓ � iL

ä
ŝ
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���n�1,k

↵
S

�
(C.�.��)

= �(1� cos✓ ) ŝ
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Moreover, another useful form exists for the term
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which is given in Section C.�.�. Thus, the crucial term for the e�ective system potential
also reads
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Interestingly, we are able to find a formulation in which h�|V̂ |�iC appears as part of the
e�ective system potential. Employing the alternative form (C.�.��), the additional scalar
Re a in the e�ective potential can be e�ciently calculated to yield
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regardless of the values of n and k. Substituting the aforementioned results into the general
form (�.�.��) for the e�ective system potential leads to
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expressed in a way that preserves Hermiticity.
Without the use of the momentum operator, the e�ective system potential reads
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In particular, the main text features the case n= 1, for which we find
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with the recurrence relation (C.�.��). This term allows us to obtain the position represen-
tation
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of V̂S. As a last step, we use the n= 0 projector
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in position basis in order to derive the final expression
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Appendix D

Atomic units

For a simplification of the analytical treatment of problems in atomic andmolecular physics,
atomic units are often employed. They are based on setting the important typical scales
to unity and, therefore, provide means for dimensionless numerical calculations. A list of
the essential constants is shown in Table D.�.

Quantity Atomic units SI units
Bohr radius a0 � 5.29⇥ 10

�11
m

Reduced Planck’s constant ~h � 1.06⇥ 10
�34

J

Electron mass me a0 � 9.10⇥ 10
�31

kg

Electric charge |e| � 1.60⇥ 10
�16

C

Vacuum permittivity ✏0 1/4⇡ 8.85⇥ 10
�12

F/m
Vacuum speed of light clight ���.� 3⇥ 10

8
m/s

Table D.� – The four most relevant constants of atomic physics define the atomic
unit system and their value is fixed to unity. Two additional frequently occurring
constants are also shown. In addition, the last column features the corresponding
SI units for all considered quantities [���].
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Appendix E

Age operator

E.� Original age operator

The subsequent treatment is a summary of the content of Ref. [���]. Instead of following
the pedagogical derivation in the original publication, we only present the results, for which
Planck’s reduced constant ~h appears explicitly. Matching the presentation in Ref. [���], t
is exclusively used in this appendix, instead of �.

E.�.� Definition

For simplicity, we assume non-degenerate energy-levels and set the ground state energy
E0 = 0 to zero. The number L + 1 of physically accessible or essential states during the
whole dynamics of a system is the sum of all energy levels that are populated at some point
of time [���]. All these energy states are denoted by |Eki in order of increasing energy,
and the corresponding time-independent Hamiltonian shall be

ĤL =
LX

k=0

Ek |EkihEk| . (E.�.�)

This form derives from the general Hamiltonian Ĥ through projection into the subspace
spanned by {|Eki}, namely ĤL = P̂L Ĥ P̂L with projectors P̂L ⌘

PL
k=0
|EkihEk|. An essential

element of Pegg’s derivation constitutes the (smallest) time period T after which any state
returns to its initial state. In order to determine this period, we assume all energy ratio to
be rational numbers, such that

Ek

E1

=
Ck

Bk
(E.�.�)

features the coprime integers Bk and Ck, which do not possess a common factor. The lowest
common multiple of all Bk shall be denoted by r1 and one finds

T = r1 ·
2⇡~h
E1

. (E.�.�)

Any operator tracking the evolution must necessarily respect this inherent periodicity. Pegg
defines the operator
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which also provide a resolution of identity in the e�ective space of essential states, i.e.,

1̂L = P̂L1̂P̂L =
Z ↵0+T

↵0

d↵

T
|↵ih↵| . (E.�.�)

The vectors |↵i correspond to unnormalized states with a uniform distribution across all
accessible energy levels and form an overcomplete basis, similar to coherent states. For
completeness, we provide the normalized version |↵i= |↵i/

p
L + 1 as well.

E.�.� Age of a quantum state

Subsequently, the “age” of a state | (t)i=
PL

k=0
ck exp(�i tEk/~h) |Eki is defined [���] as
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Its rate of change reads
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in which the commutator has the form
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and, thus, is close to the desired commutation relation for a sought-after time operator.
The right-hand side vanishes under the trace operation, as it should for commutators of
operators in finite-dimensional Hilbert spaces. Consequently, rate (E.�.��) becomes

d h↵̂(↵0)i (t)
dt

= 1� |h↵0| (t)i|
2 = 1� T P(↵0, t) . (E.�.��)

Due to the inherent periodic nature of these quantum states, the age must be cyclic as
well and, therefore, returns to previous values during the course of its evolution. The
last term in Eq. (E.�.��) ensures this behavior. For an illustration, we consider a harmonic
oscillator with frequency ! which is energy restricted up to a certain energy eigenstate
|n= nmaxi ⌘ |n= Li. Every state of a harmonic oscillator returns to its initial value after
T = 2⇡/!, because all energy levels are equidistant. Choosing the initial state | (0)i =
|↵= 0i/

p
L + 1, we find
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E.� Original age operator

Figure E.� – For a harmonic oscillator, the rate (E.�.��) and the age (E.�.�) are
shown in the upper and lower panel, respectively. Here, the initial state consists of
an equally weighted superposition of the lowest L+1 energy eigenstates, such that
| (0)i = |↵0i. The parameters are L = 2 (orange), L = 10 (red), L = 100 (blue),
↵0 = 0 and ! = 1 in atomic units (Appendix D).

which is finite for t = ↵0, i.e., T P(↵0, t = ↵0) = L + 1. This already indicates that the rate
d h↵̂(↵0)i (t)/dt

��
t=↵0

= �L equals a large negative value at t = ↵0. For ↵0 = 0, the initial
age at t = 0 has the analytic expression
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dt
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In Figure E.�, the age and its rate of change are presented for two e�ective dimensions L.

E.�.� Uncertainty relation

Pegg has shown [���] that age and energy, by means of the Hamiltonian, have the uncer-
tainty relation
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The variances are defined as (�E)2 = Var (ĤL) and (�↵)2 =
R ↵0+T
↵0

d↵ P(↵, t)
�
↵�h↵̂(↵0)i

�2

in Ref. [���]. The second relation denotes the variance of the classical probability distri-
bution P(↵, t). In contrast, the variance Var [↵̂(↵0)] does not equal (�↵)2, due to the
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non-orthogonality of the |↵i’s, but can be used in the same inequality instead of (�↵)2. As
argued in Sec. �.�.� and with the relation given in footnote � on page ��, the uncertainty
relation for mixed states ⇢̂ reads

Var⇢̂(ĤL) ·Var⇢̂[↵̂(↵0)]
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with mean values hÂi= tr

�
⇢̂Â
�
.

E.�.� Classes of aging states

A drawback of Pegg’s age operator is the uncertainty about which classes of states allow
for a proper tracking by the age operator. Instead of doing an analytical investigation,
we examine states for which the coe�cients ck ⌘ rk exp(i�k) are randomly distributed.
All magnitudes rk are uniformly drawn from the interval [0, 1] and a subsequent division
by

P
k rk ensures the state normalization. We consider two distinct states, which are

characterized by the distribution of their phases. In particular, we either set all �k to zero
or randomly draw them from a uniform distribution over the range [0,2⇡]. The resulting
rates and age values are shown in Figure E.� and are compared to the previous result, for
which all rk are equal and all phases vanish. For purely positive real-valued coe�cients, the
rate has a smaller slope, but still displays linearly behavior. In contrast, the age operator
fails to track the evolution of a state with completely random coe�cients. To deal with such
states, we propose a modified age operator, which relies on the autocorrelation function
in the next section.

E.� Alternative age operator

E.�.� Definition

We have noted above that Pegg’s |↵i states correspond to time-evolved states with equal
population on all accessible energy levels. Hence, the age operator ↵̂(↵0) depends on a
specific initial state. This insight motivates us to define the modified age operator

↵̂ (↵0)⌘
1

D T 

Z ↵0+T 

↵0

d↵↵ | (↵)ih (↵)| (E.�.�)

with | (↵)i =
P

m cm exp

⇥
�i↵Em/~h

⇤
|Emi and an undetermined scaling factor D . The

period T is the smallest time after which | (t)i returns to its initial state and we also
define the corresponding frequency ⌦ ⌘ 2⇡/T , for which (Ek � Em)/⌦ 2 Z for all k, m.
There is no restriction on which cm are allowed and, thus, we do not distinguish explicitly
between populated and unpopulated levels. Without loss of generality, we assume all
energy levels to be non-degenerate. Crucially, this modified age operator depends explicitly
on the state | (↵)i and, thus, should only be applied in context of | (t)i. This seems quite
restraining, but Pegg already noted [���] that his age operator depends on the state of the
system via the number of accessible states. Moreover, we seek an operator that accurately
tracks the evolution of a specific state and not a universal tracking operator.
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Figure E.� – The rate of change (upper panel) and the age (lower panel) of har-
monic oscillator states, restricted to the first L+1= 101 energy levels, are displayed.
All coe�cients of the initial state | (0)i =

PL
k=0

ck |Eki are randomly drawn ac-
cording to the procedure given in Section E.�.�. While the red line corresponds
to positive real-valued ck 2R+, the orange line results from random complex vari-
ables ck 2 C. For comparison, the previous results (blue line) for ck = 1/

p
L + 1

are plotted as well. The values ↵0 = 0 and ! = 1 in atomic units (Appendix D) are
used, as in Figure E.�.

E.�.� Age and rate

The mean value, or “modified age”, reads

h (t)|↵̂ (↵0)| (t)i=
1

D T 

Z ↵0+T 

↵0

d↵↵C (t �↵) (E.�.�)

with the periodic and symmetric absolute squared autocorrelation function

C (t)⌘ |h (0)| (t)i|
2 =

�����
X

m
|am|

2e�i tEm/~h

�����

2

= C (�t) = C (t+kT ) k 2 Z . (E.�.�)

This quantity is non-negative and upper-bounded by unity. Not only is the commutation
relation with the Hamiltonian crucial for the rate of change, but also for the uncertainty
relation. For this reason, we commence with the calculation of the mean value
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The first term in squared brackets is the averaged autocorrelation function over one period
and does not depend on t, whereas the second term typically remains small for � 6= ↵0. In
order to match the form of Pegg’s version (E.�.��), we adopt the prefactor

D ⌘
1

T 

Z T 

0

d↵C (↵) =
X

k,m

|ck|
2|cm|

2

Z T 

0
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which represents an inverse participation ratio. This allows us to define the probability

P (↵, t)⌘
C (t �↵)R T 

0
dx C (x)

=
1

D 
|h (t)| (↵)i|2 . (E.�.��)

and to express the modified age as

h (t)|↵̂ (↵0)| (t)i=
Z ↵0+T 

↵0

d↵↵ P (↵, t) . (E.�.��)

In close analogy to Ref. [���], the mean value of the commutator with the Hamiltonian
reads

h (t)|
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ó
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Such a relation suggests the commutator
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which is a false statement however, as we show below. A direct evaluation of the commu-
tator yields
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We express the first term in brackets in the energy basis as
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which yields the commutator
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In any case, only mean values are important and the exact form of the operator does
not matter. Lastly, we obtain Pegg’s age operator ↵̂(↵0) as a limiting case for | (0)i =PL

k=0
|Eki/

p
L + 1. Figure E.� provides a numerical example for a direct comparison with

the original age operator.

E.�.� Uncertainty relation

Using the results from above, the uncertainty relation becomes
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Ĥ
↵
·
⌦
↵̂ (↵0)

↵�2

(E.�.��)

�
~h2

4

✓
1�

1

D 
C (t �↵0)

◆2

. (E.�.��)

E.�.� Mixed states

The previous treatment also works for mixed states ⇢̂(t) with the modified age operator

↵̂⇢(↵0)⌘
1

D⇢T⇢

Z ↵0+T⇢

↵0

d↵↵⇢̂(↵) (E.�.��)
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Figure E.� – Pegg’s age operator (blue line) is compared to the modified age
operator (E.�.�) (red line). For a harmonic oscillator restricted to its first L +
1 = 101 energy levels, the upper and lower panel show the rate of change and
the age of a state | (t)i, respectively. Each complex coe�cient ck of the initial
state | (0)i =

PL
k=0

ck |Eki is randomly drawn from the unit disc in the complex
plane and later normalized, such that h (0)| (0)i = 1. Identically to the previous
numerical examples, the parameters are chosen as ↵0 = 0 and ! = 1 in atomic
units (Appendix D).
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for mixed states. Using the same reasoning as before, the scaling factor D⇢ is chosen as
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which allows to for the definition of the probability
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In addition, the commutator mean value has the same form as before, namely
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and the uncertainty relation
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holds as well. For illustration, Figure E.� displays a numerical example with a comparison
to Pegg’s age operator for mixed states.

���



E A�� ��������

Figure E.� – The original (blue) and the modified age operator (red) are compared
for a mixed state, taken as an incoherent mixture ⇢̂(0)/

P
2

m=0
| m(0)ih m(0)| of

three randomly drawn pure states | m(0)i=
PL

k=0
cm,k |Eki. Here, the energy states

|Eki correspond to the lowest L + 1 = 101 levels of a harmonic oscillator. Similar
to before, the rate of change (upper panel) and the age (lower panel) are used to
reveal the di�erence between both formulations. Instead of the probability (E.�.�)
for pure state, we use PPegg,⇢(↵, t) = h↵|⇢̂(t)|↵i/T for Pegg’s formalism. The
specific parameter values are ↵0 = 0 and ! = 1 in atomic units (D).
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Appendix F

Wigner representation

All results below are based on the treatments given in Ref. [���].

F.� Transformation and inverse transformation

The definitions
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E
eipx/~h (F.�.�)

for the Wigner representation of states ⇢̂ and operators Â shall be provided here for quick
reference. In addition, the back-transformation from the phase space representation to the
original operator form is facilitated by
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which originates from W A(q, p) = tr

�
Â D̂(q, p)

�
. This important operator has the propertiesR

dp D̂(q, p) = 2⇡~h |qihq| and tr D̂(q, p) = 1. Moreover, any density and general operators
are recovered via
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F.� Properties of D̂

In this section, we derive some of the properties of D̂(q, p). First, the trace of two D̂-
operators reads
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as is expected, because
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can only be solved if Eq. (F.�.�) holds. Second, for theWigner representation of the product
of two arbitrary operators, the trace of three D̂-operators is needed. Such a term evaluates
to
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Equipped with this result, we express the Wigner representation of ÂB̂ as
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In the last line, we use the formal Taylor expansion
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h
k
�!
@ p + x

�!
@ q

i
W B(q, p) , (F.�.��)

in which the arrows indicate the action of the derivative operators on the right. It allows
us to utilize

e2i(x p�qk)/~h
exp

h
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@ p + x
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@ q

i
= e2i(x p�qk)/~h
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2
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@ q

⌘ò
, (F.�.��)

in which
 �
@ i denotes derivatives acting on the left. Subsequently, theWigner representation

reads

W AB(q, p) =
1

(⇡~h)2

Z
dq0 dx dp0 dk W A(q0, p0) e2i

⇥
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⇤
/~h

· ei~h
⇣ �
@ q
�!
@ p�

 �
@ p
�!
@ q

⌘
/2 W B(q, p) (F.�.��)

=
(2⇡~h)2
(⇡~h)2

Z
dq0 dp0W A(q0, p0)�

�
2(p� p0)

�
�
�
2(q0 � q)

�

· ei~h
⇣ �
@ q
�!
@ p�

 �
@ p
�!
@ q

⌘
/2 W B(q, p) (F.�.��)

=
Z

dq0 dp0W A(q0, p0)�(p� p0)�
�
q� q0) ei~h

⇣ �
@ q
�!
@ p�

 �
@ p
�!
@ q

⌘
/2 W B(q, p)

(F.�.��)
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⌘
/2 W B(q, p) (F.�.��)

⌘W A(q, p) ei~h !⇤ /2 W B(q, p) . (F.�.��)

Here, we define the Poisson bracket operator [���]

 !
⇤ ⌘

 �
@ q
�!
@ p �

 �
@ p
�!
@ q , (F.�.��)

which can also be used to define the classical Poisson bracket

�
A(q, p), B(q, p)

 
⌘ A(q, p)
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⇤ B(q, p) =

@ A(q, p)
@ q

@ B(q, p)
@ p
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@ A(q, p)
@ p

@ B(q, p)
@ q

. (F.�.��)

F.� Several representations

An important formula is the Wigner representation

W AB(q, p) =W A(q, p) ei~h !⇤ /2 W B(q, p) =W B(q, p) e�i~h !⇤ /2 W A(q, p) (F.�.�)
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for products of operators [���]. Immediately, the Wigner function for the commutator
[Â, B̂] is given by [���]

W [A,B](q, p) =W A(q, p) ei~h !⇤ /2 W B(q, p)�W B(q, p) ei~h !⇤ /2 W A(q, p) (F.�.�)

=W A(q, p)
⇣

ei~h !⇤ /2 � e�i~h !⇤ /2
⌘

W B(q, p) (F.�.�)

= 2i W A(q, p) sin

Å~h
2

 !
⇤

ã
W B(q, p) . (F.�.�)

In addition, the anti-commutator representation reads

W {A,B}+(q, p) = 2 W A(q, p) cos

Å~h
2

 !
⇤

ã
W B(q, p) . (F.�.�)

F.� Partial trace and relation system state

For the Wigner representation of the relational system state, an expression for the partial
trace over clock Hilbert space in Wigner representation is needed. To this end, we use

| i=
X

m
|'̄m ⌦�mi (F.�.�)

for an arbitrary orthonormal clock basis {|�miC} and a non-orthonormal set {|'̄miS} of
system states. As a result, the corresponding Wigner function reads

W| ih |(q,p,Q,K) =
1

(2⇡)nS+nC
tr

Ä
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ä
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and can be used for the derivation of the system Wigner function
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Appendix G

Maximally entangled global state

A MES | i for a bipartite system is characterized by reduced density operators which equal
the identity operators on their subsystems, representingmaximallymixed subsystem states.
In our notation, the global state | i must fulfill

trS | ih |=
1

dC
1̂C , (G.�)

trC | ih |=
1

dS
1̂S (G.�)

in order to constitute a MES and a necessary requirement for these equations to hold is
the matching of both subsystems dimensions, namely dC = dS (Sec. �.�.�.�).

G.� Relations between states

Furthermore, from

h |�ih�| i= h�|trS
Ä
| ih |

ä
|�iC =

1

dC
h�|�iC =

1

dC
(G.�.�)

follows that the normalized system state is |'iS =
p

dC h�| iC. In general, it only holds
for MES that the conditional system state relates back to the clock state on which it is
conditioned, i.e.,

∆
dS h'[�]| iS = |�iC . (G.�.�)

In addition, the use of MESs implies the equation

h |ÂC P̂� | i=
1

dC
h� |ÂC|�iC (G.�.�)

for any clock operator ÂC and the equality of state overlaps in di�erent subsystems as well,
i.e.,

h'1|'2iS = dC h |�1ih�2| i= h�1|�2iC . (G.�.�)

These relations do not hold for general | i, which are not MESs.

G.� Energy relations

For MESs, the e�ective system potential becomes

V̂S = dC h�|
¶

E � ĤS � ĤC, P̂ 
©
+
|�iC � dC Re h |

Ä
E � ĤS � ĤC

ä
P̂� | i (G.�.�)
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= 2EP̂' � ĤS P̂' � P̂'ĤS � dC h�|
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Immediately, the energy relation

h'|
Ä
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ä
|'iS = E � h� |ĤC|�iC (G.�.�)

between system and clock follows. The mean value of the squared system Hamiltonian

h'|
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(G.�.�)

= h� |
Ä
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implies the equality of subsystem energy variances as well, namely

Var'
Ä
ĤS + V̂S

ä
= h� |

Ä
ĤC � E

ä2

|�iC � h�|
Ä
ĤC � E

ä
|�i2C (G.�.�)

= Var�(ĤC) . (G.�.�)

Since the clock energy does not change through the evolution under ĤC, the system energy
variance remains constant as well, even though a �-dependent system potential exists.
This is an interesting behavior and could be further investigated.

G.� Purity relations for mixed states

In this section, we consider mixed clock and system states. For a MES | i, the normalized
system state reads ⇢̂S = dC trC(⇢̂C P̂ ). Instead of trying to evaluate the von Neumann
entropy, it is easier to calculate the purity P ⌘ tr ⇢̂2 of a density operator [���], a quantity
closely related to entropy [���]. Using the invariance of the trace under cyclic permutations
shows that the clock purity

PC[⇢̂C(�)] = trC
�
⇢̂2

C(�)
�
= trC

Ä
e�i�ĤC ⇢̂2

C(0) e
i�ĤC

ä
= trC

�
⇢̂2

C(0)
�
= const (G.�.�)

stays constant for all �. The associated purity of the relational system state reads

PS[⇢̂S] = trS(⇢̂2

S) = d2

C trS

î
trC(P̂ ⇢̂C) trC(⇢̂C P̂ )

ó
(G.�.�)

= d2

C

X

kmn

h'k ⌦�m| i h |⇢̂C |�mih�n|C ⇢̂C| i h |'k ⌦�ni (G.�.�)

= dC
X

kmn

h |'k ⌦�ni h�n|⇢̂2

C|�miC h'k ⌦�m| i (G.�.�)

= dC h |⇢̂2

C| i= trC(⇢̂2

C) =PC[⇢̂C] (G.�.�)

and remains constant as well. It immediately implies that the system evolution must be
entirely unitary and the system Hamiltonian cannot contain any non-Hermitian terms.
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