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Abstract

This thesis explores systems that exhibit strong coupling between an optical cavity

field and a many-particle system. To treat the drive and dissipative nature of the cavity on

the same footing as the dynamics of the many-particle system, we use a non-equilibrium

field theoretic approach.

The first system considered is an ultracold bosonic gas trapped inside a cavity. The

dispersive coupling between the cavity field and the atoms’ motion leads to the formation

of a polariton. We show how a modulation of the pump laser on the energy scale of

the transverse cavity mode splitting can be used to create e↵ective interactions between

di↵erent cavity modes. This e↵ective interaction results in the polariton acquiring a

multimode nature, exemplified by avoided crossings in the cavity spectrum. As the laser

power is increased, the polariton softens and at a critical power becomes unstable. This

instability signals the transition into a superradiant state.

If the multimode polariton contains a cavity mode with an e↵ective negative detuning,

then the transition does not happen through a mode softening but at a finite frequency.

To investigate this, classical non-linear equations are constructed from the action and from

these we derive the critical couplings and frequencies. It is shown how the superradiant

transition happening at a finite frequency is a consequence of a competition between

the negatively and the positively detuned cavity modes making up the polariton. The

finite-frequency transition is found to be equivalent to a Hopf bifurcation and leads to the

emergence of limit cycles. Our analysis shows that the system can exhibit both bistabilities

and evolution constricted to a two-torus. We end the investigation by showing how

interactions among the atoms combined with the emerging limit cycle open new phonon

scattering channels.

The second system considered in the thesis is inspired by the recent experiments on

gated Transition-metal dichalcogenides (TMD) monolayers inside cavities. An exciton

within the TMD can couple strongly to the cavity and, due to the electronic gating, also

interact strongly with the conduction electrons. To treat the strong interactions of the

excitons with both cavity and electrons, we solve the coupled equations for the correlation

functions non-perturbatively within a ladder approximation. The strong interactions give

rise to new quasiparticles known as polaron-polaritons. By driving the system through

the cavity, we show how the competition between electron-induced momentum relaxation

and cavity loss leads to the accumulation of polaritons at a small but finite momentum,

which is accompanied by significant decrease of the polariton linewidth Due to the hybrid

nature of the polaron-polariton, we show that this behavior can by qualitatively modified

by changing the cavity detuning.
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Chapter 1

Introduction

Understanding the interaction between light and matter has led to a long list of techno-

logical advances. A few recent examples are LEDs which are high-e�ciency light sources,

optical fibers, which allow high-speed information transfer, and solar cells, which makes it

possible to convert the light from the sun into electricity. One promising path to improve

our technology further is to exploit strong light-matter coupling on a quantum level, which

is the regime explored in this thesis.

The foundation for light-matter interaction on a quantum level is quantum electrody-

namics (QED) [1–7]. QED is a relativistic quantum theory, and its theoretical develop-

ment was a breakthrough that led to Tomonaga, Schwinger, and Feynman receiving the

Nobel prize in 1965. In QED, the electron is a freely moving particle that moves at such

speed that a relativistic description is necessary. In this thesis we consider systems at low

energy where the electron is not moving freely but confined inside matter, either by being

bound to an atom or embedded in a solid material. Due to the confinement and the low

energy, the electron moves much slower than the speed of light, and a relativistic theory

is no longer necessary.

Part of the success of QED is that the interaction strength between light and matter

is small, which allows for a perturbative treatment. To generate the strong light-matter

coupling we seek, one approach is to increase the intensity of the light field. Lasers are the

best example of tuneable and intense light which creates a strong field at a well-defined

frequency and position. The laser makes it possible to probe the low energy excitations

around the ground state [8]. With slightly higher intensities and shorter laser pulses it

is possible go beyond probing and use the laser to switch between di↵erent meta-stable

states of the quantum material and trigger non-equilibrium phase transitions [9,10]. The

high level of control over the laser even makes it possible to change properties of the

phases. One example is that by tuning the laser to excite specific phonon modes in

Fullerenes a similar response as superconductivity was found but at five times the critical

1



2 Introduction

temperature [11].

The high intensity of the laser makes quantum fluctuations negligible, so that the

field is essentially a classical electromagnetic field. Another approach to strong coupling

between light and matter is to confine the light within a small volume using an optical

cavity. The e↵ect of confining the light is that the field is quantized, and more importantly,

a strong coupling between a single light quantum, a photon, and the quantum material can

be achieved [12–15]. The coupling arises as a photon is absorbed by a mode in the material

that possesses a dipole momentum, transferring the material to an excited state. Strong

coupling between a cavity photon and quantum emitters is the foundation for cavity

QED, for which Haroche was awarded the Nobel prize in 2012 [16]. The regime of strong

coupling between a photon and a single emitter was first studied in the highly celebrated

Jaynes-Cummings model [17], and its predictions have been experimentally verified [18–

21]. Experimentally this strong coupling regime has been made more accessible as a result

of the advances in engineering high-quality cavities [22, 23].

In the strong coupling regime the energy is coherently transferred between the mate-

rial and the the cavity field. The coherent exchange of energy means that the system’s

quantum state is partly photonic and partly matter. This quantum superposition of light

and matter is known as a polariton. While the concept was first considered as a super-

position between a photon and an atomic excitation the polariton concept has a much

broader scope as it applies to any system where photons are strongly coupled to a matter

excitation. The diversity within the polariton concept is exemplified by more than 70

di↵erent polaritons having been proposed so far [24]. The matter part of the polaritons

range from a single electronic transition like in the Jaynes-Cummings model to collective

modes of solid state materials [25, 26].

Polaritons are interesting because of the fundamentally di↵erent nature of photons

and matter. Photons are fast and only interact weakly with each other, making them

ideal information carriers. They are promising candidates for realizing intriguing new

technologies such as quantum computers [27, 28], or a quantum internet [29]. However,

these technologies hinge on manipulating the photon state and implementing photon-

photon interactions in order to perform quantum information processing. In particular

these interactions need to strong on the single-photon level.

In turn, e↵ective photon-photon interactions can only be mediated by matter, and

thus rely on the formation of polaritons [30]. This is the basis not only for light-based

quantum information processing but also for the whole field of quantum nonlinear optics.

Progress in this direction has been made also in solid state systems, where both strong

e↵ective interactions [31] and highly controllable photon state preparation [32] have been

experimentally demonstrated.
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Polaritons have a wide range of technological applications, but due to their variety,

they also require a broad spectrum of di↵erent theoretical techniques to be described. The

polaritons which will be considered in this thesis are formed within quantum correlated

matter. Besides accounting for the correlations within the matter it is also necessary to

account for the fact that light confinement is never perfect, which means that photons

can be lost. To overcome the cavity loss, the system has to be driven externally and is

no longer in thermal equilibrium. Strong correlations within the many-body system is

native to condensed matter physics whereas the driven-dissipative nature of the cavity

is well described known in quantum optics. A framework that allows us to merge these

two fields is non-equilibrium field theory. This framework makes it possible to treat

the driven-dissipative nature of the polariton together with the interactions within the

matter. In chapter 2 we lay the theoretical foundation for the thesis by explaining the

construction of the non-equilibrium field theory and how one can use it to derive di↵erent

approximations.

Using the framework of non-equilibrium field theory, we explore two di↵erent driven

and dissipative polariton systems with the common feature that both matter components

have a macroscopic number of particles. In chapter 3 we investigate an ultracold gas inside

a cavity driven by a time-periodic laser. The matter component of the polariton is the

motion of the atoms, and we show how the atom cloud, driven by a modulated laser, gives

rise to e↵ective interactions between the cavity modes resulting in a polariton composed

of multiple cavity modes. The interactions between multimode polaritons give rise to an

intriguing phase diagram containing symmetry-broken phases with order parameters that

oscillate in time. In chapter 4 we use the insight generated in chapter 3 to construct

a minimal model. With this model, we derive the classical equations that govern the

broken symmetry phase and find that the multimode nature of the polariton gives rise

to di↵erent types of polaritonic limit cycles. Both of these chapters mainly investigate

the polariton from the perspective of quantum optics, focusing on how the matter degree

of freedom mediates e↵ective interactions between the di↵erent modes of the cavity field.

In chapter 5, we consider a di↵erent type of polariton where the matter component is an

exciton interacting strongly with electrons within a two-dimensional semiconductor. The

strong interactions between the excitons and electrons lead to quasiparticles known as

polarons, and the polaritons emerging from coupling to the cavity are polaron-polaritons.

The strong coupling between excitons and electrons requires a fully non-perturbative

theoretical approach. We develop a new numerical method for solving self-consistent

Dyson equations on the real-time contour defined in chapter 2 and show how the properties

of the polaron-polariton can be understood through an intricate interplay between the

driven-dissipative nature of the cavity and the many-body nature arising from exciton-
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electron scattering.



Chapter 2

Non-equilibrium field theory

This chapter will describe the structure of non-relativistic quantum field theory for non-

equilibrium systems, which we will use to describe the low-energy systems throughout

this thesis.

The focus of this chapter is on how to construct a non-equilibrium field theory and

what properties it has. This theory will be the basis for all calculations in this thesis

and we, therefore, emphasize its relation to physical observables and how these can be

computed. To facilitate this, many details will be skipped, and for those, the interested

reader is referred to [33–36].

In section 2.1 we will give a very brief overview of the main elements of quantum me-

chanics, but for a more comprehensive description, the reader is referred to any textbook

on the topic, for example [37,38]. With the quantum dynamical equations established, we

seek a method that makes it possible to compute correlation functions without having to

solve the full many-body problem. The first step is establishing the proper time contour

in section 2.2, consisting of a forward and a backward propagating branch. The contour

gives us a convenient way of time-evolving quantum-mechanical expectation values. In

section 2.3, this time contour is used to construct a field theoretic formulation of these

expectation values for a free theory. The free theory is non-trivial to construct because the

non-equilibrium nature of the systems leads to correlations between forward and backward

time propagation. With these correlations incorporated in the free theory, we discuss in

section 2.4 how to include interactions in a many-particle system. Specifically we focus

on two di↵erent methods to compute the expectation values from the action of the field

theory. One method is to derive the classical equation and the other is through Feynman

diagrams. Having discussed the equation of motion for interacting systems, sections 2.5

and 2.6 are dedicated to the physical content of the correlations functions in the quantum

field theory. We will see that the non-equilibrium nature can give rise to a substantial

number of di↵erent Feynman diagrams, and in section 2.7 we introduce an algorithm for

5



6 Non-equilibrium field theory

sorting and eliminating redundant diagrams. Finally, we consider a specific situation of a

system coupled to an environment in section 2.8. We show how the coupling gives rise to

an e↵ective description of the system’s degrees of freedom and relate it to the standard

open quantum systems approaches.

2.1 Quantum mechanics

For a closed quantum system, the first postulate of quantum mechanics is that physical

states are described by state vectors | (t)i, which are vectors in a Hilbert space. The

evolution of a state is governed by the Schrödinger equation [38]

i
d

dt
| (t)i = H(t) | (t)i , (2.1)

where we are working in units where ~ = 1. This will be done throughout the thesis.

The Hamiltonian operator H(t) is a Hermitian operator, meaning that H(t) = H(t)†,

where the dagger is the conjugation and transposition operation. Given an initial state

of the system, | (t0)i, one can formally solve this di↵erential equation with the time

evolution operator [37]

| (t)i = U(t, t0) | (t0)i . (2.2)

The time evolution operator must satisfy the di↵erential equation

d

dt
U(t, t0) = �iH(t)U(t, t0), (2.3)

with the initial condition U(t0, t0) = 1. As a direct consequence of the Hermitian Hamil-

tonian, one finds U to be unitary such that UU † = 1, where 1 is the identity operator.

Formally U can be written as

U(t, t0) = T exp

✓
�i

Z
t

t0

H(t0)dt0
◆

, (2.4)

where T is known as the time-ordering operator. It orders operator products such that

operators at earlier times are to the right of operators at a later time [39]. Using eq. (2.4)

to evolve the system directly is only possible for systems that can be exactly diagonalized.

This is not generally the case for systems with many degrees of freedom, which makes

it necessary to look for alternative ways of acquiring information about the interacting

system. A feature of U that proves useful is that it has the semigroup property [40]

U(t2, t0) = U(t2, t1)U(t1, t0), (2.5)
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such that it is possible to split the entire time evolution into many small steps.

The system’s state at time t is fully described by | (t)i. However, it does not directly

contain information about a specific experimental measurement outcome. The second

postulate of quantum mechanics states that physical observables are governed by Her-

mitian operators. Therefore, the state vector and the appropriate Hermitian operator

A describing the observable must be known to predict a measurement outcome. The

quantum states are probabilistic in nature, and repeating the same measurement process

on identically prepared systems does not generally lead to identical outcomes. Instead,

predictions can only be made about the average result after many measurements. A

measurement result can be predicted by computing the expectation value of A and is

computed by taking the inner product with the state vector

hAi(t) = h (t)| A | (t)i . (2.6)

Besides the inherently probabilistic nature of quantum mechanics, a classical prob-

abilistic e↵ect can also arise due to incomplete knowledge of the system. Incomplete

knowledge means that the system can be in di↵erent states with di↵erent probabilities.

In this case, there are no quantum correlations between the two states. To describe both

quantum correlations and classical probability e↵ects simultaneously, one can define the

density matrix

⇢ =
X

n

pn | ni h n| , (2.7)

where pn is the classical probability of being in state | ni. The general properties defining

⇢ are that it is Hermitian, positive and normalized. To satisfy these conditions, all eigen-

values of ⇢ must be real, greater than or equal to 0, and sum up to 1. These properties

allow us to interpret the eigenvalues of the density matrix as the probabilities for the

di↵erent eigenstates. Computing the expectation value of an observable is done by taking

the trace

hAi(t) =
X

n

pn(t) h n| A | ni = Tr (A⇢(t)) . (2.8)

The time evolution of the density matrix follows from the Schrödinger equation eq. (2.1)

such that its evolution is governed by

d

dt
⇢(t) = �iH(t)⇢(t) + i⇢(t)H(t) = �i [H(t), ⇢(t)]� , (2.9)

where [·, ·]� is the commutator. This equation is known as the Von Neumann equation.

Knowing the initial condition ⇢(t0) of the system, eq. (2.9) is again solved by the time
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Figure 2.1: The closed time contour used to describe the partition function. The blue
line is the contour along which the initial state evolves. It can be considered as two
di↵erent branches defined by the direction of propagation. The + branch propagates the
system forward in time while the � branch propagates backward in time. Notice that the
orientation of the time axis is chosen to align with the direction in the partition function
eq. (2.11).

evolution operator eq. (2.4)

⇢(t) = U(t, t0)⇢(t0)U
†(t, t0). (2.10)

All information about the quantum system is encoded in the density matrix. However,

even storing the full density matrix becomes intractable with growing system size. There-

fore, finding a solution for the full density matrix for all times for a general, interacting

many-body system is, in all but a few cases impossible, and approximations are needed to

make further progress. One widely used approach considers the entire system split into

two parts: an environment and a subsystem with a small number of degrees of freedom.

By enforcing di↵erent approximations on the environment and its interaction with the

subsystem, an equation of motion for only the subsystem can be constructed [40]. The

resulting equations can then be solved using methods like exact diagonalization or tensor

network methods [41–44]. These approaches a limited in the size of the subsystem Hilbert

space and the range of the quantum correlations.

Instead of decreasing the e↵ective system size, we will follow a di↵erent path. As

computing the full density matrix is not tractable, we will focus on computing only spe-

cific observables, which can be done e�ciently even in the thermodynamic limit. These

methods are thus well suited for considering collective macroscopic phenomena.

2.2 The time contour

As seen from eq. (2.8), a given expectation value is computed by tracing over the density

matrix and the observable. With this in mind, the natural starting point is to define a

partition function through the trace of the density matrix

Z = Tr [⇢(t)] = Tr
⇥
U †(t, t0)U(t, t0)⇢0

⇤
. (2.11)
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The first property of the partition function is that it directly corresponds to the nor-

malization of the density matrix and, therefore, must always equal one. We have seen

that U is time-ordered, which in turn means that U † is anti-time-ordered. To handle this

correctly, one can use the time contour sketched in fig. 2.1 and evolve the density matrix

around this contour [45,46]. Starting on the upper branch at the initial time t0, the state

is evolved forward using U(t, t0) until the final time is reached. The system is then evolved

backward with U †. Because the direction of propagation is reversed, anti-time ordering

is guaranteed by construction.

Consider the specific case, where at some initial time far back in the past, the system

was in a simple non-interacting thermal state. Formally, this is done by letting ⇢0 be a

thermal state and taking t0 = �1. This corresponds to adiabatically turning interactions

on and o↵ along the forward and backward contour, respectively. The contour can also be

extended into the future using U †(1, t)U(1, t) = 1. It is worth mentioning that instead

of the adiabatic onset of interactions, one can append an imaginary time evolution to the

contour [47]. This can be useful if one considers dynamics, but arbitrary initial states can

also be constructed without the imaginary time addition.

We will now develop a field theory that allows us to compute correlation functions

based on the t(t0) ! (�)1 version of the contour in fig. 2.1. The correlations functions

we consider will be of the two-point type meaning that they will be of the form

hA(t0)B(t)i = Tr
�
AU(t, t0)BU(t, t0)⇢0U

†(t, t0)U
†(t0, t)

�
. (2.12)

One can derive the same equations of motion for the correlation functions by using

an analytic continuation to put the correlation functions on the contour directly [48–50].

Which approach one uses to derive the equations for the correlation functions is mainly

a matter of preference. The action approach is convenient for our calculations because it

makes it straightforward to derive classical equations and trace out di↵erent parts of the

system.

2.2.1 Evolution along the contour

For the field theory approach, we exploit the previously mentioned semigroup property

of the evolution operator in eq. (2.5). This property can be used to slice each branch of

the time contour into N small pieces. The full evolution operator is then partitioned into

evolutions over each of these small intervals

U(t, t0) =
NY

n=1

U
⇣
n� + t0, (n� 1)� + t0

⌘
, � = (t� t0)/N, (2.13)
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where � is the length of each time slice. At this point, each evolution operator is still

a complicated object which includes the time-ordering operator. However, for a large

number of slices, each time interval becomes su�ciently small such that the Hamiltonian

e↵ectively does not change during the course of one interval, and consequently, both

the time-ordering and the integral in eq. (2.4) become trivial. The simplified evolution

operator then describes evolution over one small time step

U
⇣
(n + 1)� + t0, n� + t0

⌘
= exp

⇣
� i�H(n� + t0)

⌘
, (2.14)

under the constraint that � is small enough such that

H (n� + t) ⇡ H
⇣
(n + 1)� + t

⌘
, 8 t. (2.15)

Even though the evolution operator has been simplified to a product of operator exponen-

tials, it is still necessary to diagonalize the Hamiltonian for all times to find the spectral

representation of the exponential operators. Alternatively, one can use the smallness of

� to expand the evolution operator in eq. (2.14)

U(n� + t0, (n� 1)� + t0) = 1� i�H(n� + t0) + O(�2). (2.16)

This expansion is often used in digital quantum simulators [51] and is known as a Trot-

ter decomposition [52, 53]. The leading-order term is of O(1) because the full evolution

contains N factors of evolution operators, which exactly cancels the factor of 1/N con-

tained in �. The higher-order terms scale inversely with N such that, in the limit where

N !1, only keeping up to first order in � becomes exact.

The evolution of the density matrix has been split into small tractable steps. Because

quantum mechanics is not deterministic, the system can be in di↵erent possible states

at each step, and the system can evolve along all possible paths simultaneously. This

idea is explicitly implemented in the contour by inserting identities between each time

slice. Such an approach to quantum mechanics was pioneered by Feynman and is referred

to as the Feynman path integral approach to quantum mechanics [54]. Feynman’s path

integral was originally described in the position and momentum basis analogously to the

classical action in Lagrangian mechanics. While this works well for single particles or even

bosonic systems, it is not suitable for most many-body electronic systems because they

obey fermionic statistics. Instead of working with position and momentum operators, one

can directly incorporate the statistics of the constituents (fermionic or bosonic) into the

basis by working in second quantization [39]. In brief, the idea is to describe the system’s

state by the number of excitations it contains. These excitations are identified by di↵erent
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degrees of freedom (momentum, spin, site, electromagnetic mode, etc.). One can define

operators that create (annihilate) an excitation in a specific state, and these operators

satisfy either bosonic or fermionic statistics.

One can add an infinite number of excitations into a specific bosonic mode, while

fermions obey the Pauli exclusion principle and can only contain zero or one excitation.

For bosons, the operators are defined through their commutation relations

⇥
bk, b

†
q

⇤
� = �k,q,

h
b(†)
k

, b(†)
q

i

�
= 0, (2.17)

where the annihilation operator (bk) removes an excitation from a mode defined by its

quantum number k. Note that this can be a composite number corresponding to a com-

bination of several degrees of freedom. For fermions, the exclusion principle is ensured by

having the operators defined through the anti-commutator

⇥
ck, c

†
q

⇤
+

= �k,q,
h
c(†)
k

, c(†)
q

i

+
= 0, (2.18)

which is defined as [A, B]+ = AB + BA.

Any physical operator can be expressed through the annihilation and creation op-

erators, the simplest example being the number operator a†
k
ak = nk, which counts the

number of excitations in the k’th state. Even though the annihilation operator is non-

Hermitian, the right eigenstate of this operator can still be defined. This state is known as

the coherent state, and its defining feature is that it is unchanged by having an excitation

removed from it.

For a compact representation, it is convenient to work with the unnormalized coherent

states [34], which for a single bosonic mode takes the form

b |�i = � |�i , |�i = e�b
† |0i . (2.19)

Because of the non-Hermiticity of b, the eigenvalues � are not real but complex numbers.

The non-Hermitian nature of the coherent state also means that the overlap between

di↵erent coherent states belonging to the same mode is not orthogonal

h✓|�i =
X

m,n

✓̄m(�)n

m!n!
h0| bm(b†)n |0i =

X

n

(✓̄�)n

n!
= e✓̄�. (2.20)

The coherent states thus constitute an over-complete basis. To account for this over-

counting, the appropriate identity relation includes a correction factor

1 =

Z
d[�̄,�]e�|�|2 |�i h�| , (2.21)
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Here the integral measure is to be understood as d (Re�) d (Im�) /⇡ such that the inte-

gral’s domain is the entire complex plane. From this identity resolution, the trace of any

operator can be computed in the coherent state basis as

Tr [O] =

Z
d[�̄,�]e�|�|2 h�| O |�i . (2.22)

To define the coherent states for a fermionic operator, one has to use the algebra of

anti-commuting numbers to ensure the anti-commutation relations are fulfilled. These

numbers are known as Grassmann numbers (or the exterior algebra) [33,34,55] and using

them, the coherent state for a single fermionic mode is

| i = |0i �  |1i =
�
1�  c†

�
= e� c

† |0i , (2.23)

where  is a Grassmann number. The overlaps appear identical to the bosonic coherent

states in eq. (2.20) with the complex numbers replaced by Grassmann numbers. Compared

to the bosonic case, one important di↵erence is that the numbers  and  ̄ are unrelated.

This means that the identity

1 =

Z
d[ ̄, ]e� ̄ | i h | , (2.24)

can not be written with an absolute value, and the measure is to be understood simply

as d d ̄. Lastly, due to their anti-commuting nature, one finds that the trace acquires a

change of sign

Tr [O] =

Z
d[ ̄, ]e� ̄ h | O |� i . (2.25)

As we will be deriving the formalism simultaneously for bosons and fermions, we will

denote the coherent state as |�i for both bosons and fermions. The di↵erence between

the two will lead to sign-changes due to the anti-commutation relations. We will follow

the notation that whenever two di↵erent signs are written, the upper one is for bosons,

and the lower one is for fermions. Initially, we focus on the simple case of a single mode

to showcase the main structure of the action. As we progress, more degrees of freedom

will be added, and it will be clear that they are generally straightforward to include.

2.3 The free action and propagators

Having defined a contour and a suitable basis, we are now ready to construct the action

for the theory. After the partition function in eq. (2.11) is placed on the contour and
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coherent state identities have been inserted between the time slices, it takes the form

Z =

Z  
NY

j=1

d[�̄+
j
,�+

j
]d[�̄�

j
,��

j
]e�|�+j |2�|��j |2

!

⇥
⌦
��
1

��U��(t0)
����

2

↵
...
⌦
��
N�1

��U��(tN�1)
����

N

↵ ⌦
��
N

��1
���+

N

↵

⇥
⌦
�+
N

��U+�(tN�1)
���+

N�1

↵ ⌦
�+
N�1

�� ...
���+

1

↵ ⌦
�+
1

�� ⇢0
��±��

1

↵
.

(2.26)

The trace leads to the two boundary fields (��
1 ) being identical, apart from a sign de-

pending on whether the system is bosonic or fermionic, according to the trace formulas

in the previous section. The sliced evolution operator from eq. (2.16) is

U(tn+1, tn) = 1� i�H(tn) = U+�(tn), (2.27)

were tn = n� + t0. The contour is closed by the identity (as a jump from one branch

to the other requires no evolution along the time axes) and by the initial state. These

end overlaps lead to correlations between the + and � fields and are important as they

preserve the normalization of the density matrix. So even though they only account for

four of the infinitely many points on the contour, it is essential to include them in the

construction.

To evaluate the overlaps, one can always write H with all annihilation operators to the

right of the creation operators, a form known as the normal-ordered form of H. Evaluating

overlaps of normal ordered operators is particularly simple, as each annihilation/creation

operator in the overlap, due to the definition of the coherent states, is just replaced by

the complex/Grassmann number defining the coherent state. The form of one overlap in

eq. (2.26) is then given as

⌦
�±
n

��U±�(tn)
���±

n⌥1

↵
=
⌦
�±
n

���±
n⌥1

↵✓
1⌥ i�H(�̄±

n
,�±

n⌥1, tn)

◆

⇡ exp

✓
�̄±
n
�±
n⌥1 ⌥ i�H(�̄±

n
,�±

n⌥1, tn)

◆
.

(2.28)
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With these overlaps, the partition function can be written as

Z =

Z  
NY

j=1

d[�̄+
j
,�+

j
]d[�̄�

j
,��

j
]

!

⇥ exp


i

NX

n=2

�

✓
i�̄+

n

�+
n
� �+

n�1

�
�H(�̄+

n
,�+

n�1, tn)

� i�̄�
n

��
n
� ��

n�1

�
+ H(�̄�

n�1,�
�
n
, tn)

◆�

⇥ exp
�
i�̄+

1 �
+
1 + i�̄�

1 �
�
1 � i�̄�

N
�+
N

� ⌦
�+
1

�� ⇢0
��±��

1

↵
.

(2.29)

The goal is to write Z in a continuum form, i.e.

Z =

Z
D[�̄±,�±] exp (iS) (2.30)

where S is called the action and is a functional of the coherent fields in the limit of

�! 0. The first exponential, containing the sum over n, can directly be written in such

a continuum form where

S+� =

Z
dt

✓
�̄+(t)i@t�

+(t)�H(�̄+(t),�+(t), t)

� �̄�(t)i@t�
�(t)�H(�̄�(t),��(t), t)

◆
.

(2.31)

Because the boundary overlaps in the last line of eq. (2.29) can not be included in this

form, it can not preserve the normalization of the partition function.

To find a self-contained continuum action, we first consider the simple case of a free

theory with an initial thermal state. In this case, both the Hamiltonian part and the

expectation value of the initial state are quadratic in the fields. The theory can be solved

exactly as all correlation functions are derivable from the two-point functions. The two-

point correlation functions are often referred to as the Greens functions or the propagators

of the theory. They are defined through

G↵,�(t, t0) = h�↵(t)�̄�(t0)i

=

Z
D[�̄±,�±]�↵(t)�̄�(t0) exp (iS) ,

(2.32)

with ↵, � 2 {+,�} and S now being the action, that does contain the contour coupling

which we seek to find. If a free theory is considered, then S is quadratic, and the Gaussian

functional integral has a closed form solution. The full discrete action can then be written

as a matrix from which the discrete propagators can be computed. Afterward, this can be
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promoted to a continuum theory by taking the limit �! 0. This is done in appendix A

where we show that if one rotates the fields on the contour into a mixed basis through

the transformation  
�c

�q

!
=

1p
2

 
1 1

1 �1

! 
�+

��

!
, (2.33)

then the correlations of the contour endpoints in eq. (2.29), can be included in the

quadratic part of the action. The field �c is referred to as the classical field, �q as

the quantum field, and the rotation in eq. (2.33) is known as the Keldysh rotation. The

rotated fields will be referred to as the Keldysh basis, while the original fields on the ±
branches will be referred to as the ± basis.

For bosons, � and �̄ are related by complex conjugation, which forces the bar fields to

be transformed by the complex conjugate version of eq. (2.33) which has the same form.

As this is not the case for the fermionic fields, one can choose a di↵erent transformation

for the bar fields [33]. Whenever we work with fermions, they will also interact with

bosonic particles; therefore, it is convenient to use the same contour transformation for

all kinds of particles such that the action always takes the same form. Note that the name

classical and quantum fields are meaningless for fermions as they have no classical analog.

Using the rotation in eq. (2.33), it is shown in appendix A that the continuum action

for the free theory takes the form (see eq. (A.37))

S =

Z
dx dx0

 
�̄c(x)

�̄q(x)

!T  
0 (GA)�1(x, x0)

(GR)�1(x, x0) PK(x, x0)

! 
�c(x0)

�q(x0)

!
. (2.34)

The two-point propagators related to these new fields are

iG(x, x0) =

* 
�c(x)�̄c(x0) �c(x)�̄q(x0)

�q(x)�̄c(x0) 0

!+

= i

 
GK(x, x0) GR(x, x0)

GA(x, x0) 0

! (2.35)

The three di↵erent types of propagators are known as the retarded (R), the advanced

(A), and the Keldysh (K) propagator.

The retarded and advanced elements appearing in the action in eq. (2.34) is directly

related to the retarded and advanced propagators through an inversion, while the Keldysh

propagator is defined by the element PK in eq. (2.34)

GK(x, x0) = �GR(x, y)PK(y, z)GA(z, x0), (2.36)
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where the repeated arguments are contracted over. For the free theory, PK = PK

0 is an

element with infinitesimal weight as shown in eq. (A.41).

While the elements in eq. (2.34) are changed by interaction, eq. (2.35) can be taken as

the definition of the propagators and is completely general also for interacting systems.

Even though we do not yet know how to construct the action for an interacting system,

eq. (2.35) gives rise to some general defining properties of the propagators. For the case of

the retarded propagator, its definition is related to the expectation values of the creation

and annihilation operators, introduced in eq. (2.19), which can be seen by undoing the

Keldysh rotation

GR(x, x0) = �ih�c(x), �̄q(x0)i

= � i

2
h�+(x) + ��(x), �̄+ (x0)� �̄�(x0)i

= � i

2

⇣
hT a(x)a†(x0)i � hT�a(x)a†(x0)i+

D⇥
a(x), a†(x0)

⇤
⌥

E⌘

= � i

2

8
<

:
ha(x)a†(x0)i ⌥ ha†(x0)a(x)i+ ha(x)a†(x0)i ⌥ ha†(x0)a(x)i, t > t0

±ha†(x0)a(x)i � ha(x)a†(x0)i+ ha(x)a†(x0)i ⌥ ha†(x0)a(x)i, t < t0

= �i✓(t� t0)
D⇥

a(x), a†(x0)
⇤
⌥

E
,

(2.37)

where T is the time-ordering operator discussed in eq. (2.4) and T� is the anti-time-

ordering operator. Rotating GA and GK into the ± basis leads to

GA(x, x0) = i✓(t0 � t)
D⇥

a(x), a†(x0)
⇤
⌥

E
,

GK(x, x0) = �i
D⇥

a(x), a†(x0)
⇤
±

E
.

(2.38)

This gives the propagators the properties

GA(x, x0) =
�
GR(x, x0)

�†
, GK(x, x0) = �

�
GK(x, x0)

�†
. (2.39)

These relations are often referred to as the causal structure of the propagators. For equal

times they lead to the generic relation

GR(t, t;↵,↵0) + GA(t, t;↵,↵0) = �i✓(0)

✓D⇥
a(t,↵), a†(t,↵0)

⇤
⌥

E

�
D⇥

a(t,↵), a†(t,↵0)
⇤
⌥

E◆
= 0.

(2.40)

Due to the (anti-)commutation relations, the di↵erence between the two propagators must
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satisfy

GR(t, t;↵,↵0)�GA(t, t;↵,↵0) = �i✓(0)

✓D⇥
a(t,↵), a†(t,↵0)

⇤
⌥

E

+
D⇥

a(t,↵), a†(t,↵0)
⇤
⌥

E◆
= �i�↵,↵0 .

(2.41)

2.4 Beyond the free theory

We have derived some general properties of the two-point propagators but have only

shown how to construct the action for a Gaussian theory. We have discussed how the

coupling between the two branches of the contour that arise from the thermal initial state

and the trace can be included in the bare propagators.

To take advantage of the non-interacting structure, the Hamiltonian is split into a

quadratic part (H0) and a non-quadratic part (HI)

H = H0 + HI (2.42)

This Hamiltonian is put on the contour in fig. 2.1 using the action in eq. (2.31), sim-

ply by normal ordering it and replacing creation and annihilation operators by com-

plex/Grassmann fields. The non-interacting (quadratic) part immediately gives rise to

the bare propagators

(GR

0 )�1(x, x0) = �(x� x0)

✓
i@t �

H0(�̄q(x),�c(x), x)

�̄q(x)�c(x)

◆
. (2.43)

The interactions, which are not included in the bare propagator, are then rotated into

the Keldysh basis. In this thesis, two approaches will be used to compute the propaga-

tors, either construct an e↵ective theory for the propagators or derive a set of classical

equations.

2.4.1 Classical equations of motion

For bosonic fields, one can derive classical equations of motion directly from the action.

The action is a functional that takes a specific space-time configuration as an argument

and outputs a number with the dimension of energy ⇥ time. This number is related to

how a trajectory/path has changed over time. In a quantum system, all possible paths are

followed simultaneously, which is why the partition function is a functional integral over

all possible field configurations, weighted by the exponential of the action. A classical

system can only take one specific path and follows the one along which the action is
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stationary [56]. By requiring that the variation of action vanishes, four di↵erent types of

equations emerge

�S[�c,�q]

��c(t)
= 0,

�S[�c,�q]

��̄c(t)
= 0,

�S[�c,�q]

��q(t)
= 0,

�S[�c,�q]

��̄q(t)
= 0. (2.44)

A crucial feature of the Keldysh action is that the action always has to be at least linear

in the quantum fields. This is necessary for the normalization of the density matrix to

be preserved and means that S [�c,�q = 0] = 0. The equations originating from taking

functional derivatives with respect to the classical fields are, therefore, always solved by

�q = �̄q = 0. The classical equations are then given by only two types of equations

�S
��q(t)

����
�̄q=�q=0

= 0,
�S

��̄q(t)

����
�̄q=�q=0

= 0. (2.45)

The physical interpretation of the non-trivial solutions � to these equations is that the

field has obtained a finite coherent occupation value. When a bosonic state described by

annihilation operator, a acquires a high occupation N � 1 in a coherent state, then

h�| aa† |�i = h�| a†a |�i+ h�|�i = h�|�iN + h�|�i , (2.46)

and it becomes a good approximation to assume that commutator vanishes such that

h�| aa† |�i = h�| a†a |�i . (2.47)

Due to Pauli’s exclusion principle, a fermionic coherent state can not contain more than

one fermion, and there is no limit in which the anti-commutation can be ignored. Conse-

quently, the classical approach can not be used directly for fermions. It is, however, useful

for fermionic systems because a bosonic quasiparticle can arise joining an even number

of fermions, an example being that of a Cooper pair [57]. A composite bosonic particle

emerges at a phase transition, where the composite bosonic mode acquires a finite oc-

cupation once the phase transition is crossed. The occupation of this mode is the order

parameter describing the phase, and one can derive a classical equation for this order

parameter. The critical point of the phase transition occurs when the solution has a finite

value of the order parameter.

Using the action as a starting point does not just give a rigorous way to derive a

classical theory but also allows one to derive semiclassical equations in di↵erent ways.

By including fluctuations around the initial state, one can derive the Truncated Wigner

approximation [58]. Another example is that the inclusion of dissipation directly leads

to semiclassical equations that are stochastic equations of the Langevin form [59], which
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will be shown in chapter 4.

2.4.2 Self-energies and Feynman diagrams

One is enforcing multiple approximations using the saddle-point approximation to derive

the classical equations. It is assumed that the system has a classical limit, that the quan-

tum fluctuations are negligible, and that the expectation values of a product of operators

are equivalent to the product of their individual expectation values. As mentioned, one

can improve the classical equations by relaxing some assumptions, but it will never be

ideal for a generic interacting quantum system. Furthermore, the classical equations can

not capture interaction-induced perturbations to the spectrum of fermionic particles.

Instead of relying on a variation of the action, one can derive equations for the retarded

and Keldysh propagator. To this extent, we assume that an expansion around the free

theory converges and writes the full propagator as

iG↵,�(x, x0) = h�↵(x)�̄�(x0)i =

Z
D [�c,�q]�↵(x)�̄�(x0)eiSIeiS0

=

Z
D [�c,�q]�↵(x)�̄�(x0)

1X

n=0

(iSI)n

n!
eiS0 ,

(2.48)

where the exponential containing the interaction is written as a power series. The straight-

forward approach of truncating the sum at a specific order is problematic because the

higher order terms can dominate as the number of new terms can increase faster than

1/n! [34]. To overcome this problem, it is necessary to go to infinite order in n. For the

retarded propagator, this resummation was first discussed by Dyson [7] and generalized

by Schwinger [60]. The idea is to define a specific element known as the self-energy ⌃. The

self-energy is derived from the interaction, such that the series expansion of the retarded

full propagator, from eq. (2.48) with ↵ = c and � = q, can be written as

GR(x, x0) = GR

0 (x, x0) + GR

0 (x, y)⌃R(y, z)GR

0 (z, x0)

+ GR

0 (x, y1)⌃
R(y1, y2)G

R

0 (y2, y3)⌃
R(y3, y4)G

R

0 (y4, x
0) + ...

(2.49)

The factor of GR

0 (x, y)⌃R(y, z) can be taken out from all the terms containing the self-

energy
GR(x, x0) = GR

0 (x, x0) + GR

0 (x, y)⌃R(y, z)

⇥
�
GR

0 (z, x0) + GR

0 (z, y1)⌃
R(y1, x

0) + ...
�
.

(2.50)

The last factor corresponds to the full propagator in eq. (2.50), such that we can write

GR(x, x0) = GR

0 (x, x0) + GR

0 (x, y)⌃R(y, z)GR(z, x0). (2.51)
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x’ x
=

x’ x
+

x’ y

⌃
z x

Figure 2.2: The graphical representation of the Dyson equation for the retarded propagator
in eq. (2.53). Dashed lines represent a quantum field, and solid lines a classical field. The
thin lines are the bare propagators, while the thick lines are the full propagator. The
arrow points away from particle creation and towards particle annihilation. The LHS
reads: create a particle in a quantum field at x0 and remove a particle in a classical field
at x.

To make progress, one can contract eq. (2.51) with the inverse bare propagator from the

left and gather the terms involving the full propagator

⇣�
GR

0

��1
(x00, x)� ⌃R(x00, x)

⌘
GR(x, x0) = �(x00 � x0). (2.52)

Applying the inverse of the left factor, the full propagator is found by inverting the

di↵erence between the bare propagator and the self-energy

GR(x, x0) =
⇣�

GR

0

��1 � ⌃R

⌘�1

(x, x0). (2.53)

This equation will be referred to as the Dyson equation for the retarded propagator. For

a non-equilibrium theory, the action acquires a matrix structure. Due to causality, the

inversion of the retarded and advanced propagators follow by the inversion of a single

element in the action. However, the matrix structure leads to an additional coupled

equation for the Keldysh propagator, which is in general independent from the retarded

and advanced propagators. For the Keldysh component in the action, the resummation

leads to a change of PK

PK(x, x0) = 2i0+F0(x, x0)� ⌃K(x, x0), (2.54)

where 0+ is a positive infinitesimal and F0 is related to the initial state eq. (A.40). As soon

as a finite self-energy contribution is added, one can neglect the infinitesimal contribution

from the free theory. An important feature of the self-energy is that it satisfies the

same causality as the propagators such that ⌃R =
�
⌃A

�†
and ⌃K = �

�
⌃K

�†
, which is

essential because any allowed form of the self-energy must preserve the causality of the

propagators [33].

To construct the self-energy, it proves advantageous to introduce a graphical repre-

sentation of the equations. This provides a clear physical interpretation of the processes

included in the self-energy and can make the calculation more transparent, as identifying

the multiplicity of corresponding diagrams is typically easier than identifying equivalent
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Figure 2.3: Four of the eight vertices generated by the interactions in eq. (2.56). The
wavy line represents the �a fields, and the straight lines are the �b fields. The remaining
four diagrams correspond to the ones shown here with all the arrows flipped. Similarly to
fig. 2.2, the dashed lines represent quantum fields while the solid lines represent classical
fields.

terms in a complicated sum. The full retarded propagator is shown in its graphical repre-

sentation in fig. 2.2. The construction of the self-energy is initiated by defining a vertex

for each term in SI . For example consider a system described by the Hamiltonian

H = !bb
†b + !aa

†a + b†b(ga + ḡa†), (2.55)

where b(b†) and a(a†) are bosonic annihilation(creation) operators and !b (!a) is the

energy required to create a single excitation in the b (a) mode. The coupling g is a

constant. The interacting part of the action is

SI = � 1p
2

Z
dt g

 
�̄c

b
�q

b
+ �̄q

b
�c

b

�̄c

b
�c

b
+ �̄q

b
�q

b

!T 
�c

a

�q

a

!
+ H.c., (2.56)

where T denotes transposition. For this interaction, one can write down eight di↵erent

vertices, four for the term written in eq. (2.56) and four for its Hermitian conjugate that

are also implicitly written in eq. (2.56). The first four are drawn in fig. 2.3. To build the

self-energy, one has to go to a specific order in the interaction. This means constructing

all diagrams which include a specific number of vertices.

The self-energy always has two external legs, and in the non-equilibrium formalism,

the type of leg (quantum or classical) determines which of the three blocks of the action

the self-energy belongs to. In the Keldysh basis, the self-energy is written as

⌃ =

 
0 ⌃A

⌃R ⌃K

!
. (2.57)

To find ⌃R, the left external leg has to be a classical field, and the right external leg has

to be a quantum field. For ⌃K , both external legs have to be quantum fields.

Considering an interaction where all vertices have N legs and to order n in the inter-
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a)

+ + ⇥ +

b)

+ +

Figure 2.4: The diagrams contributing to the retarded self-energy for a-fields with the in-
teraction in eq. (2.56) when two vertices are considered. The wavy �a-fields can propagate
in both directions, and both have been included here inside a parenthesis. Both the a) line
and the b) line, therefore, consists of a sum of four diagrams. The �a field connects to a
vertex indicated as a black dot. The diagram in a) consists of disconnected diagrams, and
the ⇥ indicates a product. The disconnected diagrams are only evaluated at the diagonals,
while the diagram in b) is of the particle-hole type and depends on the non-diagonal part
of the propagators of the b-fields.

action, the two external legs are constrained, meaning that there are nN �2 free legs left.

These should be connected in all possible ways. Each time two legs are connected, this can

be identified as a specific propagator. As an example consider the three-legged vertices

in fig. 2.3 and consider n = 2. The retarded diagrams for the a-field are constructed with

two vertices. As the left external leg has to be a classical a-field, the first vertex has to be

one of the last two shown in fig. 2.3. The right external leg must be a quantum field and

can be the conjugate of either of the two first vertices in fig. 2.3. Connecting the internal

legs, one arrives at the diagrams shown in fig. 2.4. In the considered case, both vertices

must be directly connected to the external legs. In general, one can draw diagrams where

parts are not connected to external legs, known as disconnected diagrams. It is a feature

of the non-equilibrium formalism that these always evaluate to zero [33], which means

that the self-energy only contains connected diagrams. This is a consequence that follows

directly from the normalization of the partition function.

A shared feature of the diagrams for the a-fields is that the interaction gives rise

to anomalous propagators because the arrow of the a-field propagator can go in both

directions without changing the diagram. This gives rise to a Nambu structure for the

self-energy, which we will explore in more detail in chapter 3.

For the diagrams shown in fig. 2.4a the a-field interacts with a b-field through the

propagator GR

b
(x, x) + GA

b
(x, x) which vanishes due to eq. (2.40). The only diagram that

is important for the self-energy at n = 2 is therefore the loop diagram in fig. 2.4b. To

compute the diagram, it must be translated into an equation which can be done through

a well-defined algorithm that will now be described.
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Inspecting the action in eq. (2.56) one sees that each vertex has a prefactor of �g/
p

2

and furthermore the series expansion in eq. (2.48) gives each vertex a additional factor

of i. The factor of 1/n! in eq. (2.48) is used to re-exponentiate the result and therefore

does not enter the self-energy. For more complicated diagrams, there may be several

ways of generating the same diagram, and a combinatorial factor must be included in the

diagram’s value. Each line, that is connected at a vertex in both ends, can be identified

with a specific propagator through h�↵
n,x
�̄�
m,x0i = iG↵,�

n,m
(x, x0).

To include the self-energy in the action, the external legs are removed, an overall factor

of �i is included, and due to the self-energy sign-convention, one also multiplies with �1.

One last important rule is that for each closed loop of fermionic particles, a factor of �1

must be included. This arises from the anti-commutation of the fermions [61].

Apart from sign convention, the same procedure works for adding e↵ective interaction

terms (not quadratic in the fields) to the action. For the diagram in fig. 2.4b we find the

expression

⌃R

a
(z, y) = (�1)(�i)

✓
igp
2

◆2

iGR

b
(z, y)iGK

b
(y, z)

= i
g2

2
GR

b
(z, y)GK

b
(y, z).

(2.58)

Usually, one relies on the smallness of some parameter in the interaction compared to

the bare energy scales, such that the self-energy only contains relatively simple diagrams.

Alternatively, the self-energy can be chosen such that it captures a specific physical process

that is believed to be important. By doing the Dyson resummation, one captures these

processes to infinite order. To avoid over-counting in this process, it is important that

the self-energy only includes diagrams that cannot be built by other diagrams already

included in the self-energy. These diagrams are called one-particle irreducible and are

identified by the fact that by cutting any line, the diagram remains a connected diagram.

One thing not generated through this method is the insertion of self-energies into each

other. This can be achieved by using a self-consistent theory. The idea is that in the self-

energy, one promotes all the propagators to full propagators (equivalent to promoting all

lines in the self-energy to bold lines according to fig. 2.2). The self-energy then becomes

a functional of the propagator. By this conceptually simple procedure, one includes a

vast amount of additional diagrams. This procedure also has the important property

that if the self-energy is derived from a so-called �-functional and all lines are bold, then

the solution will satisfy the conservation laws arising from the full action [62]. Besides

being computationally much more demanding, it does have the disadvantage of being an

uncontrolled approximation. The e↵ect is that many e↵ects are included, but one can

not say that all e↵ects up to a specific order are included. In the worst-case scenario, one

is generating processes that should cancel out against other processes at the same order,
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but the latter are not being generated through the diagrams included in the self-energy.

Still, the fact that conservation laws are respected makes self-consistent approximations

very desirable in general. The self-consistent approach has also been found to give good

quantitative results in highly non-trivial cases. An example relevant for the present thesis

is the BCS-BEC transition in a three-dimensional two-component Fermi-gas [63].

2.5 Spectral properties

Given an approximation for the self-energy, we can compute the propagators with interac-

tions included. It is then essential to understand what physical information these propa-

gators contain. The most transparent situation is when one considers a time-independent

system in its steady state. This means that the propagators only depend on the relative

time ⌧ = t � t0. For a generic situation, one can rewrite the propagators with absolute

(ta) and relative time  
t

t0

!
=

 
1 1/2

1 �1/2

! 
ta

⌧

!
. (2.59)

We will call these coordinates the center of time (COT) coordinates. As the transfor-

mation is linear, the Jacobian is given by the absolute value of the determinant of the

transformation matrix, which for this rotation is unity. Therefore, the action takes the

same form with all t, t0 replaced by ta, ⌧ in eq. (2.59). In COT coordinates the propagator

G↵(t, q; t0, q0)1 is written as

G↵(ta, ⌧ ; q, q
0) = G↵(ta + ⌧/2, q; ta � ⌧/2, q0), (2.60)

which propagates the state q0 at t0 to the state q at t. The Fourier transform is then used

to go between the relative time and frequency domain

f(!) =

Z 1

�1
eit!f(t)dt, f(t) =

1

2⇡

Z 1

�1
e�i!tf(!)d!, (2.61)

giving the propagator G↵(ta,!; q, q0) and the causal structure from eq. (2.39) takes the

form

GA(ta,!; q, q0) = ḠR(ta,!; q0, q), GK(ta,!; q, q0) = �ḠK(ta,!; q0, q). (2.62)

It was observed in eq. (2.37) that the retarded propagator is only non-zero for ⌧ � 0. As

shown in appendix B this means that the real and imaginary parts of GR(ta,!, q0, q) are

dependent of each other. The imaginary part can be computed from ReGR(ta,!, q0, q)

1
with ↵ 2 {R, A, K}
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using the Kramers-Kronig relations

Im GR(ta,!, q0, q) = P
Z

d!0

⇡

Re GR(ta,!0, q0, q)

! � !0 , (2.63)

and

Re GR(ta,!, q0, q) = P
Z

d!0

⇡

Im GR(ta,!0, q0, q)

!0 � ! . (2.64)

This motivates defining a quantity that is related to the imaginary part of the retarded

propagator
A(ta,!, q, q0) = i

�
GR(ta,!, q, q0)�GA(ta,!, q, q0)

�

= i
�
GR(ta,!, q, q0)� ḠR(ta,!, q0, q)

�
,

(2.65)

where A(ta,!, q, q0) is known as the spectral function. Due to the properties of the retarded

propagator in eq. (2.41) the spectral function obeys a sum rule

Z
d!

2⇡
A(ta,!, q, q0) = �q,q0 . (2.66)

The normalization of the q, q part makes it possible to give a physical interpretation of

the spectral function. To facilitate this consider a system with a single mode, like in

appendix A, with an arbitrary non-zero self-energy split into its real and imaginary parts

⌃R(ta,!) = �(ta,!) + i�(ta,!). The propagators and self-energies are then scalar-valued

functions, and the corresponding spectral function is

A(ta,!) = �2ImGR(ta,!) = �2Im
1

! � !0(ta)� ⌃R(ta,!)

=
�2�(ta,!)

(! � !0(ta)� �(ta,!))2 + �(ta,!)2

= �2 Im
�
⌃R(ta,!)

�
|GR(ta,!)|2,

(2.67)

which is a type of generalized Lorentzian. In the non-interacting case, both self-energy

terms vanish, and �� is substituted with an infinitesimal positive number. In this case

the infinitely narrow Lorentzian turns into �(! � !0). The interpretation is that the

system can only be excited at ! = !0. As the excitation is an eigenstate, it has an infinite

lifetime, which leads to the peak having zero width.

For the interacting case, the bare creation operation does not create an eigenstate.

The consequence is that the real eigenstate is a superposition of many bare states. Due

to the sum rule, the diagonal parts describe a probability measure for how the spectral

weight of the free modes is distributed into the interacting states. Practically it means

that from the spectral function peak positions, we learn about the energies of the new

single-particle excitations (at !0 + �(!)), and the peak widths contain information about
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how good single-particle eigenstates the bare states are (their lifetime). From eq. (2.67),

we can directly carry over this interpretation to the retarded self-energy. The real part of

the retarded self-energy shifts the energy of the single-particle states, while the imaginary

parts give rise to a finite lifetime as the free state can spread out into the interacting

states. Experimentally the spectral function is accessible because it is related to the linear

response of the system. In cavity systems it can for example be investigated using pump-

probe [64] or transmission techniques [65], while for electronic systems it can be probed

with scanning tunnel microscopy [66, 67] or angle-resolved photoemission spectroscopy

[68,69].

Lastly, note that the spectral function can be defined in a basis independent form as

A = i
�
GR �GA

�
, (2.68)

which for an interacting or non-equilibrium system can be written like

A = iGR �
�
⌃R � ⌃A

�
�GA, (2.69)

where � denotes contraction. This rewriting follows directly from the Dyson equation, in

eq. (2.53), for the retarded and advanced propagators.

2.5.1 Quasiparticle picture

We have relied on well-defined peaks in the spectral function for these interpretations

of the interacting system. This assumption hinges on �(!) being a small value, and

under this condition, one can put this qualitative description on a more rigorous footing.

The idea is to describe the interacting theory through single-particle excitations with

renormalized parameters. This concept was first used by [70] in the context of Fermi-

liquids. The starting point is the retarded scalar propagator

GR

n
(ta,!) =

1

! � !n(ta)� �n(ta,!)� i�n(ta,!)
, (2.70)

where n defines di↵erent bare modes, and the self-energy is split into real and imaginary

parts. The real part of the pole of GR can be approximated as the solution !n,p(ta) to

the equation

!n,p(ta) = !n(ta) + �(ta,!n,p). (2.71)

If solutions are found, then one can expand around them to define the new quasiparticles

for the theory at absolute time ta. For this expansion to be valid, � must be small. This

is necessary because the true poles of the retarded propagator are not on the real axis but
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in the lower half of the complex plane. To linear order in !, one finds the propagator

GR

n
(ta,!) ⇡

✓
! � (!n(ta)� �n(ta,!n,p))� !@!�n(ta,!n,p)

� i�n(ta,!n,p)� i!@!�(ta,!n,p)

◆�1

.

(2.72)

In its current form, the imaginary ! dependence makes it impossible to rewrite eq. (2.72)

as something that has the same form as a free particle. A similar form as the free particle

can be found if we assume that @!�(!n,p) is negligible. With this approximation, the

propagator takes the form

GR

n
(ta,!) ⇡ Z(ta)

! � !̃n(ta)� i�̃n(ta)
(2.73)

where the quasiparticle weight is defined as

Z(ta) = (1� @!�n(ta,!n,p))
�1 , (2.74)

and the renormalized dispersions and decay rates are given by

!̃n(ta) = Z(ta)!n,p(ta),

�̃n(ta) = Z(ta)�n(ta,!n,p).
(2.75)

Note that this approximation relies heavily on the smallness of the imaginary part of

the decay rate. Additionally, the quasiparticle spectral function violates the sum rule

in eq. (2.66). This is a direct consequence of not keeping equal orders in the expansion

of the real and imaginary parts of the self-energy. By computing the integral over the

spectral function, one finds that the result is given by Z instead of 1. Z, therefore,

contains information about how much of the spectral weight is put into the quasiparticle

when exciting a mode with the bare creation operator. The remaining part 1 � Z, is

spectral weight that is added to other types of excitations. In other words, Z is related

to the overlap between the excitation of a bare mode in the real interacting basis and the

quasiparticle approximation.

As the self-energies have the same causal structure as the propagators, the real and

imaginary parts of the self-energies are also connected by the Kramers-Kronig relations

derived for the propagator in eq. (2.63). Using this connection, it is possible to include

real and imaginary parts at the same order, as shown in [71], thereby restoring the sum

rule for the quasiparticle approximation. The disadvantage of this approach is that the

interpretation becomes less obvious. For this reason, we stick with the quasiparticle
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approximation defined in eq. (2.73).

2.6 Occupation of the spectrum

We have access to the spectral information of the system through the retarded propagator,

and in this section, we will show that the information in the Keldysh propagator is related

to the occupation. In COT coordinates, the Keldysh propagator is connected to the

creation and annihilation operators by eq. (2.38)

iGK(ta, ⌧ ; q, q
0) =

⌧h
aq(ta + ⌧/2), a†

q0(ta � ⌧/2)
i

±

�
. (2.76)

Consider first the diagonal part of eq. (2.76) at ⌧ = 0

iGK(ta, 0; q, q) = i

Z
d!

2⇡
GK(ta,!; q, q) =

D⇥
aq(ta), a

†
q
(ta)

⇤
±

E

= 1 ± 2
⌦
a†
q
(ta)aq(ta)

↵
= 1 ± 2hnq(ta)i = 1 ± 2hnq(ta)i,

(2.77)

As the excitation is removed and added in the same mode, this relates to the expectation

value of the number operator for the qth mode. For the o↵-diagonal part, the commutation

and anti-commutation relations lead to

iGK(ta, 0; q, k) = ±2
⌦
a†
q
(ta)ak(ta)

↵
, (2.78)

which does not contain the constant vacuum term seen in eq. (2.77).

Generally, GK is derived from the action using the relation in eq. (2.36). Including

the self-energy as in eq. (2.54), it takes the form

GK = GR �
�
�PK

0 + ⌃K
�
�GA (2.79)

where the indices have been suppressed, as the general structure is independent of the

chosen representation.

If the system is non-interacting, all self-energies vanish, and the system becomes time-

translation invariant. The bare infinitesimal term PK

0 derived in appendix A then defines

how the Keldysh propagator is inverted. In appendix A we find

GK

0 (!, k) = �
��GR

0 (!, k)
��2 PK

0 (!) = �iA0(!, k)(1 ± 2nB/F (!))

= �i2⇡�(! � ✏k + µ)(1 ± 2nB/F (!)),
(2.80)

where ✏k is the bare dispersion defined by the quantum number k, corresponding to the
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non-interacting Hamiltonian H0. The chemical potential is denoted as µ and nB/F =
�
e�! ⌥ 1

��1
is the Bose-Einstein or Fermi-Dirac distribution, with inverse temperature �.

If the system is interacting, but one is still able to diagonalize the retarded propagator

and ⌃K simultaneously, then the contractions in eq. (2.79) simplify, and the steady state

solution for GK(!, k) becomes

GK(!, k) =
��GR(!, k)

��2 ⌃K(!, k) = �A(!, k)⌃K(!, k)

2 Im ⌃R(!, k)
. (2.81)

To facilitate physical interpretation, it is helpful to remove the constant vacuum con-

tribution in eq. (2.77), which can be done by writing the Keldysh propagator as

GK = GR �GA + �GK = �iA + �GK , (2.82)

where the occupied propagator �GK is defined through

�GK = GR � �⌃K �GA, (2.83)

which, in the steady state, gives a relation similar to eq. (2.81).

Setting this equal to eq. (2.79) and neglecting all the infinitesimal terms, one finds

that the self-energies are connected by the relation

�⌃K = ⌃K �
�
⌃R � ⌃A

�
. (2.84)

The diagonal part of �GK is then proportional to the occupation of the di↵erent modes

and, for a non-interacting system in equilibrium, directly corresponds to eq. (2.80) and is

therefore given by

�GK

0 (!, k) = ⌥i2⇡�(! � ✏k + µ)2nB/F (!). (2.85)

For general out-of-equilibrium interacting systems where GR and GK can be simultane-

ously diagonalized, it takes the form

�GK(!, k) = �A(!, k)�⌃K(!, k)

2 Im ⌃R(!, k)
. (2.86)

Causality requires �GK to be anti-Hermitian such that �GK must be purely imaginary in

the diagonal representation. Because A and Im ⌃R are real, �⌃K is also purely imaginary.

To connect with equilibrium field theory, it can be useful to parametrize �GK by the

spectral function

Im �GK(!, k) = �A(!, k)�F (!, k), (2.87)
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which at this point defines �F . To highlight the properties of these functions, consider a

closed but interacting single-mode system in its steady state. To understand the generic

properties of the propagators, we will use the Lehmann representation [39, 61]. The

explicit calculations are shown in appendix C. Let the Hamiltonian be defined through

its eigenstates H |↵i = E↵ |↵i and the density matrix be diagonal in this basis ⇢ =
P

↵
c(E↵) |↵i h↵|. Using the bare creation ( a†) and annihilation (a) operators the spectral

function is

A(!) = 2⇡
X

↵,�

(c(E�)⌥ c(E↵)) |h↵| a† |�i|2� (! � E↵ + E�) , (2.88)

where the sign depends on the statistics of the excitation. Because c(E↵) is an eigenvalue

of the density matrix, it must always be a real number between 0 and 1. Consequently,

the spectral function can have sign changes for bosons but is always positive for fermions.

In the Lehmann representation, Im �GK(!) is found to be

Im �GK(!) = ⌥2⇡
X

↵,�

2c(E↵)|h↵| a† |�i|2� (! � E↵ + E�) , (2.89)

which can never change sign for bosons or fermions. As shown in appendix C, this is not

true for Im GK , which can change sign for fermions.

Using eq. (2.83) one sees that the sign of Im �⌃K(!, k) must always be identical to the

sign of Im �GK(!, k) such that for bosons

Im �GK = |GR|2 Im �⌃K  0, (2.90)

while for fermions

Im �GK = |GR|2 Im �⌃K � 0. (2.91)

Additionally, the steady state solution for �F can immediately be found from eqs. (2.90)

and (2.91) by rewriting |GR|2 in terms of the spectral function as in eq. (2.69)

�F (!, k) = �Im �⌃k(!, k)

�2 Im ⌃R
. (2.92)

Using the Lehmann representation, �F is written as

�F (!) = �Im �GK(!)

A(!)

= �
⌥
P

↵,�
2c(E↵)|h↵| a† |�i|2� (! � E↵ + E�)P

↵,�
[c(E↵ � !)⌥ c(E↵)] |h↵| a† |�i|2� (! � E↵ + E�)

.

(2.93)
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Because Im �GK cannot change sign, it requires that if �F changes sign, so does A. This

is explicitly seen in the Lehmann representation but also directly built into eq. (2.92)

because the sign of both A, through 2.67, and �F is fully determined by the sign of

� Im ⌃R.

For fermions eq. (2.88) proves that �F can not change sign and because A > 0 it

follows that � Im ⌃R(!, k) > 0, which forces �F (!, k)  0. Furthermore, the Pauli

exclusion principle means that 0  c(E↵) � 1. From eq. (2.93) it then follows that �F

is bounded from below such that �F � �2. Combining these aspects, we arrive at an

inequality between the retarded self-energy and �⌃K

�4 Im ⌃R � Im ⌃K � 0. (2.94)

This relation can be valuable for identifying errors in numerical calculations.

For bosons, A can be sign-changing, which means that �F can also be sign-changing.

Furthermore, there is no bound on the absolute value of �F as there is no exclusion

principle for bosons. When the signs of A and �F di↵er, then the occupation of the specific

mode has become unstable such that it grows exponentially. The quadratic part of the

theory will then no longer be bounded because the Gaussian integrals are no longer well-

defined. As a consequence, the theory breaks down. The physical interpretation is that the

fluctuations start dominating the bare contribution, which renders the expansion around

the bare modes ill-behaved. This instability means that the system has transitioned into

a new steady state. That is, the system has experienced a phase transition.

The technical solution to this problem is to expand around the new equilibrium. This is

done by separating the unstable mode from the theory and treating it as a macroscopically

occupied field. The occupied part of this mode can then be described by the classical

equations discussed in section 2.4.1. This way, the unbounded quadratic part is removed

from the theory, and the macroscopically occupied mode appears in the vertices as a

classical source field.

As an example consider a state in thermal equilibrium: c(E↵) = e��E↵

N , where N =

Tr e��H . Plugging this into eq. (2.93) one finds the Bose-distribution as in the free theory

�F (!) =
1

e�! � 1
. (2.95)

Notice that this result is independent of the interactions in the system. Consequently,

it is su�cient to know the spectrum in thermal equilibrium as the distribution function

act as a proportionality factor for the occupation. This fundamental connection between

the occupation and spectral function for a system in thermal equilibrium is known as

the fluctuation-dissipation theorem [72, 73]. On a technical level it is seen that it is a
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consequence of the eigenvalues of the density matrix satisfying c(E↵�!) = c(E↵)c(�!) .

The equilibrium theory [39,61,74] relies on this such that it is su�cient to compute only

spectral properties of the system, whereas, in our non-equilibrium formalism, both the

Keldysh propagator and the retarded must be computed.

For the current example, consider a free spectral function given by

A(!) = 2⇡�(! � ✏0 + µ), (2.96)

where ✏0 is the ground state energy. The spectral function cannot change sign and is

always positive. As Im �GK is negative for bosons, �F (!) must be positive. However,

when ! < 0 then �F (! < 0) changes sign. As long as ✏0 � µ > 0 then A(! < 0) = 0

and the sign change of �F has no e↵ect as �GK(! < 0) = 0. If µ > ✏0, then the spectral

function has a positive weight at frequencies where �F is negative, which gives rise to

�GK having an unphysical sign. At this point, the bosons condense into the ground state

mode of the system, which means that the ground state field has to be separated from

the action.

In thermal equilibrium, the fluctuation-dissipation theorem holds, which means that all

instabilities and phase transitions appear in the spectrum. This means that the instability

occurs in the retarded propagator. The retarded propagator becomes unbounded if the

steady state solution has the pole in the positive imaginary plane, as this corresponds to

the mode growing exponentially in time. Away from thermal equilibrium, the occupation

and the spectrum are completely independent. Consequently, when the system is out

of equilibrium, the quadratic part of the action can become unbounded both due to an

instability in the retarded propagator and through an instability in �⌃K [75].

The parametrization of �GK in terms of the spectral function in eq. (2.87) relied on

being able to simultaneously diagonalize GR and �⌃K . Even when this is not possible, one

can still define a ”distribution” function through the basis independent parametrization

�GK = GR � �F � �F �GA. (2.97)

Due to the causal structure in eq. (2.39), �F will always be Hermitian. Finally, it is worth

pointing out that our definition of �GK in eq. (2.82) is directly related to the commonly

used lesser propagator [34, 39, 48, 49,61] by

G<(t, q; t0, q0) = ±�G
K(t, q; t0, q0)

2
. (2.98)

For the discussion of the occupation, we have mainly focused on the stationary state

of a time-translation invariant system, while for the previous discussion of the spectral
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function, we discussed the system in absolute and relative time. The general two-time

inversion of the Keldsyh propagator leads to

�
GR

0

��1 � �GK � �GK �
�
GA

0

��1
= ⌃R � �GK � �GK �⌃A + �⌃K �GA�GR � �⌃K , (2.99)

which describes the two-time evolution of the Keldysh propagator [49]. As we are mainly

concerned with stationary-state properties, we will not discuss this here but will point

out that the propagators are much less constrained during time evolution. Because of the

fewer constraints, the signs are allowed to change throughout the evolution, which makes

the two-time evolution of generic systems challenging.

2.7 Combinatorics for non-equilibrium diagrams

In this section, we will return to the diagrams used to build the self-energy in 2.4.2.

We do this because the Keldysh structure leads to a di↵erentiation of diagrams that

topologically look identical. The di↵erentiation happens because the internal propagators

can be di↵erent combinations of retarded, advanced, or Keldysh propagators, even for

topologically equivalent diagrams. For a diagram topology with many internal lines, the

di↵erent combinations of retarded, advanced, and Keldysh can lead to a large number of

diagrams. However, the causal structure of the internal propagators means that many

of these are either zero or cancel out against each other. In appendix D, we construct

a generic algorithm to derive only the diagrams that can be non-zero. In the current

section, we will not discuss the algorithm’s structure but will focus on how cancellations

and vanishing diagrams are identified.

We have discussed two types of self-energies, the retarded self-energy, and the Keldysh

self-energy. For a retarded self-energy, the incoming line (that is not drawn) has to be a

classical field and the outgoing a quantum field, while for the Keldysh self-energy, both the

incoming and outgoing line has to be a quantum field due to eq. (2.79). By constricting

the incoming and outgoing line, one constricts the possible configurations of the first and

last vertex in the diagram. In the following, we will focus on a retarded diagram, but the

techniques discussed work in exactly the same way for a Keldysh self-energy diagram.

As an example, we will consider a diagram with the topology in fig. 2.5. This diagram

can contribute to the self-energy in a Bose-Fermi mixture with intra-species contact inter-

action, such as the situation discussed in chapter 5. The system contains three di↵erent

kinds of particles D, W , and S. The arrows indicate a particle carrying energy and mo-

mentum pn = (!n, kn), and the line style di↵erentiates the particle type. We will also use

the index pn to refer to the specific propagators in the diagram. A line with a double-arrow

for particle type D (for double-arrow), a wavy line for particle type W (for wavy/wiggly),
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v1 v2 v3 v4 v5 v6p1 p2 p3 p4 p5

p6
p7

p8

Figure 2.5: The topology of a diagram for interaction between three di↵erent types of fields
(di↵erentiated by the arrow and line type) that contributes to the self-energy. It consists
of six vertices, each labeled by vi and eight propagators labeled by pi. Below the diagram
is the four possible types of vertex structures arising from the contour degree of freedom.
Due to causality, a configuration with only classical legs is impossible.

and a straight line with a single arrow for particle type S (for straight/single). The con-

tact interaction allows particle D to break into particle W and S at vertex vn. During

such a process, the energy and momentum must be conserved. To construct this diagram,

one first chooses which sort of self-energy one wants to construct. The type is determined

by the incoming left line (which is not drawn) on vertex v1 and the outgoing right line

on v6. In the considered case, the vertex must have three lines connecting it, and each

line must be of a di↵erent particle type. The diagram in fig. 2.5 therefore contributes to

the self-energy of the D particle as there is no double-arrow line connected to the vertex

v1 and v6. The Keldysh structure leads to there being a total of eight di↵erent vertex

configurations. Four of these are shown below the diagram in fig. 2.5. The remaining four

are found by flipping the direction of all the arrows. In these vertices, the same notation

as in 2.4.2 is used, where a quantum field has a dashed line, and a classical field is a solid

line.

This diagram consists of Nv = 6 vertices and Np = 8 internal propagators. For the

retarded self-energy, one needs the left incident line on v1 to be a classical field and the

right incident line on v6 to be a quantum field. If one constructs all possible Keldysh

configurations in fig. 2.5, this gives rise to 1024 versions for the retarded diagram, which

all have di↵erent retarded, advanced, and Keldysh propagators inside the diagram. All

diagrams containing a q � q propagator vanish, leaving a more manageable 84 diagrams.

The behavior of the vacuum contribution in each GK is better treated separately since

often the vacuum contribution cancels out with other diagrams. This will for example be

seen in chapter 5. To make the vacuum appear directly in the diagram, one can write out

the Keldysh propagator using eq. (2.82).
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So far, causality has only been used through the q-q propagator vanishing, but causal-

ity also means that diagrams where GR(⌧)GA(⌧) appear, vanish because the two propa-

gators have no shared support. In complicated diagrams with several internal loops, such

simple products do not appear, but as discussed in appendix D, this can be generalized

and semi-automated for more complicated diagrams like that in fig. 2.5. When an internal

propagator is evaluated at equal times (t = t0) cancellations due to eq. (2.40) can also

happen.

For the example in fig. 2.5 using the causality cancellation and writing out the vacuum

contribution, the number of di↵erent configurations increases to 220. In the specific case, it

increases because many of the internal lines are of the Keldysh type. In such a case, many

diagrams will vanish if parts of the system are not occupied as all the �GK propagators

belonging to the unoccupied particles are zero. In the considered case, the S propagators

p{6�8} can be the particles of the medium which are thermally occupied, while the W

particles p{1,3,5} are unoccupied. In that case, the D propagators p{2,4} are the composite

particles due to an attractive interaction between the medium and the W particle. So if

there are no W particles, there also will be no occupation of the D particles. Removing

all diagrams containing a �GK for both D and W leaves us with nine configurations that

must be computed. So even though writing out the vacuum contribution initially led to

more diagrams, the fact that parts of the system were unoccupied decreased the number

from 84 to 9.

In summary, non-equilibrium leads to a drastic increase in the number of di↵erent

diagrams one has to compute, but many of them are zero due to the casual structure of

the theory. The process of finding all the non-zero diagrams can be done by implementing

the algorithm discussed in appendix D. Due to their sharp features, the vacuum parts are

usually numerically challenging. In those cases, it is advantageous to cancel as many of

such diagrams as possible, which can be done by separating the vacuum contribution in

GK .

Having determined the relevant diagrams is only the first step. The second and usually

much harder step is to compute their value. To do this e�ciently, one has to consider

the specific diagram and physical situation. This means there is no generic algorithm to

compute the diagrams that is stable, accurate, and fast enough to be universal.

2.8 Open quantum systems

So far, we have been thinking about closed systems, but if a subsystem is coupled to a

large environment, one can e↵ectively split the full system into two parts, the subsystem,

and the environment. The interaction with the environment means that the subsystem
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itself cannot be described as a closed system. If the subsystem is much smaller than

the environment, then the modification of the state of the environment due to the sub-

system is small or even negligible. In this case, one can hope to construct an e↵ective

description of the subsystem without explicitly considering the back-action onto the en-

vironment. Using such an e↵ective description in general means that the time-evolution

operator is no longer unitary as environment-induced dissipation and driving are included

in the description. The subsystem is then referred to as an open system. One of the

common methods to derive the e↵ective non-unitary description of the subsystem is to

assume that the environment state is entirely independent of the subsystem state and

that the interaction between environment and subsystem is weak enough that one only

has to treat the e↵ect of the interaction to second order. A controlled expansion in the

subsystem-environment coupling leads to the well-known and widely used Born-Markov

master equation describing the evolution of the subsystem. From here on, the subsystem

is referred to simply as the system, which is the degrees of freedom that remain after

having traced away the environment, whereas when we say total system we mean system

including the environment. Here, the derivation of the Born-Markov master equation

will not be presented. Instead, we refer the reader unfamiliar with the derivation to sec-

tion 3.3.1 in [40]. A particular Markovian master equation is the Lindblad equation (or

Gorini-Kossakowski-Sudarshan-Lindblad equation) [76,77]. Its advantage is that the sys-

tem’s evolution is completely positive and trace preserving (CPTP) and its most general

form is [78]

@t⇢ = �i [Hs(t), ⇢] +
N

2�1X

i

�i(t)

✓
Li(t)⇢L

†
i
(t)� 1

2

n
L†
i
(t)Li(t), ⇢

o◆
, (2.100)

Where Hs(t) is the e↵ective unitary evolution of the system with dimensionality N and

⇢(t) = TrE �(t) is the density matrix for the system after having traced away the en-

vironment degrees of freedom from the total state �(t) . The Hamiltonian includes the

bare system evolution and a renormalization of the internal energy levels known as the

Lamb shift. The second term is non-unitary and accounts for drive and dissipation. The

rate of the physical process described by the jump operator Li(t) is given by �i(t). For

this equation to be a CPTP mapping for all t, it is necessary that �i(t) � 0 8t. The

Lindblad approach, as it is CPTP, guarantees a physical density matrix throughout the

entire evolution. For other master equations, the range of validity has to be checked such

that it is not violated.

The advantage of master equation methods is that the resulting e↵ective dynamics of

the system can be treated with high accuracy and with few approximations either using

exact diagonalization or tensor network methods [41–44]. Furthermore, the master equa-
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tion gives access to the systems density matrix, and all system properties can therefore

be computed. For master equations, a big challenge is tackling the exponentially increas-

ing Hilbert space dimension. This is more challenging than for a closed system because

it is necessary to work with density matrices instead of states. Therefore, the e↵ective

dimension of the space one has to consider is of dimension N2. Questions regarding large

interacting systems are thus challenging for master equation approaches.

Using the field theoretic approach to compute the propagators, we only have informa-

tion regarding the expectation values of removing and adding a particle instead of the full

density matrix. One can derive a theory for higher-order correlation functions, but this

significantly increases the complexity of the computation. The advantage gained is that

we can treat interacting systems that are macroscopic in size.

2.8.1 Linearly coupled environment

Having discussed the standard approach to an open system, we will now focus on the

specific case of an environment that couples linearly to the system and treat it with our

field theoretic approach. We will derive the self-energies that arise from this coupling and

use them to model the loss of cavity photons, due to imperfect mirrors, in all considered

systems in chapters 3 to 5 and in chapter 5 also use it to describe incoherent driving. For

this reason, we focus on a bosonic quantum harmonic oscillator, described by annihilation

(creation) operator a (a†), embedded in an environment consisting of non-interacting

bosonic quantum harmonic oscillators, with annihilation (creation) operator bk (b†
k
). We

consider the interaction to be bilinear, such that a single excitation between system and

environment is transferred while conserving the total particle number.

The total system is described by

H = Ha + Hb + HI , (2.101)

with
Hb =

X

k

✏kb
†
k
bk,

HI =
X

k

gkab†
k
+ ḡkbka

†,
(2.102)

where Hb is the Hamiltonian describing the environment with dispersion ✏k, and HI

describes the coupling between system and environment with strength gk. Ha is left

completely general, albeit for a single mode. This assumption simplifies the following

discussion, but the derivation for a multimode case follows the same steps. The final

result will therefore be straightforward to generalize to the multimode case.

The first step is to write down the action. As the initial state information is lost due
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to coupling to the environment, the stationary state is independent of the actual choice of

the initial state. The most convenient choice is a thermal state at inverse temperature �.

As the contour adiabatically turns on the interactions the initial state is a product state

between the system and environment such that the total initial state can be written as

⇢0 = ⇢a,0 ⌦ ⇢b,0. (2.103)

After rotating into the Keldysh basis, the action takes the form

S =

Z
d!

2⇡

 
āc(!)
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!T  
0 (GA
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+ H.c.,

(2.104)

where the same symbols for the complex fields as for the operators in the Hamiltonian

have been used. To arrive at this, we have taken advantage of the Hamiltonian being

time-independent, such that the COT representation is independent of absolute time,

and Fourier transformed the relative time. The environment propagators are the bare

propagators similar to those in eq. (A.40) with the appropriate dispersions

GR

b
(!, k) =

1

! � ✏k + i0+
,

GK

b
(!, k) = �2i⇡

⇣
1 + 2nB(!)

⌘
�(! � ✏k),

(2.105)

The interaction between the environment and the system has four possible vertex config-

urations, shown in fig. 2.6a. From this interaction, one can only construct one topology

for the self-energy. The retarded and Keldysh self-energies are shown in fig. 2.6(b,c), and

as there is no internal loop, we can directly read o↵ their values

⌃R

a
(!) =

X

k

|gk|2 GR

b
(!, k) =

X

k

|gk|2
1

! � ✏k + i0+
,

⌃K

a
(!) =

X

k

|gk|2 GK

b
(!, k) = �2i⇡

X

k

|gk|2 coth

✓
�
! � µ

2

◆
�(! � ✏k).

(2.106)

The fact that there is only one topology of the self-energy, without any internal loops, is

a manifestation of having the system coupling linearly to the environment. For such cou-

pling, one can perform the Gaussian functional integral exactly. By using the self-energies
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a)
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! !

ḡk
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ḡk
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gk
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gk
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Figure 2.6: a) The di↵erent vertices arising from the interaction in eq. (2.104). The wavy
line symbolizes the a-field, and the straight line the b-field. Here we have explicitly shown
the vertex factor to highlight the connection to the Hermitian conjugation. The vertex is
energy conserving as there is the same incoming and outgoing energy. b) The retarded
self-energy for the system (a-field) and c) the Keldysh self-energy.

in eq. (2.106) and solving the Dyson equations in eq. (2.53) and eq. (2.81), one finds an

exact solution for the propagators. Because the solution is exact, it also means that all

non-Markovian e↵ects are captured, which can be understood by considering the infinite

Dyson series for the environment propagator. Here one sees that solving the Dyson equa-

tion is equivalent to using the fully dressed propagator for the environment. To capture

the e↵ect of the environment to the second order as in a Born-Markov approximation, we

(would) use only the first term in the geometric series of the GR in eq. (2.53), i.e.

GR

a
(!, k) ⇡ GR

a,0(!, k) + GR

a,0(!, k)⌃R

a
(!, k)GR

a,0(!, k). (2.107)

Computing the self-energies is straightforward as the environment is treated as a free

system, making its spectral function a �-function. The sum over states is then equivalent

to an integral over the spectral function. This can be used to define the spectral density

J(!) =
X

k

|gk|2 Ab(!, k) =
X

k

|gk|2 �(✏k � !). (2.108)

The retarded self-energy is given by

⌃R(!) =

Z 1

�1
d⌫

J(⌫)(! � ⌫ � i0+)

(! � ⌫)2 + (0+)2

= �i⇡J(!) + P
Z

d⌫
J(⌫)

! � ⌫ ,

(2.109)

with the details of the derivation shown in appendix B. As the self-energies have the same

causal properties as the propagators, we can check that the retarded self-energies satisfy

the Kramers-Kronig relation. Using the imaginary part in eq. (2.109) and eq. (2.64), one
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finds that the real part of the retarded self-energy should be

P
Z

d!0

⇡

�⇡J(!0)

!0 � ! = P
Z

d!0 J(!0)

! � !0 , (2.110)

which is exactly equal to the real part in eq. (2.109).

We have discussed that including the full self-energy in the Dyson equation leads to an

exact solution. To get an e↵ective theory at the same level as in the Lindblad equation,

one can use the quasiparticle approximation in eq. (2.73) to zeroth order. In this case, the

quasiparticle weight is one, and the self-energies simply lead to constant shifts of the real

and imaginary part of the pole in the system’s propagator. By truncating at zeroth order,

we have e↵ectively assumed that the self-energies are completely flat around the system’s

characteristic energy !0. That is, the self-energies can be replaced with the zeroth order

term

⌃R

a
(!) = ⌃R

a
(!0) + O(!) = � � i� + O(!), (2.111)

where both � and � are real-valued. The imaginary part of the zeroth order term is

equivalent to the vacuum rate for the non-unitary part in eq. (2.100), that one would

compute from a Lindblad equation using the same approximations. Notice that the re-

tarded self-energy has a negative imaginary part, and we define

� = � Im ⌃R

a
= ⇡J(!0) > 0. (2.112)

The real part is equivalent to the Lamb shift, which is included in the e↵ective Hamiltonian

appearing in the unitary evolution of eq. (2.100).

For the Keldysh self-energy, we find

⌃K

a
(!) = �i2⇡

Z
d⌫ (1 + 2nB(!)) J(⌫)�(! � ⌫)

= �i2⇡J(!) (1 + 2nB(!))

= i2� (1 + 2nB(!0)) + O(!),

(2.113)

where, in the last line, the thermal distribution function is expanded around the same

energy as the retarded self-energy in eq. (2.111). Here we recognize the vacuum part

and a contribution proportional to the environment’s occupation at the system energy

scale. We note that the corresponding broadening induced by the retarded self-energy is

independent of the occupation of the environment. The physical understanding is that

even when there is no occupation in the environment, it still gives rise to a decay channel
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for the system. All the stimulated e↵ects are thus captured through �⌃K

a

�⌃K

a
(!0) = ⌃K

a
(!0)� i2 Im ⌃R

a
(!0, k) = i2� (1 + 2nB(!0))� i2�

= i2� (2nB(!0)) .
(2.114)

As stated at the start of the section, we will use these results to model the optical

cavity’s decay into the electromagnetic vacuum field outside the cavity. For optical cav-

ities, the typical resonant energies are on the order of hundreds of THz [79–81], which

corresponds to 1014s�1h/kB ⇠ 5000K, with h (kB) being Planck’s (Boltzmann’s) con-

stant. As the experiments are performed below or at room temperature, the background

electromagnetic environment will, therefore, be unoccupied at the relevant frequencies.

Until now, only a fully flat spectral density has been considered. If the coupling to

the environment is weak, one can take the ! dependence of the imaginary part of the self-

energy into account within the quasiparticle picture. This is consistent if the coupling

is small enough such that @! Re ⌃R

a
(!) ⌧ 1 such that unit quasiparticle weight is still a

good approximation. As shown in appendix B the Kramers-Kronig relation between the

imaginary and real part of the self-energy implies

@! Re ⌃R

a
(!) = P

Z
d⌫

⇡

Im ⌃R

a
(!)� Im ⌃R

a
(⌫)

(! � ⌫)2
. (2.115)

Therefore, it is justified to model a structured environment, such as the weak incoherent

laser drive in chapter 5. To do this in practice, we choose a physical retarded self-energy,

(one that obeys the causality structure), absorb the real part into our definition of the

bare energies, and can then promote � ! �(!). One can then check the validity of the

approximation using the integral in eq. (2.115).

The microscopic derivation presented here has shown how to include dissipation and

driving due to a linearly coupled environment. A pragmatic approach is to choose the

rates and jump operators in the Lindblad equation phenomenologically, which also can

be done for the self-energies. Lastly, it is worth pointing out that from a Lindblad master

equation, one can directly derive a non-equilibrium action for the system [82].

2.9 Summary

In this chapter, we have described the structure of the quantum field theory for systems

out of equilibrium. The fluctuation-dissipation relation between the retarded and the

Keldysh propagator cannot be assumed a priori like in thermal equilibrium but instead

results from the solution of two coupled, independent Dyson equations when the system

is thermal.
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From the non-equilibrium action, we have shown how one can directly derive the

classical equations of motion for bosonic systems.

When the classical equations are not appropriate, we have explained how one can

derive self-energies through diagrams and how the self-energies allow one to do infinite-

order perturbation theory through the Dyson equation. It has been shown that the

number of Feynman diagrams to be considered out of equilibrium is, in general, much

larger, but the causality structure of the non-equilibrium field theory makes it possible to

reduce this number and simplify the structure.

Lastly, we have discussed how e↵ects like incoherent drive and dissipation can e�-

ciently be included in the theory.



Chapter 3

Multimode polaritons

3.1 Introduction

This chapter investigates a cloud of ultracold bosonic atoms inside a cavity. The chapter

is based on the work in [83]. We propose a method to generate polaritons consisting

of multiple photonic modes. On the one hand, this is of fundamental interest because

a macroscopic number of modes makes it possible to study thermodynamic phases of

photons and complex types of order [84–94]. On the other hand, this is challenging

because the necessary strong light-matter coupling is either achieved by confining the light

in a cavity or using Rydberg atoms [95]. In both cases, the strongly coupled light modes

are near-resonant with the excitations in the matter system. Achieving strong coupling

to several modes requires a near-degenerate set of light modes. There are methods to

achieve a set of near-degenerate cavity modes by fine tuning the cavity geometry [96,97],

using a photonic crystal [98] or considering low dimensional systems [99] as we will do

in chapter 5. All these methods are either experimentally challenging or possess limited

tuneability.

Here we will overcome the large frequency splitting of the cavity modes by engineering

the pump laser, which is already an essential element of the experimental setups considered

here [81]. This idea has been demonstrated experimentally via Floquet engineering of

Rydberg levels in a linear cavity without degenerate modes [100]. They consider a single

cavity mode resonantly coupled to an atomic transition driven by an external laser. The

strong coupling gives rise to a polariton where the matter component is the transition

between the ground and the excited state of the atom. By modulating the laser, new

e↵ective atomic transitions are generated that are split by the modulation frequency. The

splitting is chosen such that one of these transitions is near resonance with a second cavity

mode. The interactions in the systems are then inherited from the atomic component of

the polaritons. In their scheme, the matter component is an atomic transition dressed by

43
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a Rydberg excitation. The large dipole moment of the Rydberg states leads to nonlinear

mediated interactions between the photons [101].

We are interested in a di↵erent kind of polariton, namely one that emerges from

coupling a cavity mode to the spatial motion of the atom cloud [102]. The matter part

of this system is qualitatively di↵erent from that of ref. [100]. The qualitative di↵erence

becomes apparent by the fact that the ultracold gas, even in a single cavity mode setup,

can exhibit a phase transition to a self-ordered state. The self-ordered state of the atoms

is dual to the cavity field entering a superradiant state. The system is well-studied both

experimentally [81, 103, 104] and theoretically [105–109] and possesses a large degree of

tune-ability. Extending the system to many cavity modes [110, 111] can make it possible

to explore an even larger plethora of phenomena, including quantum droplets [112], and

quantum liquids [113]. Even including just a few cavity modes can lead to intriguing new

features such as supersolid-like phases [114,115], quasicrystals [116] and two-mode Dicke

models [117].

Here we investigate how a phase modulation of the pump laser can make it experi-

mentally possible to couple several cavity modes and how this a↵ects the nature of the

polariton below the superradiant threshold. We find that the phase modulation of the

laser allows one to write down an e↵ective model coupling many transverse cavity modes

via their interaction with the atomic motion. The e↵ective coupling between the modes

and their detunings can be designed by tuning the phase modulation. This allows one

to hybridize several cavity modes leading to multimode polaritons. The key to making

this possible is a large separation of energy scales between the energy scale of the atomic

motion and the energy scale of the cavity mode splitting.

3.2 Model and Hamiltonian

The system under consideration consists of a planar cavity with a cloud of ultracold atoms

inside and is sketched in fig. 3.1.

The atoms are modeled in the simplest possible way, namely as two-level systems

(TLS). The TLS approximation is valid because the frequency of the pump that drives

the system is only close to one specific electronic transition.

The spatial extension of atoms is on the order of 10�10m [118], which should be

compared to the pump wavelength. The pump is chosen to be close to resonance with

the internal electronic transition from the ground state |gi to the excited state |ei, which

requires a pump wavelength of the order of c2⇡/!c ⇠ 10�7m, with c being the speed

of light in free vacuum. Therefore, we can assume a spatially constant pump field over

the extent of one atom [119]. As the system is non-relativistic, we work in the Coulomb
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Figure 3.1: A sketch of the considered setup. It is composed of a linear cavity with a waist
of w0, filled with a cigar-shaped atom cloud with a diameter LH . The atoms are modeled
as two-level systems with energy splitting !e. The cavity mirrors give rise to a loss of
photons with the rate  and to mitigate this loss, a transverse pump laser drives the atom
cloud with a carrier frequency of !c and an e↵ective coupling to the atoms �. The carrier
frequency is detuned from the atomic transition by �a. Before impinging on the atoms,
the pump is sent through an electro-optical modulator which generates a phase-modulation
of the pump with frequency ⌦ and amplitude Bm.

gauge, where the divergence of the electromagnetic vector field is zero. In this gauge, the

atom-field interaction takes the form [37,120]

Ha�EM = qer̂ · E(r0, t), (3.1)

where qe is the charge of the electron, r̂ is the operator for the electron position in relation

to the position of the nucleus r0 and E(r0, t) is the time-dependent electric field at the

position of the atom. This approximation is known as the dipole approximation and is

the starting point for how we describe light-matter interaction throughout this thesis.

Because the atoms are modeled as independent TLSs, each atom’s Hilbert space is

described by a complete set of operators in the SU(2) group, and we choose the specific

representation

�z = |ei he|� |gi hg| , �� = |gi he| , �+ = |ei hg| , 1 = |ei he| + |gi hg| . (3.2)

Experimentally the most commonly used atoms are those in the first group of the periodic

system, such as Rubidium-87 [81]. These all possess spherically symmetric ground states,

whereas the excited states are not spherically symmetric. Because the position operator
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is odd, it can only have o↵-diagonal elements it does not couple states with the same

symmetry [121]. Additionally, the position operator is Hermitian, and the o↵-diagonal

components can be chosen as real; therefore, they must be identical. The representation

of the dipole operator in the ground and excited state basis is then

qer̂ = d
�
�� + �+

�
, (3.3)

where d = qe he| r̂ |gi = qe hg| r̂ |ei.
The electric field is a sum of the pump and cavity fields. The pump field contains

a macroscopic number of photons, making quantum fluctuations negligible. Under this

approximation, the pump field is essentially classical and can be written as

Ep(r, t) = tE0⌘p(r) cos (!ct + f(t)) , (3.4)

where !c is the carrier frequency, E0 is the pump power, t is a unit vector describing

the pump polarization, and ⌘p is the pump’s spatial profile. The phase modulation of

the pump is described by f(t), which is considered periodic with period T such that

f(t + T ) = f(t) and real.

We can not assume a large occupation for the cavity field and therefore have to consider

the field’s quantum nature. The quantized cavity field can be written as [37]

Ec(r, t) =
X

p

tp
p

2⇡!p

�
ap(t) + a†

p(t)
�
up(r), (3.5)

where ap (a†
p) is the bosonic annihilation (creation) operators for the p’the cavity mode

with frequency !p and polarisation tp. The cavity geometry determines the mode function

up. Here we consider a cavity in a near-planar configuration. This configuration is

symmetric, as illustrated in fig. 3.1, and the radius of the mirrors R is large compared

to the distance between the mirrors. When the mirrors are radially symmetric in the

transverse plane ((x, y)-plane in fig. 3.1), the paraxial equation leads to the solution [79]

uq,j,p(z, r, ✓) = cos

✓
qz

Lz

◆
LGjp(r/w0, ✓), (3.6)

where q is an integer that defines the number of longitudinal nodes, and Lz is the distance

between the two mirrors. The waist of the cavity is given by w0 as sketched in fig. 3.1.

The transverse degrees of freedom are described in polar coordinates with radius r and
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angle ✓, and LGjp(r, ✓) are the Laguerre-Gauss modes

LGjp(r, ✓) = e�r
2+ip✓

s
j!

(p + j)!

⇣p
2r
⌘|p|

L|p|
j

�
2r2

�
, (3.7)

where L|p|
j

(x) is the associated Laguerre polynomial of order j. The radial form of the

mode is set by j while the angular distribution is determined by p, which represents

the angular momentum of the field. The near-planar cavity has a large energy spacing

between di↵erent longitudinal modes. This spacing is known as the free spectral range

VF and is set by the length of the cavity [80]

VF =
⇡c

Lz

. (3.8)

In comparison, the energy di↵erence between di↵erent transverse modes is

!T = 2VF

p
2Lz/R, (3.9)

which in the near-planar limit, Lz ⌧ R, is much smaller than VF . The energy of the

paraxial cavity modes can be written as a sum of these two energies [79]

!q,j,p = VF q + !T (2j + p) . (3.10)

In this project, we seek to understand if coupling between di↵erent transverse modes

is possible. To simplify the problem, the pump will later be approximated as not carrying

any momentum similar to other works on similar systems [105–109,122]. In these works,

the higher-order transverse modes are not important because !T ranges from hundred

of MHz [81] to a few GHz [123], while the intrinsic energy scale of the atomic system

is set by the recoil energy of the atoms which is on the order of tens of kHz [81, 123].

We will make the higher-order transverse modes energetically relevant through the pump

modulation. However, because the pump mode is assumed spatially uniform, we will later

explicitly show that it is only possible to couple between transverse modes with the same

angular momentum. For our calculations, the transverse modes of interest will only be

those with zero angular momentum described by LGj0(r, ✓). As they carry zero angular

momentum, they are radially symmetric, and the first four transverse mode profiles are

shown in fig. 3.2a. Their characteristic feature is that at the center (r = 0), they are

all unity and then decay for r > 0. The lowest-order mode is a Gaussian with a width

determined by w0, while the higher-order modes have an additional node for each higher

order. For a near-planar cavity, the nodes in the higher-order modes lead to a narrow

center peak and higher energy. The increased energy leads to the spectrum of the cavity
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Figure 3.2: a) The radial dependence of the four first transverse cavity modes with zero
angular momentum. b) The frequencies of the mode functions with q denoting the longi-
tudinal mode and the second index, the transverse cavity modes.

having the lowest-order mode at the energy qVF + !T and higher-order modes sitting

slightly higher in energy at qVF + 2j!T as shown in fig. 3.2b. The transverse splitting is

2!T because of the zero angular momentum nature of the modes as seen in eq. (3.10).

With both the electric field and the atomic dipole operator defined, the Hamiltonian

for a single atom is

H =!e�
+�� +

X

p

!pa
†
pap

+
�
�+ + ���

 
�⌘p (r0) ei!ct+if(t) +

X

p

gpup (r0) ap + H.c.

!
,

(3.11)

where � = E0d ·t is linear with the strength of the pump field and gp = 2d ·tp
p
!p/Lzw2

0

scales inversely with the square of the cavity volume. The composite index p = (q, j, p)

has been introduced to ease the notation.

The cavity mode functions have been explicitly included in the Hamiltonian, meaning

that the only mode dependence in gp is due to the frequency of the cavity field and the

polarization. Consistent with assuming the mirrors to be radially symmetric and perfectly

aligned, we assume that the cavity modes can have any polarization. Together with our

assumption of having |gi being an S state and |ei being a P state, this means that the

cavity polarization will be set by the polarization of the pump tp = t. In that case,

the coupling gq,j,p is well approximated as independent of the transverse mode indices

j, p. This approximation is valid because the energy scale of the cavity field is set by

the frequency of the pump, which has its energy scale set by the splitting of the atomic

energy levels. If we consider Rubidium-87 as an example, the relevant energy splitting is

that of the D1 transition at 377 THz [118], which should be compared to the transverse

mode spacing, which is usually less than 1 GHz. Even by considering transverse modes

of order +100, the change in energy is still negligible compared to the total energy in the
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cavity field such that gq,j,p ⇡ gq. For generality, we will keep the full mode dependence in

gp, and only after having derived the general result will we simplify gp.

Due to the dipole coupling, the Hamiltonian contains terms that take energy from the

electric field and use it to excite the atom and vice versa, but it also contains counter-

rotating terms which excite the atoms and add energy to the electric field. Simultaneously,

the reverse process of deexciting an atom and removing energy from the electric field is

happening. Therefore each single counter-rotating process breaks energy conservation,

but on average, the process of adding and removing energy happens equally often. The

expectation value of the Hamiltonian is, therefore, still conserved. However, the counter-

rotating processes evolve on a much shorter time scale than the co-rotating terms, such

that on the time scale of the energy-conserving processes, the counter-rotating terms can

often be neglected. This approximation is known as the rotating wave approximation

(RWA). Consider the unitary transformation to the frame rotating with the pump carrier

frequency

Uc =
O

q,j

exp

✓
� i!ct

�
�+�� + a†

pap

�◆
. (3.12)

As the transformation is time-dependent, the Hamiltonian in the rotating frame is [121]

Hr = U †HU � !c

 
�+�� +

X

p

a†
pap

!
. (3.13)

Because the transformation is diagonal in the number basis, the creation and annihilation

operators can directly be written in the rotating frame [120]

U †�+U = ei!ct�+, U †��U = e�i!ct��, U †a†
pU = ei!cta†

p, U †apU = e�i!ctap. (3.14)

The full Hamiltonian in the rotating frame is

Hr = �a�
+�� +

X

p

�pa
†
pap +

✓
�⌘p (r0)

�
�+e�if(t) + �+e2i!ct+if(t)

�

+
X

p

gpup (r0)
�
ap�

+ + a†
p�

+e2i!ct
�

+ H.c.

◆
,

(3.15)

where the detunings �a = !e�!c and �p = !p�!c have been introduced. As discussed,

the carrier frequency is on the order of hundreds of THz, whereas the largest detunings

will be on the order of hundreds of GHz, making the RWA well justified.

To extend the TLS description to a large cloud of atoms, the atomic operators are
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promoted to field operators [39]

�+ = |ei hg|!
Z

d3r †
e
(r) g(r), (3.16)

where the field operators satisfy the bosonic commutation relations in eq. (2.17).

If there is occupation in the excited state, then bosonization does not give a good

description of the physical system as it is necessary to constrain the Hilbert space of

the bosons. Constraining the Hilbert space can be done using, for example, semionic

methods [124,125], or a hardcore boson approach [126].

For the experiments of interest, it is not necessary to constrain the Hilbert space

because they essentially couple the light field to the motion of the ground-state atoms.

Coupling the photon to the motion of the atoms can be achieved by having the pump

far detuned from the electronic transition. The regime where the detuning �a between

pump and atom is the largest energy scale is called the dispersive regime. In the disper-

sive regime, the excited state is only virtually excited, and the trapping potential and

momentum of the excited state can be ignored. By bosonizing the TLS Hamiltonian in

eq. (3.15) using eq. (3.16), the resulting many-body Hamiltonian in the rotating frame of

the carrier frequency is

H =

Z
d3r

⇢
 †
g

✓
�r

2

2m
+ Vg(r)� µg

◆
 g +  †

e
�a e

+  †
e

 
X

p

gqup(r)ap + �⌘p(r)e
�if(t)

!
 g + H.c.

�
+
X

p

�pa
†
pap,

(3.17)

where Vg(r) is the trapping potential of the ground state, r2 =
�
@2
x

+ @2
y

+ @2
z

�
is spatial

derivative operator, m is the mass of the atom and µg is the chemical potential of the

ground-state atoms. As the spatial argument of all atom fields is identical, it has been

suppressed.

The atomic ground-state field is not diagonal in the spatial representation due to the

spatial derivatives and the trapping potential, making it advantageous to solve the trapped

ground-state atom problem first. To this extent, we consider a trapping potential that is

symmetric and harmonic in the transverse plane and a long box trap in the longitudinal

direction. In experiments, harmonic traps are used in all three directions, but the trap

in the z-direction is much shallower than in the transverse directions, Therefore, the

longitudinal length of the atomic cloud is much larger than the wavelength of the pump

and cavity field [81]. In this case, the mode functions of the shallow harmonic trap have

a similar overlap with the longitudinal cavity field as if the longitudinal trap was a box
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trap. The resulting eigenvalue problem for the ground-state wave function  g(r,�, z) is

✓
� @2

r

2m
� 1

2mr
@r �

@2
✓

2mr2
+

r2

2mL4
H

� @2
z

2m

◆
 g(r, ✓, z) = E g(r, ✓, z), (3.18)

where LH sets the transverse diameter of the atom cloud. The eigenvalue problem can be

solved by separating the variables, and for the longitudinal part, the periodic boundary

conditions with a trap of length Lz give rise to an exponential oscillation. The transverse

part is a two-dimensional isotropic harmonic oscillator [127], which leads to the Laguerre-

Gauss modes in eq. (3.7). The normalized ground-state atom wave function takes the

form

 n(r, ✓, z) = hr| ni =
2eikz

LH

p
2⇡Lz

LGj,p(r/LH , ✓), (3.19)

where n = (k, j, p) is a composite index similar to the composite cavity index p. The

energy of the state is

En =
k2

2m
+

1

mL2
H

(2j + p)� µg, (3.20)

where the zero-point energy has been absorbed into the chemical potential. The ground-

state field operators can be expanded in the basis spanned by eq. (3.19)  g(r) =
P

n  n(r) n.

As the spatial distributions of the excited state can be ignored in the dispersive regime, any

complete basis can be chosen for the excited-state field operators  e(r) =
P

n �n(r)�n [39].

The representation of the Hamiltonian from eq. (3.17) in these basis states is

H =
X

p

�pa
†
pap +

X

n,m

(
�n,m 

†
nEn m + �n,m�

†
n�a�m

+ �†
n

 
X

p

gp h�n| up | mi ap + � h�n| ⌘p | mi e�if(t)

!
 m + H.c.

)
,

(3.21)

where the overlaps are

h�n| up | mi =

Z
d3r �̄n(r, ✓, z)up(r, ✓, z) m(r, ✓, z), (3.22)

and

h�n| ⌘p | mi =

Z
d3r �̄n(r, ✓, z)⌘p(r, ✓, z) m(r, ✓, z). (3.23)

3.3 Non-equilibrium action

The Hamiltonian does not include the e↵ect of photon loss from the cavity, which is

intrinsic to the experimental setups. The cavity loss occurs because the mirrors are
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not perfectly reflecting and has the advantage that it allows one to do non-destructive

measurements of the system. To model the cavity loss theoretically, the cavity can be

coupled to an electromagnetic vacuum environment. In section 2.8 we have shown how

this can be included in the action by giving a constant imaginary contribution to the

self-energies.

To construct the full non-equilibrium theory, the first step is to write the action based

on the Hamiltonian in eq. (3.21). As discussed in chapter 2, this is done by putting the

normal-ordered Hamiltonian on the contour in fig. 2.1 and then performing the Keldysh

rotation on the contour fields. The non-interacting part of the action takes the form

S0 =

Z
d!

2⇡

(
X

n

(1� �n,0)
 
 ̄c

n

 ̄q

n

!T

!

 
0

�
GA

��1

g0�
GR

��1

g0
PK

g0

!

!;n

 
 c

n

 q

n

!

!

+

 
�̄c

n

�̄q

n

!T

!

 
0

�
GA

��1

e0�
GR

��1

e0
PK

e0

!

!;n

 
�c

n

�q

n

!

!

+

 
āc

p

āq

p

!T

!

 
0

�
GA

��1

a0�
GR

��1

a0
PK

a0

!

!;p

 
ac

p

aq

p

!

!

)
,

(3.24)

where the previous operators are now complex fields, and the inverse bare propagators

are given by
�
GR

��1

�0
(!,k) = ! � E�,k + i��,k, PK

�,k = i2��,k (3.25)

with E�,k = (Ek, �a, �k) being the di↵erent detunings and energies for � 2 {g, e, a} and

��,k = (0+, 0+,k) for the same three values of �. The retarded propagator for the ground-

state atoms in eq. (3.24) can be understood as describing density and phase fluctuations in

the atomic cloud. Here we have assumed that the system is at zero temperature and that

the spectral density of the electromagnetic environment is flat, as discussed in section 2.8.

Through this environment, the cavity can lose photons with rate p > 0.

At zero temperature, all ground-state atoms will condense into the lowest energy mode

and form a Bose-Einstein condensate (BEC) [128]. As described in section 2.6 this makes

the action for the ground-state zero-energy mode unbounded, and it has to be separated

out. This is done by the �-function factor in first line of eq. (3.24) and is equivalent to

neglecting all quantum fluctuations in this mode h c

0(!) ̄q

0(!)i = 0 with 0 = (0, 0, 0).

However, there is a finite occupation in the constant (! = 0) part of the classical field

component given by

Z
d!  c

0(!)/2⇡ =

Z
d!

p
2N0�(!) =

p
2N0, (3.26)

with N0 being the number of atoms in the cloud.

With the bare action defined, the next step is to include interactions. For the interac-

tions it is necessary to Fourier transform terms like e�if(t)�̄n(t) m(t). As f(t) was chosen
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to be periodic with period T , the phase modulation can be written as a discrete Fourier

series

e�if(t) =
1X

↵=�1
c↵e

�i↵⌦t, (3.27)

with ⌦ = T/2⇡ and c↵ being the complex Fourier coe�cients. Experimentally this can be

generated using an electro-optical modulator, which makes the sum truncate at a finite

value of ↵. In practice, the largest value of ↵max⌦ will always be much smaller than �a,

such that the dispersive approximation is una↵ected by the phase modulation. Because

of the form of the phase modulation, the Fourier coe�cients satisfy a sum rule

e�if(t)eif(t) = 1 =
X

↵,�

c↵c̄�e
�i⌦t(↵��), (3.28)

and because all time-dependent terms have to cancel against each other, it implies that

X

↵

|c↵|2 = 1. (3.29)

With this representation of the phase modulation, the terms interacting with the pump

can be Fourier transformed

Z
dt e�if(t)�̄n(t) m(t) =

X

↵

c↵

Z
d! d✏

2⇡
�̄n(!) m(✏)�(! � ↵⌦� ✏). (3.30)

The remaining interaction term, where the atom is excited by absorbing a cavity photon,

is energy conserving and given by

Z
dt �̄n(t)ap(t) m(t) =

Z
d! d✏ d⇢

(2⇡)2
�̄n(!)ap(⇢) m(✏)�(! � ✏� ⇢). (3.31)
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Putting it all together, the interacting part of the action is found to be

SI =� �
X

n,↵

Z
d! d✏

2⇡

 
X

m 6=0

h�n| ⌘p | mi c↵
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n

�̄q

n

!T

!

�x
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m

!

✏
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+
p
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!

�
X

n,p

Z
d! d✏ d⇢

(2⇡)2
gpp
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X
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!

⇢

2⇡
p

2N0�(✏)�(! � ⇢) + H.c.

!
,

(3.32)

where the condensed field component  c

0(!) = 2⇡
p

2N0 �(!) introduced in eq. (3.26) has

been separated out. The tensor M↵,�,� is equal to the real o↵-diagonal Pauli matrix �x

when ↵ = c, and equal to 1 when ↵ = q. The Einstein summation convention has been

used to indicate contraction over the repeated contour indices. The additional factor of

1/
p

2 in the cavity part arises from the Keldysh rotation of a three-field product.

The phase modulation of the pump leads to a shift in frequency by ↵⌦, and in the

considered scheme, ⌦ is comparable to the cavity mode splitting, which is much large

than the energy scale of the motion of the atoms. To make the separation of energy scales

as explicit as possible, all the energy integrals are split such that the integral over any

function f(!) is written as

Z 1

�1

d!

2⇡
f(!) =

1X

↵=�1

Z ⌦
2 +↵⌦

�⌦
2 +↵⌦

d!

2⇡
f(!) =

1X

↵=�1

Z ⌦
2

�⌦
2

d!

2⇡
f(! + ↵⌦)

=
1X

↵=�1

Z ⌦
2

�⌦
2

d!

2⇡
f↵(!),

(3.33)

where ! is now only defined in the region {�⌦/2, ⌦/2}, and we will refer to this as the

quasienergy. We call the region where ↵ = 0 the first Floquet Brillouin zone (FBZ).

This rewriting is exact and can always be done. It is useful here because the pump is

periodic in time, which means that taking one pump quanta (which we refer to as a

Floquet photon) connects the first FBZ to the second FBZ. Taking two Floquet photons

then connects the first FBZ to the third FBZ and so forth. The bare retarded propagator

for the ground-state fluctuation in the ↵th FBZ has a form

GR

g0,m;↵ (!) =
1

! + ↵⌦� Em + i0+
. (3.34)
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where the index ↵ refers to which FBZ the propagator belongs to. Because we are in-

terested in low-energy physics at the scale of the motion of the atoms, we can neglect

any contribution of order 1/⌦. The retarded propagator for the ground-state fluctuation

is, therefore, zero outside of the first FBZ. For the excited state, we have assumed that

�a � ⌦ which means that the retarded propagator for the excited state has the same

form in all FBZs. Due to the separation of energy scales, the bare propagators take the

form
GR

g0,n;↵(!) = �↵,0
�
! � En + i0+

��1
, n 6= 0

GK

g0,n;↵(!) = �i�↵,02⇡� (! � En) , n 6= 0

GR

e0,m;↵(!) =
�
��a + i0+

��1
,

GK

e0,m;↵(!) = �i2⇡� (! + ↵⌦��a) ,

GR

a0,p;↵(!) = (! + ↵⌦��p + ip)�1 ,

PK

a0,p;↵(!) = i2p.

(3.35)

Because there is no occupation in neither the excited state nor the ground-state fluctua-

tions (modes with n 6= 0), the atom Keldysh propagators are given by the bare spectral

functions as shown in eq. (2.82). For the cavity, the Keldysh element in the action and

the imaginary part of the retarded propagator are given by the loss rate of the mode as

described in eq. (3.25).

For completeness, we also give the form of the interacting part of the action in its FBZ

form

SI =� �
X

n,↵

Z
d!

2⇡

 
X

m 6=0

h�n| ⌘p | mi c↵

 
�̄c

n;↵

�̄q

n,;↵

!T

!

�x

 
 c

m;0

 q

m;0

!

!

+
p

2N0 h�n| ⌘p | 0i c↵�̄q

n;↵(!) �(✏)�(!) + H.c.

!

�
X

n,p,↵

Z
d! d✏

(2⇡)2
gpp

2

 
X

m 6=0

h�n| up | mi��̃n;↵(! + ✏)a↵̃p;↵(!) �̃n;0(✏)M↵̃,�̃,�̃

+ h�n| up | 0i
 
�̄c

n;↵

�̄q

n;↵

!

!

�x

 
ac

p;↵

aq

p;↵

!

!

2⇡
p

2N0�(✏) + H.c.

!
,

(3.36)

where all energy integrals are finite and cover a single FBZ.

3.4 Self-energies

With the bare propagators in eq. (3.35) and the interactions in eq. (3.36) we can derive

an approximation for the self-energies. As the excited state is far detuned, any self-energy
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! !;↵
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b)
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↵ �
c)
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Figure 3.3: In a) the two vertices generated by the pump interaction in eq. (3.36) are
shown. The Hermitian conjugate terms correspond to flipping the direction of the arrows.
The ground-state atom is a line with a single arrow, while a double arrow indicates the
excited state. The pump is characterized by a wavy line that ends/starts in a cross to
denote its source field nature. A dashed line represents a quantum field, and a solid line
a classical field. The line label denotes the energy of the propagator, and the semicolon
separates the quasienergy from the Floquet index ↵ (�). The star denotes the vertex,
which has the value �i�c↵ h�n| ⌘p | mi. In b) the diagram for the retarded self-energy
⌃R

g;↵��,0(!) for the ground state atom is shown while c) is the diagram determining the
ground state’s Keldysh self-energy ⌃K

g;↵��,0(!).

correction to it can be ignored.

3.4.1 Stark shift

The first e↵ect we will consider is the self-energy correction to the ground-state energy due

to the pump. The vertices constructed from the interacting part of the action are shown in

fig. 3.3a. As the interaction is quadratic in fields, only one self-energy type is possible, as

discussed in section 2.8. A consequence of the phase modulation of the pump is that the

self-energies couple di↵erent FBZs as illustrated by the retarded self-energy in fig. 3.3b.

The corresponding mathematical expression for the retarded self-energy is read o↵ from

fig. 3.3b following the prescription discussed in section 2.4.2. To make the process clearer,

all the factors involved in this diagram are written out, and for the retarded self-energy,

we find
⌃R

g,m,n;↵��,0(!) =(�1)(�i)(�i�)2

⇥
X

j

c↵c̄� h m| ⌘̄p |�ji h�j| ⌘p | ni iGR

e0,j;↵ (!)

=� �2c↵c̄� h m| ⌘̄p⌘p | ni
�a

.

(3.37)

The self-energy, represented by fig. 3.3b, should be interpreted as a motional ground-

state fluctuation in mode n and at energy ! is excited by the pump containing ↵ Floquet

photons. The excitation is then transferred to the excited state, where it propagates with

energy !+↵⌦ until the excited state decays by emitting � Floquet photons into the pump,

and goes into the motional ground-state fluctuation m in the ↵�� FBZ with quasienergy

!. Being in the dispersive regime makes all the excited state modes degenerate and allows
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one to resum the excited-state spatial basis and write the retarded propagator as �1/�a,

which has been done to get to the second line in eq. (3.37).

Using the self-energy in the Dyson equation eq. (2.53) for the retarded propagator,

is equivalent to the infinite summation in eq. (2.49). The full retarded propagator for

the density fluctuations in the ground-state atoms can therefore be written as the infinite

series
Gg,m,n;↵��,0(!, ✏) = �n,m�↵��,0�(! � ✏)Gg0,n;0(!)

+ Gg0,m;↵��(!)�(! � ✏)⌃R

g,m,n;↵��,0(!)Gg0,n;0(!) + · · ·
(3.38)

The first term is the bare propagator from eq. (3.35) which is only important within the

first FBZ. The next term couples a bare mode with quasienergy ! in the first FBZ with

another bare mode with the same quasienergy but in the (↵ � �)th FBZ. In section 3.3

it was shown that the bare propagator scales as 1/↵⌦ in the ↵th FBZ. This means that

the value of the self-energy in eq. (3.37) has to be comparable to ⌦ for the self-energy to

be able to couple di↵erent FBZs. As �2/�a ⌧ ⌦, this is not possible. The higher-order

terms in eq. (3.38) decay even faster, such that the only part of the self-energy in eq. (3.37)

that has to be considered is the part that couples within the first FBZ, namely the ↵ = �

part. The ground-state propagator then becomes independent of ↵, and one can sum over

↵ directly at the level of the self-energy

⌃R

g,n,m(!) = �
X

↵

�2|c↵|2 h m| ⌘p⌘̄p | ni
�a

= ��
2 h m| ⌘̄p⌘p | ni

�a

= ��n,m
�2

�a

. (3.39)

Here the sum rule for the coe�cients in eq. (3.29) and the constant pump spatial profile

have been used. The retarded self-energy correction due to the pump, therefore, simplifies

to a constant Stark shift similar to the single mode case [109]. As the Stark shift is

a constant, the overall shift of the energies can be absorbed in the e↵ective chemical

potential µg and has no further e↵ect on the theory.

For the Keldysh self-energy shown in fig. 3.3c, we find

⌃K

g,n,m;↵��,0(!) = �2c↵c̄� h m| ⌘̄p⌘p | ni 2⇡�
⇣
! + (↵� �)⌦��a

⌘
, (3.40)

which is zero because the system is in the dispersive regime where ! + (↵ � �)⌦ ⌧ �a,

such that the �-function can never be evaluated on-shell.

3.4.2 Cavity self-energy

Having shown that the pump modulation does not modify the ground-state atoms, we now

consider the key quantity, namely the retarded self-energy for the cavity photons. The

vertices corresponding to the atom-cavity interaction in eq. (3.36) are identical to the four
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Figure 3.4: The di↵erent retarded self-energies for the cavity, up to second order in the
cavity coupling. The cavity is drawn as a wiggly line and the BEC as a ground-state
line terminating/starting at a cross. The circle vertex is the cavity vertex with the value
�igp h�n| up | mi /

p
2. The other components are drawn similarly as in fig. 3.3, and ↵

and � are the Floquet Brillouin zone indices. All the conjugate processes of the diagrams
drawn here can be found by flipping the arrows’ direction. The external cavity legs have
been explicitly drawn to make the diagrams easier to interpret. a) First-order process in
cavity coupling. b) The two-cavity-photon process, which is second order in the cavity
coupling. c) The ”normal” scattering process, which is second order in cavity coupling but
includes the pump. d) An ”anomalous” scattering process of the same order as c.

vertices in fig. 2.5, with the photon being a wavy line and the atoms drawn as in fig. 3.3.

Because none of the internal fields (excited state and ground-state motional fluctuations)

have any occupation, many of the diagrams with di↵erent Keldysh configurations end up

canceling out against each other, as discussed in section 2.7. In the remaining diagrams,

all internal propagators are either advanced or retarded, and the only occupation e↵ects

come from the BEC source field in eq. (3.26) and the pump. The possible diagrams

contributing to the retarded cavity self-energy up to second order in the cavity coupling

are shown in fig. 3.4. None of the diagrams contains closed loops because the BEC acts

as a source field.

One of the main advantages of the diagrammatic approach is that the diagrams clearly

illustrate the physical processes. It shows that the full system, including the pump, is

energy conserving, as the total energy going out of a diagram equals the incoming energy.

To discuss the physical processes, we will focus on the diagrams shown in fig. 3.4,

as the processes in the conjugate diagrams are equivalent except for happening in the

opposite order. To clarify this, consider the simplest process that a↵ects the cavity shown

in fig. 3.4a. Here the cavity excites an atom from the BEC, which goes back to the BEC

by emitting into the pump. The conjugate process is where the pump excites the atom,
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which then emits into the cavity. It gives the self-energy contribution

⌃R

a1,p;↵(!) = ��(!)
2N0�gpc̄↵p

2�a

X

n

h 0| ⌘̄p |�ni h�n| up | 0i

= ��(!)
2N0�gpc̄↵p

2�a

h 0| ⌘̄pup | 0i ,
(3.41)

which we have denoted as a1 to di↵erentiate it from the other diagrams in fig. 3.4. The

value of the self-energy is determined by overlaps of the mode functions from eq. (3.6)

and eq. (3.19)

h n| ⌘̄pup | ni =
2

LZLH

Z
Lz/2

�Lz/2

dzeikz cos

✓
qz

Lz

◆
e�ikz

Z
dz?f?, (3.42)

The second integral is over the transverse direction, perpendicular to z. For a near-planar

cavity VF/!T � 1 such that the only longitudinal cavity mode that is energetically

relevant is the one closest to the carrier frequency. The longitudinal index for the cavity

is therefore set by q/Lz = Q with LzQVF ⇠ !c. Because the pump carries no longitudinal

momentum, the longitudinal overlap in eq. (3.42) always vanishes, and the self-energy in

eq. (3.41) will be zero.

The next diagram contributing to the cavity self-energy is the two-cavity-photon pro-

cess shown in fig. 3.4b. In this process, the cavity virtually excites an excited state which

then decays by emitting into the cavity again. No pump photons are involved in the pro-

cess, meaning it is impossible to connect di↵erent FBZs, and the self-energy contribution

is therefore diagonal in frequency and the cavity mode space

⌃a2,p,q;↵(!) =
N0g2

p

�a

h 0| upūp | 0i . (3.43)

These mode overlaps do not vanish and the diagram is proportional to N0g2
p/�a. We

assume a regime where the prefactor is small enough such that these processes are weak

compared to the process in fig. 3.4c. In fig. 3.4c the cavity mode with energy ! + ↵⌦

excites an atom from the BEC, which then emits ↵ Floquet photons into the pump and

generates a low energy density fluctuation in the BEC at energy !. An atom from this

density fluctuation is then excited using � Floquet photons from the pump. The excited

atom then decays back to the homogeneous BEC via emission into the cavity mode at

! + �⌦. This process dominates over the two-cavity-photon process because the pump

vertex scales with the pump intensity and can therefore make up for the smallness of

gp. For such a process to be experimentally possible, the polarization of the pump must

overlap with the polarization of the cavity. This requirement can be understood from
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the diagram by the fact that the diagram connects a pump vertex and a cavity vertex

through an excited state. The pump vertex and the cavity vertex are, therefore, implicitly

connected

�gp / (t · d) (d · tp) = t · hg| r |ei he| r |gi · tp. (3.44)

For this to be non-zero, the pump and cavity polarizations must have non-zero overlap

with the same excited state, and they must, therefore, also overlap with each other.

Because the diagram in fig. 3.4c contains the pump, it allows for coupling between

di↵erent FBZs by using di↵erent Floquet photons. This coupling leads to the retarded

self-energy not being diagonal in the Floquet indices ↵ and �

⌃̃R

a,q,p;�,↵(!) =
N0gpgq�2c̄↵c�

�2
a

X

n

h 0| ⌘pūq | niGR

g0;n(!) h n| up⌘̄p | 0i . (3.45)

To evaluate the contribution of this process, the following overlap is required,

h n| up⌘̄p | 0i =
⌦
 {k,n,j}

��u{Q,m,p}⌘̄p
�� {0,0,0}

↵
= Iz,{k,Q,0}I✓,{j,p,0}Ir,{j,p,0,n,m,0}, (3.46)

where the composite mode number has been explicitly written out, and the integral has

been split into longitudinal, angular, and radial parts. Splitting the overlap into these

three parts is possible because the spatial mode functions in eq. (3.6) and eq. (3.19)

are separable in their arguments. Using the mode functions, we consider each of these

di↵erent integrals, the first being the longitudinal overlap

Iz,{k,Q,0} =
2

Lz

Z
Lz/2

�Lz/2

dzeikz cos (Qz) =

8
<

:
1 if k = Q

0 otherwise
, (3.47)

which shows that the longitudinal pattern of the density fluctuation has to match the

periodicity of the longitudinal cavity mode. The radial integral is given by

I✓,{j,p,0} =

Z 2⇡

0

d✓

2⇡
ei✓(p�j) = �p,j, (3.48)

which is a manifestation of the conservation of angular momentum. For the diagram in

fig. 3.4c, the overlap appears twice with di↵erent cavity modes but the same ground-state

fluctuation. Two cavity modes can, therefore, only couple to each other if they do so

through the same density fluctuation, which, due to eq. (3.48), requires them to have the

same angular momentum. By choosing ⌦ ⇠ 2!T and having the carrier frequency close

to the Gaussian cavity mode, the non-zero angular momentum modes will have a large

energy suppression and can therefore be neglected.
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The only remaining overlap is in the radial direction and given by

Ir,{0,0,0,n,m,0} =
1

L2
H

Z 1

0

dr r exp

✓
� r2

�
2L�2

H
+ w�2

0

�◆
Ln

✓
2

r2

L2
H

◆
Lm

✓
2

r2

w2
0

◆
. (3.49)

This integral has a closed form solution [129, 7.414.4]

Ir,{0,0,0,n,m,0} =
�(m + n + 1)

2n n! m!

�
�2 � 1

2

�m
�
�2 + 1

2

�m+n+1 2F1


�n,�m;�n�m;�

�2 + 1
2

�2 � 1
2

�
, (3.50)

with � = w0/LH , 2F1 is the Gauss hypergeometric function and � being the Gamma

function. These overlaps are fully determined by � and are always real. Any further

physical insight from the closed-form expression is elusive. However, in the limit where

the atom cloud is significantly narrower than the cavity waist, we have �2 � 1
2 , which

leads to

lim
�!1

h k,n,0| uQ,m,0⌘̄p | 0i = �n,0�k,Q. (3.51)

The physical interpretation of this result is that for an atom cloud with a small transverse

size compared to the cavity, all zero-angular momentum transverse cavity modes appear

constant and equal to unity. This is intuitively seen from the plot of the radial mode

functions in fig. 3.2a. In this limit, the density fluctuation is only along the longitudinal

direction while the transverse envelope is Gaussian-like the BEC. As near-planar cavities

have fairly large waists on the order of 50µm [123] and experimentally, the atom cloud is

usually on the order of 3µm [81], the small atom cloud limit is experimentally relevant.

Although there is no fundamental problem with going beyond this limit from a theoret-

ical perspective, we restrict the following discussion to the small atom-cloud limit, as it

considerably simplifies our expressions.

The self-energy contribution from fig. 3.4c takes the simple form

⌃̃R

a,n,m;�,↵(!) =
N0g2�2c̄↵c�

�2
a

GR

g0;{Q,0,0}(!), (3.52)

where n, m are only transverse cavity mode indices for zero-angular momentum modes

with longitudinal wave vector Q. Because the longitudinal cavity mode is locked to Q by

the pump gp has been simplified to be mode independent as discussed in section 3.2.

The process in fig. 3.4c is not the total contribution to the self-energy because it is also

possible to switch the position of the condensate and the ground-state density fluctuation

in fig. 3.4c. By drawing the diagram, one finds that the ground-state density fluctuation

will propagate in the opposite direction and carry the energy �!. All other aspects remain

the same, such that these two diagrams can be added together to give the full self-energy
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contribution

⌃R

a,n,m;↵,�(!) =
N0g2�2c̄↵c�

�2
a

✓
GR

g0;{Q,0,0}(!) + GA

g0;{Q,0,0}(�!)

◆

=
2ErN0g2�2c̄↵c�

�2
a

⇣
(! + i0+)2 � E2

r

⌘ = �⇤2c̄↵c�⇧R (!) ,
(3.53)

where the recoil energy Er = Q2/2m has been introduced. All constants have been in-

cluded in the prefactor ⇤ =
p

N0g�/�a, which is the e↵ective light-matter coupling con-

stant. The polariton in the ultracold atomic gas is, therefore, strongly interacting because

of an enhancement by the number of atoms in the cloud and the power in the external

laser. The !-dependence of the self-energy is captured in the single mode polarization

function

⇧R (!) =
�2Er

(! + i0+)2 � E2
r

. (3.54)

Beyond the limit of a small atom cloud, ⇧R acquires a mode dependence due to the atoms

coupling di↵erently to the transverse modes.

The self-energy in eq. (3.53) has the normal structure expected from a self-energy; a

cavity mode comes in, is then modified, and sent out again. As the system is driven,

one can also build diagrams of the form shown in fig. 3.4d, where two cavity photons

come in and are then lost into the pump. These processes are known in superconductivity

as anomalous terms and are not number conserving [61]. Di↵erently from the counter-

rotating terms discussed for the rotating wave approximation in section 3.2, the anomalous

processes are not linked to a di↵erent energy scale than the ”normal” process in fig. 3.4c.

By writing out the diagram and using the same approximation used for deriving eq. (3.53),

one finds that the anomalous process has exactly the same form as the normal process in

eq. (3.53). To include these processes into the action, we use an extended basis known as

the Nambu basis [130] and write the retarded part of the cavity action as

SR

a
=

1

2

X

n,m,↵,�

Z ⌦/2

�⌦/2

d!

2⇡

 
āq

n;↵(!)

aq

n;↵(�!)

!T �
GR

n,m;↵,�

��1
(!)

 
ac

m;�(!)

āc

m;�(�!)

!
, (3.55)

with the inverse retarded propagator given by

�
GR

n,m;↵,�

��1
(!) =

 
PR

n,m;↵,�(!)� ⌃R

a,n,m;↵,�(!) �⌃R

a,n,m;↵,�(!)

�⌃R

a,n,m;↵,�(!) PA

n,m;↵,�(!)� ⌃R

a,n,m;↵,�(�!)

!
, (3.56)
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where the diagonal elements are the inverse bare propagators in eq. (3.35)

PR/A

n,m;↵,�(!) = �n,m�↵,� (! + ↵⌦��n + /� in) . (3.57)

Due to the phase modulation, the action is no longer diagonal in energy but instead

couples di↵erent FBZs. The coupling and extended Nambu basis leads to the action

acquiring a large matrix structure of the form Floquet⌦transverse mode⌦Nambu, where

⌦ is the Kronecker product. The Floquet structure is infinite-dimensional, while the

transverse mode structure has a Nm modes and the Nambu structure is two-dimensional.

The bare inverse propagators in eq. (3.57) are diagonal in the Floquet indices. The Floquet

structure of the self-energy is solely determined by the Fourier coe�cients c↵ of the phase

modulation such that the Floquet matrix structure of the self-energy is

⌃R

a
⇠

0

BBBBBBBBBBBBB@

|cN |2 cN c̄�N

. . . . .
.

|c2|2 c2c̄1 c2c̄0

c1c̄2 |c1|2 c1c̄0

c0c̄2 c0c̄1 |c0|2

. .
. . . .

c̄Nc�N |c�N |2

1

CCCCCCCCCCCCCA

. (3.58)

Each entry in this matrix is the coe�cient from the Floquet structure that is multiplied

by the matrix that describes the transverse mode⌦ Nambu structure of the action. In

the small atom-cloud limit, the transverse mode⌦Nambu of the self-energy is simply

a constant matrix of size 2Nm filled with ones multiplied by ⇤2⇧R(!). The decay in

quasienergy, !, is set by the polarization function, which decays as 1/!2 and has a mag-

nitude on the order of ⇤2 that is small compared to ⌦. Following an analysis similar to

the treatment of the ground state, which led to eq. (3.38), shows that the only relevant

cavity modes satisfy ↵⌦ � �n ⇠ �0. If ⌦ ⇠ 2!T , then there will only be one relevant

cavity mode in each Floquet block, which allows one to consider an e↵ective action with

a matrix structure transverse mode ⌦ Nambu. To clarify the structure of the e↵ective

action, consider the normal block of the action, which is the upper left entry of eq. (3.56).

The e↵ective bare element is

PR

n,m
(!) = �n,m (! � !̃n + in) , (3.59)

where the e↵ective detuning of the nth mode �̃n is its bare detuning minus the number

of Floquet quantas that brings its magnitude the closest to zero. The e↵ective self-energy
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is dense in the mode space such that its components are given by

⌃R

n,m
(!) = �⇤2cnc̄m⇧R(!). (3.60)

As the self-energy couples the cavity mode n and m, we have generated an e↵ective action

where there is a direct coupling between all the di↵erent transverse cavity modes. The

n, m component of the inverse retarded propagator for the e↵ective model is therefore

given by

�
GR

��1

n,m
(!) =

 
PR

n,m
(!)� ⌃R

a,n,m
(!) �⌃R

a,n,m
(!)

�⌃R

a,n,m
(!) PA

n,m
(!)� ⌃R

a,n,m
(�!)

!
. (3.61)

Our result is based on the cavity self-energy to second order in the cavity coupling,

and in the thermodynamic limit, this becomes exact [108]. That it becomes exact can be

understood by going to fourth order in g, the full diagram still only contains two BEC

source fields. The O(g4) diagrams, therefore, also scale linearly with the atom number.

However, the cavity interaction is inversely proportional to the square of the volume. In

the thermodynamic limit, the second-order process will therefore be relevant as it scales

with the density, whereas the higher-order processes scale with the density over volume,

which vanishes in the thermodynamic limit.

3.4.3 Sideband picture

So far, we have discussed the pump modulation in terms of FBZs, which is the natural

language for the general theory. Having an e↵ective model for multiple coupled transverse

cavity modes, we can think of the system in a more physical picture closely related to the

experimental realization.

The phase modulation in eq. (3.27) is given by a sum of exponentials rotating at

exp (�i↵⌦t). The phase modulation can therefore be understood as the pump having

sidebands at ↵⌦ with intensity in each sideband given by |c↵|2. Because of the sum

rule in eq. (3.29) the pump field’s total power is conserved but shared between all the

sidebands. As a specific realization of this, we consider a sinusoidal phase modulation of

the form

f(t) = Bm sin (⌦t) , (3.62)

where Bm is the modulation depth of the phase modulation. Using the Jacobi-Anger

expansion [131, 17.1.7] the Fourier series of the phase modulation is found as

e�iBm sin(⌦t) =
1X

↵=�1
J↵ (Bm) e�i↵⌦t, (3.63)
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Figure 3.5: A plot of the first six Bessel functions, which corresponds to the weight in the
pump sidebands when the phase modulation has a depth Bm.

where J↵(x) is the Bessel function of the first kind of order ↵. The first six of these

coe�cients are shown in fig. 3.5. At zero modulation depth, all weight is in the zeroth

sideband, and the pump laser, therefore, has all its intensity at ! = 0 in the rotating

frame. Increasing the modulation depth Bm, more weight is gradually transferred into

the sidebands at higher energy. Changing Bm allows one to tune the e↵ective couplings

between the cavity modes in the self-energy as shown in eq. (3.60).

The modulation frequency is the second tuning nob in the phase modulation and

allows one to tune the e↵ective detunings of the di↵erent transverse modes. This is

possible because the e↵ective detuning of each cavity mode is set by the mode’s detuning

from the nearest sideband. To make this transparent, the phase modulation frequency is

written as ⌦ = 2!T + ✏, with |✏|⌧ !T . Because the transverse modes are linearly spaced

in energy as shown in fig. 3.2b, the e↵ective detuning of the nth transverse mode will be

�n = �0 � n✏. (3.64)

If we choose the sign of ✏ > 0, then the higher-order modes will e↵ectively be lower in

energy than the zeroth mode. In the other case where ✏ is chosen to be negative, the

higher-order modes will be at higher energies than the zeroth mode. Using the simple

phase modulation in eq. (3.62), which is easy to implement experimentally, therefore,

gives a large tunability of the multimode nature of the system.
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3.5 Multimode polaritons

The inverse retarded propagator for the e↵ective cavity model in eq. (3.61) has a matrix

structure which leads to the elements of the spectral function in eq. (2.68) being given by

Aj,i(!) = i
�
GR

j,i
(!)� ḠR

j,i
(!)

�
, (3.65)

As shown in section 2.5, the diagonal components of the spectral function satisfy a sum

rule which allows us to interpret them as the modification of the bare modes due to the

coupling. The mode index j in the spectral function in eq. (3.65) refers to the cavity mode

uQ,j,0(z, r) = cos (Qz) LGj,0. In the following discussion, such a mode will be denoted as

the LGj0 mode. The spectral function element A0,0 then contains information about

adding an excitation to the mode LG00, having it propagate in the system, and then

removing an excitation again from the LG00.

3.5.1 Single mode polariton

Before discussing the more complicated case, including many cavity modes, we first discuss

the single mode system [108,130,132].

The main tuning parameter in this system is the pump intensity as it linearly a↵ects

the e↵ective light-matter coupling strength ⇤, which sets the magnitude of the self-energy

in eq. (3.60). Furthermore, it is a good tunning parameter because there is no assumption

regarding its magnitude in the derivation of self-energy. Increasing ⇤ leads to the forma-

tion of a polariton where there is a correlation between the cavity photon and a density

fluctuation in the atom cloud.

When we derived the ground-state atomic mode functions in eq. (3.18), we did not

include the e↵ective optical potential that would arise from having a coherent field inside

the cavity. With the choice of atomic mode functions, we are therefore neglecting any

occupation of the cavity modes. The anomalous process in fig. 3.4d scatters two cavity

photons into the pump meaning the cavity occupation is decreased. This process scales

with the occupation in the cavity field. In the conjugate process, two cavity photons are

created by scattering two pump photons into the cavity mode. This process scales with

the intensity of the pump. For finite ⇤, one would expect the cavity occupation to increase

until a detailed balance between the two anomalous processes is achieved. However, this

is not the case due to the homogeneous nature of the atom cloud [102]. As the atoms

are uniformly distributed on the scale of the cavity wavelength, the scattered photons

interfere destructively with each other, and no coherent field is created in the cavity.

At the critical value, ⇤c, the number of photons scattered into the cavity is so large
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Figure 3.6: A plot of the cavity spectral function for the LG00 mode. The parameters are
�0 = 0.8Er and  = 0.02Er. In a) the system only has a single cavity mode as there is no
phase modulation Bm = 0, and in b) the phase modulation is turned on with ✏ = 0.19Er

and Bm = 0.9. The horizontal dashed lines represent the bare detunings of the higher-
order modes, while the third dashed line is the unmodulated spectral line from a). The
three crosses mark the values used in fig. 3.7.

that the atoms are starting to feel the optical potential of the cavity. At this point, the

atom cloud no longer has the lowest energy when it is longitudinally homogeneous, but

instead, the lowest energy mode is when the cloud has an overall density modulation set by

Q. The atoms in the density modulation start scattering the pump photons constructively

into the cavity. This leads to a runaway e↵ect where the atoms in the density modulation

scatter the pump field more e�ciently into the cavity. The more e�cient scatting into

the cavity increases the depth of the optical potential for the atoms, which increases the

number of atoms in the density modulation, and again more light is scattered into the

cavity. Therefore, the system undergoes a phase transition. Below the critical pump

power, the system is in the normal phase, where the atom is in a homogeneous cloud,

and there is no coherent light field inside the cavity. At the critical pump power, it then

transitions into a phase where the atomic cloud has a density modulation, and the cavity

is coherently occupied. This phase is known as the superradiant or self-organized phase,

depending on whether one prefers to think of the atoms’ or the cavity’s state. It was first

experimentally observed in 2010 [133].

From the perspective of the retarded propagator of the cavity, the signature of the

phase transition is that the inverse propagator becomes unbounded, as discussed in sec-

tion 2.6. In the stationary state, this is seen by the vanishing of the imaginary part of the

retarded propagator. When the imaginary part of the retarded propagator becomes zero,
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the propagator develops a singularity on the real axis, which leads to the action diverging.

The spectral function for the LG00 mode for varying pump power is shown in fig. 3.6a.

For ⇤ = 0, the self-energy vanishes, and the spectrum is the free Lorentzian centered at

�0 and with a width of  from the bare propagator. As the pump is turned on, another

peak appears at the recoil energy, which comes from the hybridization with the density

fluctuation. Increasing ⇤ leads to increasingly strong interactions between the cavity

and the density modulation, which leads to repulsion of the two peaks in the spectral

function. At su�ciently high ⇤, the lower peak is pushed to zero frequency. It still has a

finite width, and only after further increasing ⇤ the width goes to zero, making the normal

phase unstable through a zero-frequency polariton mode. A more detailed analysis of the

phase transition is done using the classical equations in chapter 4.

3.5.2 Including phase modulation

To understand how the system is a↵ected by the phase modulation, we first consider the

same system but with a finite amplitude of the phase modulation Bm > 0. The case where

the higher-order modes are energetically favorable over the zero mode (✏ > 0) is shown

for the modulation depth Bm = 0.9 in fig. 3.6b. The value of Bm is chosen such that

the central band of the pump has the largest weight, see fig. 3.5. The e↵ect of the large

central band weight can directly be observed in the spectral function, which is similar

to its unmodulated counterpart in fig. 3.6a for small ⇤. As ⇤ is increased, the mode is

pushed down in energy and then intersects with the LG10 mode, which is ✏ lower in energy.

Because the two modes interact with each other, they cannot cross, but instead, an avoid

crossing appears [100]. Further increasing ⇤ then forces another crossing with the LG20

mode. The nature of the mode changes drastically at an avoided crossing because it leads

to a hybridization of the two modes. This is illustrated in fig. 3.7. Here it is shown that

the fluctuation in the cavity field at low light-matter coupling, corresponding to p1 in the

figure, is mainly in the LG00 mode because it couples stronger to the atoms. After the first

avoided crossing, at p2, the cavity fluctuation has a large contribution from LG10. The

interaction between the modes, through the phase modulation, leads to a superposition

of several modes in the cavity field, making the polariton in the system a multimode

polariton. After the second avoided crossing at p3, the LG20 becomes important and also

has a large weight in the cavity field fluctuation. Additionally, we note that even though

the LG30 is lower in energy than the LG20 mode, it has a negligible contribution to the

field superposition. This is understood by the fact that the weight in the third sideband

in fig. 3.5 at Bm = 0.9 is also negligible. The cavity field’s superposition thus depends on

both Bm and ✏.

For it to be possible to see these hybridization e↵ects, the cavity linewidth must be
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Figure 3.7: This plot shows the composition of the fluctuations in the cavity field at the
three di↵erent crosses in fig. 3.6b. Each of the crosses are described as a point in the
(!, (⇤/⇤c)

2) plane. At the first cross p1 = (0.04, 0.77) the LG00 mode dominates the the
field, while after the first avoid crossing at p2 = (0.42, 0.49) the field is mainly composed
of LG10 and LG00. At the last point p3 = (0.62, 0.37), the field is in a superposition with
almost similar weight in all of the three lowest transverse modes. The inset shows the
e↵ective spatial potential felt by the atoms at these three di↵erent points.
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below the recoil energy, as a larger linewidth will wash out any hybridization signatures

in the spectrums. Current state-of-the-art experimental setups with resolution below the

recoil energy exist [81], such that the observation of the described hybridization e↵ects

is within reach. For the experiment in [81], Rubidium was used, and choosing a lighter

atom, such as Lithium, would increase the recoil energy by around a factor of 10. The

recoil energy would then be ⇠ 0.2 MHz and would still be significantly smaller than the

transverse energy spacing of the cavity modes !T ⇠ 0.1GHz such that the e↵ective model

would be well-justified. In this case the linewidth would be about an order magnitude

less than the recoil energy making the anti-crossings clearly visible.

The hybridization is not directly visible if one considers a system without sub-recoil

resolution. However, one would still be able to observe that the cavity field will be in a

superposition of di↵erent modes as this does not rely on visible avoided crossings.

Besides the avoided crossing and multimode nature of the polariton, it is also worth

mentioning that by including more modes into the cavity field, the waist of the cavity is

e↵ectively decreased. The transverse intensity profile of the cavity field is plotted in the

inset of fig. 3.7 and in the dispersive regime, the width of the intensity profile directly

relates to the range for the cavity mediated atom-atom interactions [110]. If the e↵ective

interaction range can be tuned, it will open up a range of new physical models that can

be investigated using the ultracold atom gas systems. Current experimental setups are

limited because there is a large discrepancy between the cavity waist and the size of the

transverse atom cloud. In this regime one would need a high-order transverse mode to

realize short-ranged atom-atom interactions using a phase modulation of the pump. A

high-order transverse mode decreases the waist as the mode’s center peaks decrease in

size with the mode number, as shown in fig. 3.2a. This is experimentally challenging as

these modes also extend far in the transverse direction, making them harder to stabilize

in the cavity. To use the phase modulation to create short-range atom-atom interactions,

one should instead consider moving the atom cloud away from the center of the cavity,

where nodes of the di↵erent modes can potentially be used to generate smaller e↵ective

interactions between the atoms.

So far, we have discussed how the system behaves when the higher-order modes are

energetically preferable to the LG00 mode. One can also consider the opposite scenario,

where the higher-order modes are energetically unfavorable by choosing ✏ < 0. For a

negative ✏, the spectral functions for the first four transverse modes are plotted in fig. 3.8 as

a function of the detuning. The spectral functions are plotted at constant ratio (⇤/⇤c)
2 =

0.7 but it is important to note that ⇤c is a function of Bm. Keeping ⇤/⇤c constant allows

us to compare the spectral functions when the system is in the vicinity of the phase

transition. For comparison, we plot the quasiparticle energy for each mode, given by
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Figure 3.8: Plots of the spectral functions for the first 4 transverse modes as a function
of the modulation depth Bm. The higher order modes are higher in energy than the LG00

mode as ✏ = �0.09Er. the e↵ective light-matter coupling strength is kept at a fixed ratio
(⇤/⇤c)

2 = 0.7. Notice that |lambdac is a function of Bm see eq. (3.67). The red lines are
the quasiparticle energies of each mode described by eq. (2.71). The cavity parameters are
 = 0.02Er and �0 = 0.6Er.
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eq. (2.71). At Bm = 0 the LG00 mode is pushed down to a frequency around 0.3Er and

couples significantly to the atom, which is seen by a clear feature from the atomic part of

the polariton in the LG00 spectral function. This can be qualitatively compared to a line

scan at 0.7 (⇤/⇤c)
2 in fig. 3.6a. At this modulation depth, none of the higher-order cavity

modes are part of the polariton, and their spectral functions are purely Lorentzian at

their respective bare detunings given by eq. (3.64). As Bm is increased, the height of the

pump sideband for the LG10 mode increases according to fig. 3.5, which leads to this mode

being mixed into the polariton. This can be seen in fig. 3.8 by the atomic mode starting

to appear in A11, and the spectral functions A00 and A11 have features emerging at the

same frequencies. The admixture of the LG00 mode is decreasing due to the decreasing

height in carrier peak of the pump see fig. 3.5, until Bm ⇠ 2.4 where J0(Bm) ⇡ 0. Then

LG00 is completely removed from the polariton, the atom admixture vanishes in A00, and

the unperturbed Lorentzian is the only feature remaining. At Bm ⇠ 2.4, the polariton

has significant weight in both LG10 and LG20 and the peaks of the spectral functions are

significantly displaced from the bare values, which indicates that both modes strongly

couples to the atoms. For Bm ⇡ 4, the polariton consists of a superposition of all four

modes apart from LG10, which is again understood from fig. 3.5.

The explicit example shows that even for ✏ < 0, strongly coupled multimode polaritons

can be generated using the simple sinusoidal phase modulation scheme.

3.6 Multimode superradiance

In this section, we discuss how the changes in the polariton spectrum due to the phase

modulation carry over to the superradiant phase transition.

We have seen that the critical value of the phase transition is a↵ected by the phase

modulation. It became apparent in fig. 3.8 when the atomic peak in the spectral function

was moved to higher energy as Bm increases. The atomic peak being pushed to higher

energies means that the coupling strength between the cavity and the atoms has increased.

As the ratio ⇤/⇤c is kept constant, both ⇤ and ⇤c must have increased for larger values

of Bm.

A rigorous treatment of the critical coupling strength will follow in chapter 4, and for

the single mode case, we find the well-known result [107]

⇤2
c

=
ER (�2

0 + 2)

2�0
. (3.66)

In the regime where  ⌧ �0, the critical coupling is seen to scale linearly with the

detuning. This single-mode e↵ect carries over qualitatively to fig. 3.8, as the higher-order
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modes in fig. 3.8 have larger detunings than the zeroth order mode, and we indirectly

observe an increase in ⇤c when these modes start coupling to the atoms.

To investigate how the phase modulation a↵ects the critical coupling, consider first

the simplest case where ✏ = 0, such that the cavity modes are e↵ectively degenerate. In

this case, we expect that the critical coupling is unchanged by Bm because the cavity

modes are e↵ectively degenerate. The result is shown in fig. 3.9a, by the dashed black

line and predicts that a non-monotonic increasing value of ⇤c would be observed. This

behavior is explained by the symmetrically generated sidebands above and below the

carrier frequency due to the sinusoidal phase modulation. Combined with the fact that

the near-planar cavity only has modes at higher energy than LG00, all intensity in the

lower energy sidebands is e↵ectively lost. The lost intensity can be accounted for by

renormalizing ⇤

⇤! ⇤qP
0↵↵max

J↵(Bm)2
= ⇤ (Bm) . (3.67)

The renormalized critical coupling for ✏ = 0 is now independent of Bm as shown by the

solid black line in fig. 3.9a.

In the case where ✏ > 0, as considered in fig. 3.6, the higher-order modes are ener-

getically favorable. The critical coupling as a function of Bm is plotted as the red lines

in fig. 3.9a. We observe that after renormalizing ⇤c the critical coupling decreases with

Bm, which is expected from the single mode result in eq. (3.66). However, when the

modes have di↵erent detunings, the critical coupling is not a linear function of Bm, which

highlights the interplay between the e↵ective detuning and the pump sideband height.

Apart from the shifted critical coupling, we can observe an intriguing e↵ect that hints

at a qualitatively new nature of the superradiant phase itself. Instead of an unstable

polariton mode at zero frequency, there is an indication that it can be pushed to finite

frequency.

The superradiant phase has been described as a phase with finite occupation in a zero-

frequency polariton mode. Mathematically, the instability of the system occurs when the

inverse retarded matrix propagator
�
GR(0)

��1
acquires an eigenvalue with a value of zero.

At this point, the retarded propagator is no longer defined, and the action has become

unbounded, signaling the phase transition. Computing ⇤c for when this zero-eigenvalue

occurs, we find that there are regions in the parameter space (Bm, ✏) where the inverse

propagator at ! = 0 cannot become unstable. The zero-frequency polariton not having

an instability is not equivalent to the system having no transition into a superradiant

state. Instead, what happens is that a polariton mode can become unstable at a finite

frequency. Computing this instability from the retarded propagator is cumbersome, as it
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requires one to solve the equation

Det

✓�
GR(!)

��1
◆

= 0, (3.68)

as a function of ⇤ and !. Performing this non-trivial numerical task leads to the result

shown in fig. 3.9b. There is a sizable region of parameter space where the dominating

instability is a polariton mode at finite frequency. The small disconnected regions of

fig. 3.9b occur due to the two-dimensional root-finding routine not being perfectly robust.

By carefully investigating the parameters, one can see that the three lobes in the phase

diagram are connected to a cavity mode acquiring an e↵ective negative detuning. This

means that the cavity mode has lower energy than its sideband. The phase diagram,

therefore, hints towards a qualitative change of the superradiant phase if cavity modes

acquire negative detunings. Understanding the nature of the instability by numerically

solving eq. (3.68) is ine�cient as it requires investigating the large parameter space nu-

merically. In chapter 4 we will use a di↵erent approach to get a deeper understanding of

how the superradiant state is modified in this multimode model.
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3.7 Summary and discussion

In this chapter, we have shown how e↵ective interactions between di↵erent cavity modes

that have a large frequency separation can be generated using a phase modulation. The

e↵ective interaction originates from the di↵erent cavity modes coupling strongly to the

motion of the same atom gas. The atomic gas, therefore, acts as a mediator of interactions

between the cavity modes. Due to the strong coupling between the cavity modes and the

motion of the atomic gas, the system forms a polariton that contains a superposition

of many cavity modes, making it a polariton with a multimode nature. In the regime

where the cavity loss is below the recoil energy of the atoms, the di↵erent cavity modes

interact strongly with each other, giving rise to avoided crossings in the spectrum. We

have shown that the superposition of the modes in the polariton and the cavity modes’

e↵ective interactions can be tuned by the phase modulation parameters. We find signs

that the multimode nature of the polariton makes it possible for the system to transition

into a superradiant phase that oscillates at a finite frequency.

To illustrate the scheme, we have focused on a near-planar cavity where the transverse

cavity modes are linearly spaced in frequency and the regime where the atom cloud is

small compared to the cavity waist. Both of these regimes make the equations and analysis

simpler, but none of them are required for the scheme to work. It only relies on the energy

scale set by the frequency di↵erence of the relevant transverse cavity modes being much

larger than the recoil energy of the atom. If the atomic overlaps are di↵erent for the

di↵erent transverse modes, then this e↵ect can be directly accounted for by choosing the

height of the pump sidebands accordingly. If the cavity modes are not linearly spaced,

then this can be accounted for by not using a periodic phase modulation but instead a

generic frequency comb.

An interesting question that has not been investigated here is how the pump envelope

modifies the results. The transverse pump has a wavelength that is equal to the wavelength

of the longitudinal cavity mode. This gives rise to an optical potential in the transverse

direction, which changes the transverse-mode overlaps between the cavity modes and the

atom cloud. One could also investigate how a pump with angular momentum a↵ects the

polariton, as this gives rise to coupling between modes of di↵erent angular momentum.

Lastly, the question of how small an e↵ective atom-atom interaction-range one can create

by using a superposition of a realistic number of transverse cavity modes also requires

further investigations.



Chapter 4

Polariton limit cycles

4.1 Introduction

In the previous chapter, phase modulation of the pump laser was used to couple several

transverse cavity modes strongly to the motion of an ultracold gas of atoms. The cavity

photon coupled to the atomic motion because the pump laser frequencies was tuned far

below the electronic transition of the atoms. Our investigations showed a large parameter

region, where the superradiant state did not emerge through a mode softening; instead,

the system acquired a finite frequency instability. The emergence of a finite frequency

instability is surprising as the system is described using an e↵ective time-independent

model. The e↵ective model was derived by relying on the separation of energy scales

inherent to the system, and it was intuitively understood as the pump having sidebands

close to each cavity mode. Preliminary investigations of the phase diagram hinted at

a connection between a cavity mode acquiring a negative detuning and the polariton

developing a finite frequency instability.

The sign of detunings can play a vital role in the behavior of the system, exemplified

by considering the ultracold gas in a single mode cavity without modulation of the pump.

When the pump is detuned far below the atomic transition and slightly below the cavity

mode, the optical potential for the atoms created by occupation of the cavity field is an

attractive potential that favors a density wave in the atoms [13]. The dispersive regime

can also be reached if the pump is detuned far above the electronic transition and the

cavity frequency is slightly above the laser frequency. In this dispersive regime, the optical

potential for the atoms becomes repulsive [13]. This repulsive interaction can drive the

system into a limit cycle, and even chaos [134,135]. These predictions have recently been

verified experimentally [136]. While using a pump with a frequency above the electronic

transition can lead to limit cycles, the phase diagram di↵ers from what we observe in the

multimode model.

76
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Our multimode model is time-independent, but oscillating steady states have been

proposed and investigated previously in similar systems using a modulation of the pump

laser at frequencies comparable to the recoil energy. In this case, the modulation fre-

quency is much smaller than the cavity spacing, and only a single cavity mode is relevant.

However, because the modulation frequency is comparable to the intrinsic time scale of

the atomic motion, the model can not be simplified to one that is time-independent. The

parametrically driven and closed Dicke model was found to exhibit a rich phase diagram

due to the driving [137]. Dissipation was included in the description by ref. [138] where

they found a new oscillating phase which they interpreted as a normal phase with pulsed

superradiance.

Following these ideas, the e↵ect of a modulated pump, with a modulation frequency

comparable to the recoil energy, was considered in the BEC-cavity system in [139, 140].

Here it was found that the pump modulation can suppress the density wave in the atom

mode and that if the modulation frequency was comparable to the recoil energy, the

system could exhibit a limit cycle. The limit cycle was found to be robust, to some level,

against noise and imperfections in the modulation protocol.

A similar system was numerically investigated in [141], where collisions between the

atoms were included. This system also had a limit cycle between two di↵erent symmetry-

broken states, but the presence of atom collisions was numerically found to lead to heating.

A recent experiment [142] done with the modulation close to the recoil energy found the

atomic state of the system switching between two Z2 symmetry-broken states with half

the period of the modulation frequency. These oscillations survived for less than ten

cycles, which was attributed to non-negligible atom-atom interactions and atom losses by

numerical simulations.

In all the discussed systems, the oscillating steady states were generated either by the

repulsive optical potential of the atom or by driving at a frequency close to the recoil

energy. As neither of these mechanisms are present in our e↵ective model they cannot

directly explain the phase diagram from chapter 3.

In [64], it was experimentally found that for a negatively detuned cavity, the system

does not soften at the transition but instead hardens. They argue that this is because

the cavity phase is shifted, in relation to the emerging density wave pattern, such that a

negatively detuned cavity mode leads to a suppression of the density wave towards the

homogenous atom configuration. An experiment with two pump lasers, one below and one

above the cavity frequency, was performed in [143], which showed that it was possible to

use the pump above the cavity frequency to suppress the density wave generally favored

by the lower frequency pump. This understanding of a single negatively detuned cavity

mode suggests that having both negatively and positively detuned cavity modes in the
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system can lead to a competition between favoring and suppressing the density wave.

To investigate the superradiant phase, we consider a generalized model of the sinusoidal

phase modulation. It consists of several cavity modes with variable detunings and variable

coupling strengths to the atoms.

The e↵ective model emerging from a multi-colored laser drive was previously discussed

in [144,145]. They considered all cavity modes having the same detuning or the bad cavity

limit and observed no limit cycles. Even in these regimes, they show that the system can be

used for several applications, such as the simulation of Hopfield networks and associative

memories. Di↵erently from those investigations, we consider the case where the cavity

linewidth is below the recoil energy of the atoms, as this is where our initial calculations

suggest finite frequency instabilities emerge.

By constructing the classical equations for our multimode model, we can derive an-

alytic expressions for the frequencies and critical couplings of the unstable modes. We

show that the finite frequency instability is truly an e↵ect of having a competition be-

tween a negatively and a positively detuned cavity mode, which can be understood by

considering the behavior of the eigenvalues (EVs) of the linear stability analysis. These

results show that we can tune the frequency of the instability to any value on the scale of

the recoil momentum by adjusting the e↵ective parameters of the model. Going beyond

the linear stability analysis, we show that the single mode superradiant transition, on the

classical level, corresponds to a pitchfork bifurcation. With several modes present, this

leads the system to exhibit Hopf-bifurcations. Even more striking, the e↵ective model

can accommodate several limit cycles simultaneously at di↵erent frequencies. From a

normal form analysis of the Double-Hopf bifurcations, the possible steady states of the

system is mapped out. Lastly, some preliminary investigations into the e↵ect of including

atom-atom interactions are discussed. These investigations allow us to predict that spe-

cific density modulations should grow due to the presence of the limit cycle, e↵ectively

heating the system. However, our investigations suggest that the heating rate can be

dramatically decreased by adjusting the frequency of the limit cycle, and the limit-cycle

phase can therefore be metastable.

4.2 Minimal model

For the minimal model, we will consider a similar system as in chapter 3 and only briefly

mention the key approximations and findings discussed in detail in that chapter. The

system consists of a linear cavity containing an ultracold gas of N0 bosonic atoms in

the center. The gas is driven by a transverse pump laser, which we generalize to have

sidebands with arbitrary frequencies and magnitudes. The cavity is assumed to support
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several di↵erent transverse modes, and the atom cloud is modeled as long in the longi-

tudinal direction (compared to the inverse recoil momentum) and small in the transverse

directions compared to the cavity waist. In this regime, the atoms couple equally to all

zero angular momentum cavity modes. The frequency of the pump laser and its side-

bands are detuned far below the atomic transition such that the excited state can be

adiabatically eliminated. In this dispersive regime, the cavity couples directly to the spa-

tial motion of the ground state of the atoms. We assume the transverse pump carries no

momentum, meaning the mode function for the pump is spatially uniform. Because all

transverse cavity modes, that couple to the atoms, has approximately identical overlaps

with the small atom cloud, and the pump profile is assumed constant, the model can be

simplified to a one-dimensional model. A greater transverse extent of the atom cloud

changes the e↵ective coupling strength between the modes and the atom cloud. It can be

accounted for by changing the power of the pump sidebands accordingly.

The Hamiltonian for this minimal model is given by

H =

Z
L/2

�L/2

dx  ̂†(x)

 
� 1

2m

d2

dx2
+

1p
L

cos (xQ)
X

i

⌘i
⇣
�̂i + �̂†

i

⌘!
 ̂(x)

+ g

Z
dx  ̂†(x) ̂†(x) ̂(x) ̂(x) +

X

i

�i�̂
†
i
�̂i,

(4.1)

where  ̂ is the bosonic field operator for motion of the ground-state atoms and �̂i the

annihilation operator for the ith cavity mode. The atom mass is m and �i = !c,i � !p,i

is the e↵ective detuning of the ith cavity mode with frequency !x,i from the pumps ith

sideband at frequency !p,i. The detuning of the cavity modes can be separately tuned by

individually changing the frequency of the pump sidebands. The length of the cavity is

L, and Q = 2⇡/�p is the wavevector of the cavity mode the pump photons are scattered

into. The cavity wavevector is set by the pump wavelength �p. The pump sidebands all

e↵ectively have the same wavelength because the frequency of the pump is ⇠ 300THz.

The large frequency of the pump means that even if the sideband is 10 GHz higher in

frequency, then the di↵erence in wavelength is

�p � �p,sideband ⇡
c

300⇥ 1012
� c

300⇥ 1012 + 1010
⇡ 3⇥ 10�2nm. (4.2)

As the transverse size of the atom cloud is on the order of µm [81], the wavelength

di↵erence of the sidebands can be neglected. The e↵ective coupling between the ith

cavity mode and the atom cloud is set by ⌘i. The coupling is local in space and time due

to the adiabatic elimination of the excited state. As discussed in chapter 3 and above,

this coupling can be tuned individually for each mode by tuning the relative power in the



80 Polariton limit cycles

sidebands. For an ultracold and dilute gas, the contact interaction is a good approximation

to the two-body scattering potential [128], and we denote the contact interaction strength

by g. This interaction is repulsive (g > 0) . The processes involving two cavity photons

and no pump are neglected as the single photon interaction strength is much smaller than

the interaction with the pump field as discussed in chapter 3.

To e↵ectively deal with the spatial derivative in the Hamiltonian, the atom field op-

erators are expanded in plane waves with periodic boundary conditions

 ̂(x) =
X

k

1p
L
 ̂ke

ikx, with k =
2⇡n

L
and n = 0, ±1, ±2, ... (4.3)

With the discrete and continuous �-function being related by

1

L

Z
dx e�ikx = �k,0,

1

L

X

k

eikx = �(x), (4.4)

the Hamiltonian takes the form

H =
X

k

 ̂†
k
 ̂k

k2
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+
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2
p

L

X
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⇣
 ̂†
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†
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(4.5)

Including cavity loss and atom broadening is essential in this driven system. These ef-

fects are included by constructing a non-equilibrium action for the Hamiltonian in eq. (4.5)

and adding decay/broadening through linear coupling to an empty environment, similarly

as we did in chapter 3. The action for the bare system takes the form

S0 =

Z
dtdt0

 
X

k

 
 ̄c

 ̄q

!T

k,t

G�1
0,k(t, t

0)

 
 c

 q

!

k,t0

+
X

i

 
�̄c,i

�̄q,i

!

t

D�1
0,i (t, t

0)

 
�c,i

�q,i

!

t0

!
, (4.6)

with the Keldysh structure of the bare inverse atom propagators being

G�1
0 =

 
0

⇥
GA

0

⇤�1

⇥
GR

0

⇤�1 ⇥
G�1
0

⇤K

!
, (4.7)

while the space-time dependence of the retarded/advanced inverse Greens function is

h
GR/A

0,k

i�1

(t, t0) = �(t� t0)

✓
i@t0 �

k2

2m
± ia,k

◆
. (4.8)

Here a,k is a positive decay rate that will generally be considered infinitesimal. The
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matrix-valued inverse propagator for the bare boson has the form

D�1
0,i (t, t

0) = �(t� t0)

 
0 �i@t0 ��i � ii

i@t0 ��i + ii i2i

!
, (4.9)

where i is the finite and positive loss rate of the ith cavity mode. Using the Keldysh

rotation, the dispersive interaction in the Hamiltonian leads to a term in the action of

the form

SI,C = � 1

2
p

2L

X

i,k1,k2

Z
dt

✓
⌘i�k1±Q,k2 ̄k1,⇢ k2,��i,↵M

↵�⇢ + c.c

◆
, (4.10)

where the time dependence of the complex fields has been suppressed. M↵�⇢ =
⇣
�↵�1 , �↵�

⌘⇢

describes the vertex’s Keldysh structure such that ↵, �, ⇢ 2 {c, q}.

Lastly, the contact interaction gives rise to the term

SI,g = � g

2L

X

k1,k2,k3

 ̄k1,q ̄k2,c k3,c k1+k2�k3,c +  ̄k1,c ̄k2,q k3,q k1+k2�k3,q + c.c. (4.11)

4.3 Classical equations of motion

Both the atomic ground state’s motion and the cavity photons are bosonic excitations, and

we want to understand the behavior both at and after the transition into the superradiant

state. Going past the critical point, we expect a similar situation to the time-invariant

superradiant transition, where the cavity acquires a macroscopic occupation. When this

happens, the coherent part has to be separated from the fluctuations as discussed in sec-

tion 2.6. Due to the coherent occupation, the occupied fields dominate over quantum

fluctuations, and the dynamics of the fields are well approximated by solving the clas-

sical equations. To derive these from the action, we follow the procedure described in

section 2.4.1.

Due to the complex conjugate relation between the fields, it is su�cient to derive the

equations for either the field or its conjugate. The saddle-point equations are then given

as
�S

��̄q,i(t)

���
�q,i= q,k=0

= 0,

�S

� ̄q,k(t)

���
�q,i= q,k=0

= 0.
(4.12)

As the photon is lossy, it leads to fluctuations in the field, which are neglected when us-

ing the classical approximation. The two features that account for the out-of-equilibrium

nature of the photon are the pole of the retarded propagator being a finite distance from
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the real axis and PK

i
having a finite value of i2i. In the classical equations, we include

the complex pole of the retarded propagator. Still, we are neglecting the finite value of

PK

i
as this is quadratic in the quantum field and will therefore vanish when taking the

quantum fields to zero. To improve upon this, the q-q block of the cavity can be rewritten

using a Hubbard-Stratonovich transformation [146,147]

Z
D[�̄q,i,�q,i]e

i
R
dt�̄q,i(t)i2�q,i(t)

=

Z
D[�̄q,i,�q,i]

Z
D[⇠̄, ⇠]ei

R
dt⇠̄i(t)

i
2 ⇠(t)�i⇠̄i(t)�q,i(t)�i�̄q,i(t)⇠i(t),

(4.13)

where ⇠ is normalized according to
R

D[⇠̄i, ⇠i]e�1
R
dt⇠̄ 1

2 ⇠ = 1. Using the Hubbard-Stratonovich

transformation to rewrite the quadratic q-q component of the cavity, the equations become

semiclassical.

Lastly, we are interested in the thermodynamic limit where N0, L ! 1 in a way

such that the density of atoms N0/L = n is kept constant. To this extent, a factor of

sqrtN0 is extracted from both cavity and atom fields. The e↵ect of the thermodynamic

limit can be accounted for by rescaling the two interaction parameters: ⌘i !
p

N0⌘i/
p

2

and g ! N0g/2, where the factors of 2 and
p

2 are merely for convenience. Another

consequence of taking the thermodynamic limit is that the momentum states become

dense such that the atom momentum can take any value. Integrals can therefore replace

the momentum sums. However, one always has to discretize on a grid for numerical

computations, so the sum notation is kept. Notice that the normalization condition on

the atoms means that all converged calculations are independent of grid choices.

The semiclassical equations for the cavity modes, with the renormalized parameters,

take the form

i�̇i(t) = (�i � ii)�i(t) + i
⇠i(t)p

N0

+
⌘i
2

X

k

 ̄k(t) ( k+Q(t) +  k�Q(t)) . (4.14)

As the noise ⇠i is randomly chosen from a Gaussian distribution, the lossy nature of the

cavity has translated into the equations having a stochastic nature. By including the

cavity noise through the Hubbard-Stratonovich field, the semiclassical equations are of

the Langevin type. As the di↵erent atomic momentum states are assumed to be almost

infinitely long-lived, their equations of motion is only stochastic indirectly through the

cavity. Furthermore, we see that in the thermodynamic limit, the noise scales inversely

with the root of the atom number. Noise is, therefore, a small perturbation to the system,

and we neglect it and consider the classical equations.
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The classical equations for the atoms are given by

i ̇k(t) =
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� ia,k
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i
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 ̄k0 q k+k0�q.

(4.15)

eqs. (4.14) and (4.15) constitute the classical equations that describe the coherent occu-

pation of the fields.

4.4 Linear stability of the normal phase

For the phase diagram in chapter 3 the atoms were assumed non-interacting, and we will

make the same assumption here. Starting from a homogeneous cloud, the only relevant

atom modes are those at a multiple of the recoil momentum. The necessary atom ba-

sis is therefore composed of  nQ with n 2 {0, ±1, ±2, ...}. As the atoms are assumed

non-interacting, the atomic states are symmetric around zero momentum leading to the

symmetry  n(t) =  �n(t). The symmetry allows us to write the equations exclusively for

the positive momentum states. In the limit where the atoms are assumed completely loss-

less, the atom number must be conserved. Using the symmetry to reduce the dimension is

done by renormalizing the atom fields in such a way that the atom number conservation

is maintained

1 =
1X

n=�1
| n(t)|2 = | 0(t)|2 +

�1X

n=�1
| n(t)|2 +

1X

n=1

| n(t)|2

= | 0(t)|2 +
1X

n=1

2| n(t)|2 =
1X

n=0

| n(t)
p
�n>0 + 1|2.

(4.16)

Renormalizing the atom fields, the classical equations, in the thermodynamic limit, take

their final form

i�̇i(t) = (�i � ii)�i(t)
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(4.17)

where ER = Q
2

2m is the recoil energy and �n =
p

1 + �n,0. In the limit a,n = 0 the

change in the atom number is @t
P

Na

n=0| n(t)|2 = O
⇣
 Na(t) ̄Na+1(t)

⌘
. By truncating

at a su�ciently high recoil momentum state Na, the atom number can be conserved to



84 Polariton limit cycles

arbitrary accuracy. To make our model more realistic, we will choose a,0 = 0 and only

let the finite momentum modes have non-zero linewidth. We will discuss this further in

section 4.5.1.

4.4.1 Normal-phase fixed point

The classical equations constitutes a system of non-linear first-order di↵erential equations

which is conveniently written as

Ẋ = F (X), with X = (�1, �̄1, ...�Nc , �̄Nc , 0,  ̄0, .., Na ,  ̄Na)
T , (4.18)

where F is defined by eq. (4.17). Even after using the symmetry to remove redundant

information, the dimension of the set of non-linear equations is 2Nc + 2(Na + 1). The

combination of a large dimensionality and the non-linearity makes an analytical solution to

the full problem impossible. Even the steady-state solution is challenging to find because

Fourier transforming from time to energy introduces convolutions, turning the di↵erential

equations into integral equations that are not easier to solve. However, a perturbative

analytic approach is possible if one knows a solution that is a fixed point X0 of the

evolution such that F (X)|X=X0 = 0. The system has one well-known fixed point, namely

the one describing the normal phase (NP). In the NP the atoms are all in the motional

ground state, and the cavity has no coherent field. The fixed point is easily verified by

substituting �i =  n>0 = 0 and  0 = 1 into eq. (4.17). Around a fixed point, the behavior

of the complicated system can be simplified by considering the fluctuations around the

fixed point described by u = X0 �X. Close to X0, the dynamics of the system are well

approximated by the linearized dynamics described by the Jacobian rF (X) evaluated

at the fixed point. The behavior of the linearized dynamics can then be understood by

finding the EVs ofrF (X)|X=X0 . The EVs are related to the linear response of the system,

which is described by the retarded propagator [13]. In the thermodynamic limit the poles

of the retarded propagator, we discussed in chapter 3, are equivalent to the EVs from

our linear stability analysis [108]. Note that in our linear stability analysis, the real and

imaginary part of the EVs have the opposite physical interpretation of the poles.

Jacobian at fixed point

To find the Jacobian, one takes derivatives of F (X) with respect to the di↵erent fields

(and the conjugate fields). As we will evaluate this at the NP fixed point, many elements

in F (X) can be neglected. The fluctuations that will interact with the rest of the system

have a quadratic term with one of the factors being  0 ( ̄0) as this is the only field that

has a non-zero value in the NP. All the fields which equation of motion (EOM) do not
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contain such a term are uncoupled around X0 and do not a↵ect the dynamics. The only

fields obeying this constraint are the cavity fields and the recoil momentum mode such

that the relevant part of F (X) is

F (�j) = (�i�j � j)�j � i
⌘jp
2

�
 ̄0 1 +  ̄1 0

�
,

F ( 1) = (�iER � a,1) 1 � i
X

j

⌘jp
2
(�̄j i

+ �j) 0.
(4.19)

Because the cavity fields do not couple directly to each other we can write the Jacobian,

evaluated at the fixed point, in a block form

L0 = rF (X)|X=X0
=

0

BBBBBBB@

A0 0 · · · 0 B0

0 A1 0 · · · B1

...
. . .

...
...

0 · · · · · · ANc BNc

C0 C1 · · · CNc D

1

CCCCCCCA

=

 
A B

C D

!
. (4.20)

The A block is of size 2Nc ⇥ 2Nc and is diagonal. One can split A into Nc blocks of

dimension 2 ⇥ 2 describing the di↵erent cavity modes. The B (C) block is rectangular

with the shape 2Nc ⇥ 2 (2⇥ 2Nc) and can again be split into 2⇥ 2 blocks for each cavity

mode. The three di↵erent types of 2⇥ 2 matrices are

Aj = diag ({�i�j � j, i�j � j}) ,

Bj = Cj = �i
⌘jp
2

(�z + i�y) ,

D = diag ({�iER � a,1, iER � a,1}) .

(4.21)

The Jacobian obeys the symmetry

⇧xL0⇧
x = L̄0, (4.22)

with ⇧x = 1Nc+1⌦ �x, where 1Nc+1 is the (Nc + 1)-dimensional identity matrix and �x is

the first Pauli matrix. The transformation is involutory (⇧x⇧x = 12Nc+2) meaning that

the eigenvalues of L0 must either be purely real or come in complex conjugate pairs.
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Eigenvalues of Jacobian

To compute the EVs � of L0 one has to solve the characteristic equation which is given

by Det (L0 � 1�) = 0. Using the Schur complement, the determinant can be written as

Det (L0 � 1�) = Det (A� 1�) Det
�
D� 1��BT (A� 1�)�1B

�
= 0. (4.23)

This rewriting is valid as long as � is not an EV ofA and the EV equation further simplifies

to only finding the root of the Schur complement, which is the second determinant factor

in eq. (4.23). As all cavity interactions are mediated by the atoms, the third term in the

Schur complements can be written as a sum over cavity modes such that the EV problem

takes the form

Det

 
D� 1��

NcX

j=0

Bj (Aj � 1�)�1 Bj

!
= 0. (4.24)

In the linear stability analysis, the phase transition to the superradiant state (SR) is

signaled by a mode becoming unstable. With our chosen definitions, the real part of the

EVs determines the stability of the modes. If the real part is negative then the mode

decays exponentially and is, therefore, stable. If the real part of the EV is positive,

then the mode grows exponentially, and the system will move away from the fixed point

exponentially as a function of time. A marginally stable mode is one in which the real part

of its EV vanishes. Without coupling (⌘i = 0 8i) the EVs are given by the elements of Aj

and D. They all have a negative real part, meaning that in the NP, all modes are stable

and relax exponentially quickly to the NP fixed point. As the coupling is switched on,

the cavity modes and atom clouds start interacting, leading to the frequency (imaginary

part of the EV) and the real part changing from the bare values.

Within the field of classical dynamics, the change of the fixed point’s stability is known

as a bifurcation, and the point at which the real part of the EV becomes zero is the crit-

ical point. The distinction between a phase transition and a bifurcation is that a phase

transition can only exhibit singular features in the thermodynamic limit [148]. Bifur-

cations are sharp features even for finite dimensional systems but only exhibit singular

features in the infinite time limit. For mean-field phase transitions, the thermodynamic

limit becomes analogous to the infinite time limit of bifurcations [148,149]. Our classical

equations are equivalent to mean-field equations such that the bifurcation is analogous to

a phase transition.

To identify the critical point, the EV problem for the Jacobian must be solved under

the constraint that the real part of the EV is zero, namely � ! i! with ! being a real

number. This direct substitution simplifies the EV problem in eq. (4.24), and the form
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for the jth cavity-mode sector is found to be

Bj (Aj � i1!)Bj = i (�r,j(!) + i�i,j(!))

 
�1 �1

1 1

!
, (4.25)

where the �’s are given by
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From these mode-dependent quantities, one can define the total quantities that are just

the sum over all cavity modes �r/i =
P

j
�r/i,j and the characteristic equation for the EV

problem is simplified to computing the determinant of a 2⇥ 2 matrix

Det

 
�iER � a,1 � i! + i�(!) i�(!)

�i�(!) iER � a,1 � i! � i�(!)

!

= E2
R
� 2ER�(!) + 2

a,1 + 2ia,1! � !2 = 0,

(4.27)

with � = �r + i�i. Separating into real and imaginary parts, we finally arrive at two

coupled equations
E2

R
� 2ER

X

j

�r,j(!) + 2
a,1 � !2 = 0,

a,1! � ER

X

j

�i,j(!) = 0.
(4.28)

The critical parameter for these equations is the total coupling strength ⇤ which can be

made more explicit by writing ⌘2
j

= ⇤c2
j

where

X

j

c2
j

= 1. (4.29)

The coe�cient c2
j

represents the relative amount of pump power/coupling strength in

the jth sideband. For the sinusoidal phase modulation in chapter 3 the cj’s were Bessel

functions set by the modulation depth. In this generalized model, we chose the cj’s freely,

assuming that the pump sideband can be freely designed. Notice that compared to the

chapter 3, ⇤ here is defined as the square of its counterpart.

The total coupling strength is determined by ⇤, meaning that the two equations

in (4.28) are used to determine the two unknowns !, and ⇤c were, to iterate, ⇤c is

related to the total critical coupling strength at which the mode with frequency ! becomes
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undamped. To solve the coupled equations in eq. (4.28), ⇤c is isolated in the first equation

and then substituted into the second. The result is an equation for ! of the form

!
Nc�1X

j=0

c2
j
�j

j
�
E2

r
+ 2

a,1 � !2
�

+ a,1
�
�2

j
+ 2

j
� !2

�

!4 + 2!2
�
2
j
��2

j

�
+
�
�2

j
+ 2

j

�2 = 0. (4.30)

By writing all terms with a common denominator, the structure of the equation becomes

more transparent

!
Nc�1X

j=0

c2
j
�j

�
j
�
E2

R
+ 2

a,1

�
+ a,1

�
�2

j
+ 2

j

�
� !2 (a,1 + j)

�

⇥ ⇧i 6=j

⇣
!4 + 2!2

�
2
i
��2

i

�
+
�
�2

i
+ 2

i

�2⌘
= 0.

(4.31)

As this equation contains high powers of !, there will be several solutions. Only solutions

with a real ! are valid, and further, the only physical solutions are the ones with real

values for the critical coupling

⇤c =
E2

R
+ 2

a,1 � !2

2ER

P
Nc�1
j=0 c2

j

(�2
j+

2
j�!2)�j

!4+2!2(2j��2
j)+(�2

j+
2
j)

2

. (4.32)

4.4.2 One-mode cavity

The simplest case is when only a single cavity mode is relevant such that c20 = 1 and the

critical frequency equation (4.31) simplifies to

!
�
a,1

�
20 + �2

0 � !2
�

+ 0
�
2
a,1 + E2

R
� !2

��
= 0,

! ! = 0 or !2 =
(20 + �2

0)a,1 +
�
2
a,1 + E2

R

�
0

a,1 + 0
.

(4.33)

Experimentally the atom loss is the smallest loss rate and the non-trivial solution can be

linearized around a,1 = 0

!2 = E2
R

+
a,1
0

�
20 + �2

0 � E2
R

�
+ O(2

a,1). (4.34)

In the limit of small a,1/0, we get

! ⇡ ±
✓

ER +
a,1
0

�
20 + �2

0 � E2
R

�◆
. (4.35)
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The instability has an energy equal to the recoil energy but with a shift proportional to

a,1/0. The direction of the shift is set by sign (�2
0 + 20 � E2

R
). For ultracold atomic

systems 1,a ⌧ 0, so when �2
0 + 20 � E2

R
< 0, then the frequency of the instability is

slightly below the recoil energy and slightly above recoil when the amplitude of the cavity

detuning is above the recoil energy.

For physical solutions, the corresponding coupling strengths have to be real, meaning

that ⇤c � 0. For the zero-frequency solution, the critical coupling is

⇤c|!=0 =

�
E2

R
+ 2

a,1

�
(�2

0 + 20)

2ER�0
, (4.36)

which is equivalent to the well-known single mode result [107]. As long as �0 > 0, the

critical value will be real, and the zero-frequency solution is physical. For the solution

with a frequency around the recoil energy, we can expand to linear order in !2 around

the recoil energy and neglect all terms proportional to 2
a,1. To keep the structure clear,

we have expressed everything in units of the recoil energy

⇤c|!⇡1 = �1 + 2 (20 ��2
0) + (20 + �2

0)
2

2�0 (20 + �2
0 � 1)

�
!2 � 1

�
+ O

�
!2 � 1

�2
, (4.37)

The sign of ⇤c determines if a mode at ! can become unstable in a physical system. To

that extent, we first consider the structure of the numerator. It is of the form �4
0�2b�2

0+c

with b = 1� 20 and c = 1 + 220 + 40. For this numerator to have node for some value of

|�0|, there must be real solutions to

�2
0 = b ±

p
b2 � c. (4.38)

This requires that
b2 � c

1� 220 + 40 � 1 + 220 + 40

�0 � 0,

(4.39)

which is only possible when the cavity mode has no loss. At �0 = 0 the numerator in

eq. (4.37) is positive and as it has no nodes, the numerator must stay positive for all

values of |�0| and 0 > 0. With the sign of the numerator known, we look at the factor

in parenthesis in the denominator of eq. (4.37). This term has a negative sign when

the magnitude of the cavity detuning is below the recoil energy by more than 0. In

this regime, it was found in eq. (4.35) that the frequency will be below the recoil, and

the sign from the parenthesis, therefore, cancels against the sign from !2 � 1. When

20 + �2
0 � 1 > 1, then the parenthesis and !2 � 1 are both positive. This means that the
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Figure 4.1: Frequency and damping of the fluctuations for a non-interacting BEC in a
single cavity mode, as the coupling strength is increased. The fluctuations are described
by the EVs of the linearized dynamics. The x-axis represents the EV’s imaginary part
(frequency), and the y-axis represents the EV’s real part (loss/drive). Each line represents
the path an EV takes as the coupling increases, and the arrows indicate the direction of
increasing coupling strength. When a EV pair hits � = 0, the mode changes from decaying
to growing. The four di↵erent plots shows di↵erent detunings for the cavity mode: a)
0.7ER, b) �0.7ER, c) 1.3ER, d) �1.3ER. The cavity has a loss rate of  = 1/5ER while
for the recoil momentum state, the loss has been chosen as 10�8ER.
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only sign we can use to make this instability physical is to change the sign of the detuning

such that �0 < 0. Therefore, the cavity has to sit below the pump frequency. As this

happens, one observes that ⇤c is proportional to !2� 1, which was shown in eq. (4.34) to

be of order a,1/0. The critical coupling in the relevant experimental limit will therefore

be very small. The smallness of the coupling means that no polariton will have formed,

and the unstable mode will be energetically purely atomic. For this reason, we denote

this instability as the atomic instability. It is experimentally unwanted as it does not

lead to a coherent field in the cavity. Because there is no cavity field to stabilize atoms,

the cloud is broken apart in a process that can be thought of as heating of the atom

cloud. This should be compared to the zero-frequency instability, which is a polaritonic

instability due to the finite coupling strength. The cavity part of the polariton is lossy

and can dissipate the energy from the pump, thereby mitigating the heating.

While the linear stability analysis does not give us all the information about the SR

phase, it does describe the excitations of the system in the NP that becomes unstable.

To understand how the system becomes unstable, we investigate the EVs of the system

as the coupling strength increases. For ⇤ = 0, the cavity mode leads to two EVs with

imaginary values equal to ±�0 and a negative real part equal to 0. The atom recoil

mode gives rise to two EVs at ±ER and a small negative real part due to a,1. As ⇤

increases, the EVs start coupling, and consequently move in the complex plane. Due to

the symmetry of the Jacobian in eq. (4.22), the EVs always come in complex conjugate

pairs.

The movement of the EVs is shown for four di↵erent cavity detunings in fig. 4.1. Here

each EV is written as � = � + i! with �, ! being real. The horizontal axis at � = 0 is

denoted as the !-axis, and the vertical axis at ! = 0 is referred to as the �-axis. For a

positive detuned cavity with a detuning less than the recoil, we observe, in fig. 4.1a, that

the frequency of the EVs that start out being purely photon-like moves symmetrically

towards the �-axis. Once their frequency hit zero, one becomes unstable by crossing the

!-axis into the � > 0 plane. We denote this as a zero-frequency instability. Similarly,

in fig. 4.1c, the system also develops a zero-frequency instability, but because �0 > ER,

the EV that initially belonged to the atomic mode is the EV being pushed towards zero

frequency. For both positively detuned cases in fig. 4.1(a,c), the cavity and atom EVs

are attracted towards each other along the �-direction and subsequently repel along the

!-direction until the frequency of an EV pair becomes zero.

Consider now the negatively detuned case in fig. 4.1(b, d). In both these cases, the

atomic instability is observed as the atomic EV is immediately pushed into the � > 0

plane. Figure 4.1(b, d) shows the atom mode shifts its frequency depending on the

magnitude of the cavity detuning as predicted in eq. (4.35). Notice that for the negative
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detuning case, we have gone far beyond the threshold value to exaggerate the minute

e↵ects discussed for this situation. The negatively detuned cavity mode behaves opposite

to its positively detuned counterpart as it has a repulsive interaction with the atom mode

along the�-axis but an attractive interaction along the !-axis.

4.4.3 Two-mode cavity

For the single mode case, we see either an unstable polariton at zero frequency and finite

coupling strength or an unstable atom mode with a frequency close to the recoil energy

at infinitesimal coupling. We now investigate how the situation changes by including a

second cavity mode. First, we note that ! = 0 always solves eq. (4.31), but the additional

mode changes the critical coupling as was seen in chapter 3. The critical coupling of the

zero-frequency instability is found from eq. (4.32)

⇤c|!=0 =
1 + 2

a,1

2
⇣
c20

�0

�2
0+

2
0

+ c21
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�2
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i ,

(4.40)

where the normalization of the cj’s, from eq. (4.29), has been used to eliminate c1 and

everything has been written in units of recoil energy. As a consistency check one sees

that c0 = 1, leads to the the single mode result in eq. (4.36). The zero-frequency solution

is only physical if the critical coupling is positive. The numerator only contains squared

terms, such that the sign is set by the denominator

c20

⇣
�0

�
�2

1 + 21
�
��1

�
�2

0 + 20
� ⌘

+ �1

�
�2

0 + 20
�
. (4.41)

As c20 is always less than one in the two-mode case, this solution is always physical when

both �i > 0. If one of the detunings (here we chose �1) is negative, then the zero-

frequency solution is only physical if the couplings of the two modes are distributed such

that

c20 >
|�1|

�0 (�2
1 + 21) (�2

0 + 20)
�1 + |�1|

. (4.42)

As long as the positively detuned mode couples strongly enough to compensate the atomic

instability, the system can exhibit a zero-frequency instability even when one mode ac-

quires a negative detuning.

Consider now the finite frequency instabilities with �1 < 0 and |�1| 6= �0. Al-

ready for two modes, eq. (4.31) have six free parameters. We consider only part of this
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high-dimensional parameter space to make the expressions less unwieldy. Guided by the

experimentally relevant regime, the atom loss is kept infinitesimally small (a,1 ! 0). It

is also assumed that the two cavity modes have the same linewidth (0 = 1 = ), which

for two similar modes in a high-quality cavity is a good approximation. The unstable

polariton frequencies (up to linear order in a,1) are then given as the solutions of

c20�0

⇣
1� !2 +

a,1


�
�2

0 + 2 � !2
�⌘⇣

!4 + 2!2(2 ��2
1) + (2 + �2

1)
2
⌘

+ c21�1

⇣
1� !2 +

a,1


�
�2

1 + 2 � !2
�⌘⇣

!4 + 2!2(2 ��2
0) + (2 + �2

0)
2
⌘

= 0,
(4.43)

The first parenthesis of each term is similar to the atomic instability observed in the

single mode case. For the atomic instability, it was found that a slight perturbation of

the frequency away from the recoil energy was necessary to predict the physicality of

the instability. The sign of the frequency shift in eq. (4.35) was given by the sign of

�2
i
+ 2 � 1. When the factors of �2

i
+ 2 � 1 have the same sign in both terms, we can

make both terms arbitrarily small simultaneously by inserting the same atom-instability

frequency for !. We, therefore, expand the two-mode version of eq. (4.32) in !2 to linear

order around the recoil energy

⇤c|!=±1 = � !2 � 1

2

✓
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2
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The denominators of each of the two sub-fractions have the same form as the numerator

discussed in eq. (4.38), and it was always found to be positive. The only sign-change

possible is changing the magnitudes of the detunings (as we have chosen their signs).

When both detunings satisfy �2
i

+ 2 � 1 < 0, both denominators have a sign change.

The sign change is canceled out by !2 being slightly below recoil. The same thing happens

in the opposite case where �2
i
+ 2 � 1 > 0. The system is therefore ”protected” against

the atomic instability as long as

c20�0 (�2
0 + 2 � 1)

1 + 2 (2 ��2
0) + (2 + �2

0)
2 >

c21|�1| (�2
1 + 2 � 1)

1 + 2 (2 ��2
1) + (2 + �2

1)
2 . (4.45)

To extract some physical insight from this, consider the case with equal atom coupling

c20 = 1/2 = c21 and small . If both magnitudes are much larger than the recoil energy,

then both sides scale inversely with the magnitude of the detuning

1

�0
>

1

|�1|
. (4.46)
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The system is therefore protected against the atomic instability when �0 < |�1|. When

both magnitudes of the detunings are significantly below the recoil, then the two sides

scale linearly with the magnitude of the detuning

�0 > |�1|, (4.47)

and one arrives at the opposite condition for having the system protected against the

atomic instability. Interpolating between these two cases shows that the equally coupled

system is protected against the atomic instability as long as the magnitude of the posi-

tive detuning is between the magnitude of the negative detuning and the recoil energy.

This prediction is consistent with the observations in fig. 4.1, as it states that a positive

detuning pulls the atom EV deeper into the � < 0 plane, making it more stable. In

contrast, the negatively detuned mode has a repulsive interaction with the atom EV and

therefore tries to push the atom EV into the � > 0 plane. To avoid the atomic instability,

the positive detuning must therefore be in between the negative detuning and the recoil

energy.

The two-mode critical frequency equation in eq. (4.43) has solutions which are neither

at ! = 0 nor ! ⇡ 1 and these can be found by solving

!4
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(4.48)

which is a quadratic equation for !2 with the solution
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(4.49)

Whenever this is positive and real, the frequency can potentially lead to a physical insta-

bility. We consider a few di↵erent cases to extract insight from the solution, which are

shown in fig. (4.2). For simplicity, we let the two cavity modes couple equally strongly

to the atoms. In fig. 4.2a, the negatively detuned mode has an initial detuning with a

magnitude between the positively detuned mode and the recoil energy. Here the atomic

instability happens immediately due to the repulsive interaction between the negatively

detuned cavity mode and the atom mode. When the magnitudes of the two cavity detun-

ings are exchanged in fig. 4.2b, it is instead observed that the atom EV is pulled down

and pushes the closest cavity EV towards zero frequency. However, its path is obstructed

by the negatively detuned cavity mode, which moves towards the atom mode. As seen

in chapter 3 two interacting modes cannot cross each other, and the system instead has

an avoided crossing. One of the EVs is then pushed into the � > 0 plane such that a
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Figure 4.2: A similar plot as fig. 4.1 but for a system with two cavity modes. Due to the
symmetry, only the positive frequency axis is shown. For all the plots shown here, the
two modes couple equally to the atom: c0 = c1 and have identical loss rates: 0 = 1 =
 = 0.2ER. The recoil momentum mode has been given a linewidth of a,1 = 10�8ER.
The four di↵erent plots shows four di↵erent detuning cases (�0, �1): a) (0.6,�0.8), b)
(�0.6, 0.8), c) (1.2,�1.4), d) (�1.2, 1.4). The dashed line indicates the frequency of the
mode that becomes unstable.
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polaritonic instability at a finite frequency develops.

The avoided crossing of the EVs is only possible due to the interaction between the

modes discussed in chapter 3 and therefore requires a finite coupling strength. The avoided

crossing also signifies that the unstable polariton mode is a superposition of both the pos-

itively and negatively detuned cavity mode. The comparison to the avoided crossing in

chapter 3 is instructive, but the avoided crossing observed does have a fundamental dif-

ference. Namely, the two modes interacting are from di↵erent Nambu sectors, whereas in

chapter 3 the avoided crossing happens between modes in the same Nambu sector. Be-

cause the self-energy is constant in Nambu space, two di↵erent cavity modes from di↵erent

Nambu sectors interact as strongly as the same cavity modes within the same Nambu sec-

tor. It is because the modes are from di↵erent Nambu sectors that the avoided crossing

leads to a splitting in the line widths instead of the frequencies as seen in chapter 3.

Using the understanding of repulsion and attraction of the EVs, we expect that if

both cavity modes have a magnitude that is large than the recoil energy, then the finite-

frequency polaritonic instability can only emerge when the positive mode is closer to

the atom mode. This is shown in fig. 4.2c. In this case, the positive mode will move

towards a higher frequency, and the atom EV will move toward zero. Due to the mediated

interactions between the cavity modes, the positively and negatively detuned modes repel

each other along the � direction, and a finite frequency instability at ! > ER is realized.

The finite frequency instability can only be realized by an avoided crossing, and it is,

therefore, essential that the two cavity EVs are moving toward each other. If that is

not the case, as in fig. 4.2d, then the atomic instability arises at infinitesimal couplings

strength.

4.4.4 Four-mode cavity

Introducing a second mode added a qualitatively new feature to polaritonic instability,

namely that it acquired a finite and tuneable freqeuncy. How does the situation then

change if more cavity modes are included? To answer this question, we consider the case

with four cavity modes. With four modes, there are no apparent simplifications of the

characteristic equations for the critical parameters. However, with the understanding of

EVs movement we have acquired from the one- and two-mode cases, we have a qualitative

picture that can be used as a guide. An exciting question one can ask with four modes is if

we can generate several polaritonic instabilities at finite frequency. The two instabilities

must occur at similar coupling strengths for our linear stability to be valid. From the

scenarios seen in fig. 4.2 the simplest solution is to combine fig. 4.2b and fig. 4.2c. In this

parameter regime, there are two independent groups of cavity modes. Both groups consist

of a positively and a negatively detuned cavity mode. One group has the magnitudes of



Linear stability of the normal phase 97

0.0 0.2 0.4 0.6 0.8 1.0
0.50
0.55
0.60
0.65
0.70
0.75

0.0 0.2 0.4 0.6 0.8 1.0
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Figure 4.3: Critical values for a system with four cavity modes that are the combina-
tion of the two scenarios in fig. 4.2(b,c) such that the detunings are given by �4 =
(�0.6, 0.8, 1.2,�1.4)TER and the loss rate for all modes is  = 0.2ER while a,1 = 10�8ER.
The sideband heights are described by eq. (4.50). a) The critical coupling for which the
first EV of the linearized equations becomes unstable. b) The corresponding frequency of
the critical EV.

their detunings below the recoil energy as in fig. 4.2b, which we refer to as the below recoil

group, and the detunings of the modes in the other groups both have a larger magnitude

than the recoil energy as in fig. 4.2c. The second group is therefore referred to as the above

recoil group. The modes within each group couple equally strongly to the atomic mode,

but the two groups have di↵erent coupling strengths to the atoms. Splitting into these two

groups has the advantage that non-trivial e↵ects can be investigated while understanding

each group individually. To tune between the above recoil versus the below recoil group,

we can use a single parameter � 2 {0, 1} and write the cj coe�cients as a vector

c4(�) =
1p
2

⇣p
1� �,

p
1� �,

p
�,
p
�
⌘T

, (4.50)

which satisfies the normalization conditions on the coe�cients. The corresponding vector

containing the detunings of the cavity modes is sorted by the magnitudes and written as

�4 = (�|�0|, �1, �2,�|�3|)T , (4.51)

where �1,2 > 0 and �0,3 < 0. For simplicity, it is assumed that all the cavity modes have

the same loss rate, i =  < ER.

In fig. 4.3a we plot
p

⇤C as a function of � and observe a clear cusp at a critical value

�c. The value of
p

⇤C is minimal at the two maximal values of � because, in those cases,

one group has all the atom coupling. One group having all the weight at the endpoints

is directly reflected in the critical frequency shown in fig. 4.3b, where ! has the same

frequencies as in fig. 4.2(b,c). As � moves away from either endpoint, the critical coupling
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increases in fig. 4.3a because the mode that becomes critical couples less to the atoms, and

a larger critical coupling is therefore required to make the mode unstable. At the critical

point, the two groups become unstable at the same critical coupling, which generates

the cusp. Because the frequency separation between the two groups is large compared

to , we observe that the unstable frequencies are hardly perturbed when moving away

from the endpoints. This scale separation leads to a sharp discrete jump in the critical

frequency at the critical point.

In this narrow linewidth regime, we can tune the ratio of the two critical frequencies

by simply shifting one of the group’s detunings by a constant. Such a shift brings one

group closer to ER, which will be reflected in the value of �c by changing such that the

group closest to ER gets a smaller coupling strength.

The linear analysis shows that we can generate multiple simultaneous instabilities of

a polaritonic character. In the recoil resolved regime we see that it is possible to have

independent groups of cavity modes becoming unstable and this leads to features in both

the critical coupling and the critical frequency that are not smooth.

4.4.5 Phase diagram

The understanding of the interaction between the EVs of the linearized dynamics, can

now be used to explain the phase diagram from chapter 3. Using the linear analysis,

we have computed the same phase diagram and carefully mapped the frequency of the

instability, which is shown in fig. 4.4. We have used the same definition of Bm and ✏ such

that the detunings of the cavity modes are given by

�n = �0 � n✏, (4.52)

and the coupling coe�cients are determined by Bm through

cn = Jn(Bm). (4.53)

The result in fig. 4.4 highlights that the phase diagram in fig. 3.9, actually contains many

di↵erent phases. There are two large regions: the zero-frequency region discussed in

chapter 3 and the atomic-instability region at a frequency close to the recoil energy. As

these two phases are well understood, the focus will be on the other parts of the phase

diagram. Consider first the three low-frequency lobes with lighter blue shading. The first

thing to notice is that the lower-energy edge of these lobes is almost straight, which signals

an abrupt change. The ✏ value where the edges occur can be understood by considering

the ratios �0/✏: 0.6/0.15 = 4, 0.6/0.2 = 3, 0.6/0.3 = 2. The ratios are an integers,
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Figure 4.4: Part of the phase diagram computed in fig. 3.9 with the frequency of the
first unstable mode indicated by the color code. The detuning of the cavity modes is set
by ✏ through eq. (4.53) while Bm determines the modes’ coupling to the atoms through
eq. (4.52). The two dashed lines represent the scans in fig. 4.6. The white dots indicate
di↵erent phases, which EV dynamics are shown in fig. 4.5. The parameters are equal
to those in fig. 3.9 such that �0 = 0.6ER and  = 0.05ER. The atom broadening is
a,1 = 10�8ER and seven cavity modes have been included. The results are converged with
respect to both atom broadening and the number of cavity modes.

meaning that if one, for example, considers the ✏ = 0.3ER lobe, then by absorbing two

Floquet photons, the corresponding e↵ective detuning will be zero or in the sideband

picture of the e↵ective model: the detuning of the n = 2 cavity mode becomes zero. The

lobes, therefore, arise because a mode gets a slightly negative detuning. The fact that

the detuning is only slightly negative explains why the critical mode’s frequency is small

within these lobes. To illustrate this, we consider the EVs’ movement as a function of

coupling strength.

As cavity modes interact, the EVs cannot be associated with one specific mode. To

this extent, we will refer to the EVs that have their frequencies pushed away from the

recoil energy as the positive EVs to connect with a positively detuned cavity mode. For

the same reason, we will refer to the EVs that move towards the recoil energy in the

!-direction as negative EVs.

The EVs’ movement at the point b in fig. 4.4 has been plotted in fig. 4.5b. The negative

EV is close to ! = 0 and interacts with the positive EV at a small frequency. Because

the interaction happens at a small frequency, so does the instability.

For larger ✏, the mode that becomes negatively detuned is a lower-order cavity mode,

which means that the coupling coe�cient cn in eq. (4.52), acquires an appreciable value

for smaller modulation depth Bm. The lobes at larger ✏ therefore also appear at smaller
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Figure 4.5: The EVs dynamics in the four di↵erent phases indicated by the dots in fig. 4.4.
The number of cavity modes is equal to the number of modes used to compute the phase
diagram in fig. 4.4.

values of Bm.

Looking closely at fig. 4.4 we observe a very faint lobe emerging at ✏c ⇡ 0.12ER and

for large values of Bm. This lobe corresponds to the cavity mode n = 5 acquiring negative

detuning and therefore require a large Bm to generate any weight in sideband c5 = J5(Bm).

To further confirm our interpretation of the lobes, we can scan through one of these

lobes horizontally. The scan along the horizontal green dashed line in fig. 4.4 is shown

in fig. 4.6a. Considering the critical frequency, represented as the blue line in fig. 4.6a,

a sudden onset at 0.2ER is observed. The sudden onset corresponds to the point where

the cavity mode n = 3 acquires a negative detuning. The onset is sudden because the

positively detuned mode is at a finite frequency. The two EVs will move towards each other

and give rise to an instability that is around half the frequency of the positively detuned

mode. The specific finite value for the onset also depends on the coupling coe�cients of

the two modes, as this will determine how quickly the two EVs move. This sudden onset

means that the transition from zero frequency to finite frequency is discrete.

As ✏ is increased, the magnitude of the negative detuning is pushed to higher energy, see

eq. (4.53), while the positive detuning decreases. The opposite shift of the two detunings

leads to a shift of the ”midpoint” between the two detunings. This ”midpoint” shift

explains the increasing frequency seen in fig. 4.6a for 0.2 < ✏/ER < 0.22.

The two detunings being shifted closer towards each other results in needing a smaller
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Figure 4.6: Line scans along the phase diagram in fig. 4.4. The dashed lines and cor-
responding letters indicate the values for the EV movements in fig. 4.5. The blue lines
represent the critical frequency, and the red lines represent the critical coupling strength.
a) A scan along the dashed green horizontal line, and b) a scan along the dashed red ver-
tical line in fig. 4.4.

⇤ before the EVS starts interacting. At some point, the two detunings are close enough

that the EV deflected towards � = 0 does not get critical but instead bends back down

towards larger linewidth. This phenomenon is highlighted in fig. 4.5d, where we have

crossed the higher-frequency edge of the lobe and consider point d in fig. 4.4. Here

the positive EV can move around the negative EV without becoming critical. It can

intuitively be thought of as the EVs having a finite range of interaction in the complex

plane with the range depending linearly on ⇤. The maximum of the frequency in fig. 4.6a

is a consequence of the EV being pushed towards � = 0 slowly starting to turn back

towards ! = 0 as the e↵ective range of the interaction between the EVs decreases. The

e↵ective interaction decreases until it is small enough for the EVs to pass around each

other without generating an instability, and the zero-frequency instability reappears as

in fig. 4.5d. From this analysis we understand that the lobes can be thought of as a

single group consisting of oppositely detuned cavity modes leading to the instability. The

unstable polariton mode will therefore only be a superposition of these two cavity modes.

As the bare detunings are changed by ✏, the finite frequency resulting from this polariton

is not equivalent over the entire phase but changes based on the bare detunings.

The same line of reasoning used for the for critical frequency can also explain the

behavior of the critical coupling shown with the solid red line in fig. 4.6a. Investigating

the critical coupling for a single mode and the zero-frequency instability in eq. (4.36), it is

seen that when the detuning is smaller than the cavity loss rate, then the critical coupling
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diverges as

⇤c /
2

�0
. (4.54)

This divergence gives rise to the increasing critical coupling for ✏ < 0.2ER in fig. 4.6a.

It does so because the mode being made unstable is the mode with a positive detuning

at ✏ < 0.2ER that is pushed to zero at ✏ = 0.2ER. As the mode acquires a negative

detuning, the negative EV leads to a finite frequency instability. The critical coupling

decreases because the EVs have to move less before the instability is generated, which leads

to a minimum in the critical coupling at the point where there is the largest frequency.

Increasing ✏ beyond this optimum leads to the positive EV starting to bend back, and the

slope with which it approaches � = 0 is, therefore, shallower. The shallower slope requires

the EV to move further before reaching � = 0, and consequently the critical coupling is

increased. At the transition point to the zero-frequency instability at ✏ = 0.233ER, the

EV deflection is maximal and therefore requires a large coupling strength for the two EVs

to move around each other.

Having understood the lobes in the phase diagram, we now turn our attention to one

of the other striking features in the fig. 4.4, namely the additional higher-frequency phases

present inside the finite-frequency instability region. To understand these phases, a line

scan of the critical frequency and coupling along the red vertical line in fig. 4.4 is shown in

fig. 4.6b. The scan starts in a zero-frequency phase shown in fig. 4.5a, where the positive

EV is observed moving around the negative EV. At the modulation considered in fig. 4.5a,

the negatively detuned mode’s sideband has a small amplitude resulting in only a weak

interaction between the two EVs. As the modulation depth is increased, the negative EV

with a small frequency starts coupling stronger to the atoms. The stronger atom coupling

increases the e↵ective interaction between the two EVs, which in turn causes a greater

deflection of the positive EV. The increased deflection makes it harder for the positive

EV to reach ! = 0, and the critical coupling, seen in fig. 4.6b has to increase. Once the

negative mode couples strongly enough to the atom, the positive EV will be pushed to

criticality with a finite frequency. Again a discontinuous transition in the frequency is

observed. Because the negative detuning already has a finite value, the discrete jump in

frequency is significantly larger than the jump observed in fig. 4.6a.

After entering the first finite-frequency phase, the frequency again increases. In this

case, the frequency increase is explained by the negative EV acquiring stronger atom

coupling as Bm increases, which leads to an increasing deflection of the positive EV. As

Bm is continuously increased, the modulation transfers weight to di↵erent sets of modes,

and a new jump in the frequency is observed. As observed in fig. 4.5c, the new frequency

is an e↵ect of having a di↵erent set of positive and negative EVs, causing the instability,

and resulting in another discontinuous transition. In the phases a and b, the instability is
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mainly due to interactions between two cavity modes, similarly to the scenarios explored

in the previous two- and four-mode cases. For phase c, this is not the case as the critical

mode arises due to interaction with three other cavity modes. The unstable polariton will

therefore have significant weight in all these four modes. The di↵erent finite-frequency

regions of the phase diagram in fig. 4.4 are therefore distinguishable both by the frequen-

cies and by the cavity mode composition of the unstable polariton mode. Consequently,

as the transition from b to c happens, the occupation of the cavity modes will switch

discontinuously as the frequency does. If the experiment is performed, then the discon-

tinuous behavior is in the infinite-time limit, analogous to a phase transition requiring

the thermodynamic limit as discussed in section 4.4.1. These statements are only based

on linear stability, so to validate these statements, we have to investigate the system’s

behavior once the NP fixed point has become unstable.

Having analyzed the phase diagram thoroughly, we have seen that the lobes are ex-

plained by modes acquiring negative detunings. The full phase diagram exhibits a complex

structure where each phase is well-understood by our understanding of the EV movement.

It is also understood that the complexity of the phase diagram is a consequence of the

non-linear nature of the modulation and the fact that many modes are present in the

system. This means that the phase diagram will look di↵erent if the phase modulation is

changed to di↵er from the sinusoidal type. The choice of modulation therefore allows one

to engineer the phase diagram.

4.5 Beyond the normal phase

We now seek to go slightly past the CP to understand how the system behaves outside

the normal phase. According to linear stability, the polaritonic instabilities grow ex-

ponentially.which makes it necessary to include the non-linear e↵ects to stabilize these

modes. Moving only slightly past the CP, one could expand eq. (4.18) to higher order

in derivatives. However, this does not take advantage of the fact that the linear part

has already been solved. Instead, it leads to a high-dimensional non-linear system of

di↵erential equations. To avoid this, we take advantage of the insight gained from the

linearization around the CP. The center manifold theorem [150] states that su�ciently

close to the CP, the system can be described by the modes predicted critical by the linear

stability analysis. The critical modes are the ones that acquire a zero linewidth, and the

linear stability analysis showed that the critical modes consist of the cavity modes and

the recoil momentum mode of the atoms. These modes constitute the center manifold.

Our approach will be to go slightly beyond the CP by including non-linear e↵ects

on the center manifold. Once the recoil momentum mode acquires any occupation, our
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straightforward approach will fail because the number conservation of the atoms will

be broken. The atom conservation is broken because the homogeneous atom mode is

orthogonal to the center manifold. It is therefore important to rewrite the equations in

eq. (4.17) in a form where occupation of the center manifold does not break atom number

conservation.

4.5.1 Conserving system of real equations for the center mani-

fold

The center manifold is not conserving because it is orthogonal to the homogeneous atom

mode. To solve this problem, we can use number conservation to eliminate  0 from the

full set of equations, but because  0 is a complex field, it has two degrees of freedom.

Therefore, number conservation is not enough to eliminate  0. By inspecting the equations

of motion in eq. (4.17) one observes that the cavity only couples to products involving

both an atom field and a conjugate atom field. Due to the nature of the coupling, the

cavity modes are una↵ected by applying the same rotation to all-atom fields. We define

these rotated fields as

 0
n
(t) = ei⇥(t) n(t), (4.55)

where ⇥(t) is a real function of t. Using eq. (4.17) the EOM for the primed fields takes

the form

i�̇i(t) = (�i � ii)�i(t) +
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 0
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�
,

(4.56)

such that the only di↵erence is a time-dependent energy shift of all atomic states. This

shift can be exploited to eliminate one degree of freedom, and in our case, the obvious

choice is to choose ⇥(t) such that Im 0
0(t) = 0 8t. For an initial condition such that

Im 0
0(0) = 0, one can write the equation for ⇥ by requiring that the imaginary part of

 0 is constant

@t Im 0
0(t) = Im @t 

0
0(t) =

1

2i

�
@t 

0
0(t)� @t ̄0

0(t)
�

= ⇥̇(t) Re 0
0(t)�

p
2 Re 0

1(t)
X

i

⌘i Re�i(t) = 0,
(4.57)
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which leads to the derivative of ⇥ being

⇥̇(t) =
p

2
Re 0

1(t)

Re 0
0(t)

X

i

⌘i Re�i(t). (4.58)

Note that at the NP fixed point ⇥̇ is zero, such that ⇥̇ does not change the fixed point.

The complex equations are now rewritten in equations for the real and imaginary parts

using the X and P quadratures defined as

�i(t) =
1p
2

⇣
Xi(t) + iPi(t)

⌘
,

 0
n
(t) =

1p
2

⇣
Xa,n(t) + iPa,n(t)

⌘
.

(4.59)

The EOM for the quadratures fields takes the form
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(4.60)

where the solution in eq. (4.58) have been inserted and the time-dependence of the quadra-

tures have been suppressed. The normalization condition in eq. (4.16) then takes the form

1 =
1

2

X

n

�
X2

a,n
+ P 2

a,n

�
. (4.61)

As the rotation ⇥ guarantees that Pa,0 will stay zero throughout the evolution, we can

use the normalization to eliminate Xa,0

Xa,0 =
p

2n0, with n0 = 1� 1

2

X

n=1

�
X2

a,n
+ P 2

a,n

�
. (4.62)
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The resulting real system that explicitly conserves the atom number within the center

manifold is

Ẋi =�iPi � iXi,

Ṗi =��iXi � iPi � ⌘iXa

p
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,
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�
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X

i

⌘iXi,

(4.63)

where we have dropped the label of the atom field as only the recoil (n = 1) mode remains.

With these EOMs, it is worth mentioning that the atom loss has been modeled in a manner

that conserves the number of atoms. The evolution is explicitly number conserving but

the non-homogeneous atomic modes have a non-zero linewidth. The process described

through eq. (4.63) is, therefore, not a loss of atoms out of the trap but instead decay

from the finite momentum states into the homogeneous state [151]. Our modeling of the

loss is still not ideal as it does not conserve energy. As we consider the limit of a ! 0,

the breaking of energy conservation can be neglected.

To verify the equations in eq. (4.63) one can repeat the linear analysis with the real

equations in eq. (4.63), and one correctly finds that these equations lead, apart from

a unitary rotation, to precisely the same Jacobian matrix as eq. (4.20), such that the

equations describe the correct center manifold. This is explicitly show in appendix E.

The fact that the Jacobian can be written on a form where all entries are real is a direct

consequence of the symmetry in eq. (4.22).

4.5.2 Double Hopf bifurcation and Stuart-Landau equations

The system of equations in eq. (4.63) provides an ideal starting point for exploring the

behavior once the system has crossed the CP. To find the right approach for dealing with

the non-linearities of the equations, we first consider the qualitative features found for the

system so far. It has been found that the NP fixed point becomes unstable at a critical

value of the coupling strength. We have discussed di↵erent cases: the zero-frequency

polariton instability from chapter 3 and the atomic instability, which destroys the atom

cloud without any emergence of polaritons. The main new feature generated by the

interacting multimode polaritons is that when some modes acquire a negative detuning,

the critical mode can have a finite frequency. These tuneable finite-frequency instabilities

always come in complex conjugate pairs. When the critical modes come in complex

conjugate pairs, the system can give rise to a Hopf bifurcation [152]. If a system has a
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(supercritical) Hopf bifurcation, then it does not just exponentially diverge as predicted

by linear stability but instead has steady-state solutions that are periodic in time. These

solutions are known as limit cycles. For limit cycle solutions to be stable, the system has

to satisfy specific generic properties known as the Hopf theorem. We will do a perturbative

expansion of our dynamics, which will be a good approximation to the new stable fixed

point beyond the CP. This perturbative approach will show under which conditions the

limit cycle can be stable. Specifically, we will focus on the non-trivial case discovered

for the four-mode scenario, where two complex conjugate pairs with di↵erent frequencies

become critical at the same coupling strength. Under general conditions, this scenario

can lead to a bifurcation known as the double Hopf or Hopf-Hopf bifurcation [150]. It is

a codimension-two bifurcation, meaning that the e↵ective description must consist of two

complex coupled non-linear equations. From the perturbative derivation, we will find a

form that can be directly compared to the generic form of the double Hopf bifurcation,

which allows us to investigate the system’s possible steady-state solutions. The key feature

we will rely on to derive the perturbative equations is that the growth rates of the critical

modes, once we have gone slightly past the CP, are small. This allows us to separate two

timescales: a fast time scale due to the finite frequency of the critical modes and a slow

time scale due to the growth rate of the EVs. We will extend the approach for the Hopf

bifurcation from [153] to the double Hopf bifurcation, which leads to a set of coupled

Stuart-Landau equations that describes the system in a region close to the CP.

Coupled Landau-Stuart equations

The goal of the perturbative approach is to capture non-linear e↵ects on the modes that

become critical at the CP. The starting point is the generic form of the EOMs from

eq. (4.18)

Ẋ = F (X, µ) , (4.64)

where boldface will be used to indicate a vector. The vector of independent variables (Xa/i

and Pa/i) is X and µ = ⇤ � ⇤c is the distance from the CP. Our definition of µ means

that for µ > 0, the linear analysis predicts the system to be unstable. By eliminating the

state  a,0, the NP fixed point is X0 = 0 meaning that the distance to the fixed point is

u = X�X0 = X. As long as we are close to the fixed point, we can write the evolution
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of the ith component of u as an expansion around 0

u̇i =Ẋi = Fi (X, µ)
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i
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(4.65)

where Einstein summation notation has been used. Because the derivatives can be done

in any order (a simplification arising from working with real fields), the tensors M and

N are symmetric with respect to the order of the superscript. Our approach is now to

expand all elements in eq. (4.65) around small µ. Expanding L gives

L = L0 + µL1 + µ2L2 + ... (4.66)

where L0 is the Jacobian for which we have two critical solutions

L0v
(1/2)
R

= �(1/2)0 v(1,2)
R

, with �(1/2)0 = i!(1/2)
0 , (4.67)

where v↵
R

is the right eigenvector for the ↵ 2 {1, 2} eigenvalue �↵0 , which is purely imag-

inary at the CP. Because the solutions are complex, there are also the associated left

eigenvectors

v(1/2)
L

L0 = �(1/2)0 v(1/2)
L

. (4.68)

The normalisation used is v(↵)
L

v(�)
R

= v̄(↵)
L

v̄(�)
R

= �↵,� and v(↵)
L

v̄(�)
R

= v̄(↵)
L

v(�)
R

= 0, with

the bar denoting conjugation. With these eigenvectors, we can define an expansion of the

EVs

�(↵) = �(↵)0 + µ�(↵)1 + µ2�(↵)2 + ..., (4.69)

with �(↵)n = v(↵)
L

Lnv
(↵)
R

. Beyond the CP, the system becomes unstable which means that

Re�↵1 = �↵1 > 0, while the frequency shift Im�↵1 = !↵1 can take any sign.

Just like the linear part was expanded, the higher order tensors can also be expanded

M = M0 + µM1 + ..., and N = N0 + µN1 + ... (4.70)

Having expanded all the tensors, we seek to write the new stable fixed point as an expan-

sion around the linear analysis. As the bifurcation is of the Hopf type, the distance u to

the new stable fixed point scales as the square root of µ [154]. It is advantageous to write

µ = �✏2, where � = sgn µ keeps track of which side of the bifurcation the system is on.
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With this, we can write the expansion of the new solution as

u = ✏u1 + ✏2u2 + ... (4.71)

As mentioned previously, the system has two separate time scales close to the bifurcation.

The time scales can be made apparent in the expansion by splitting the time into two

parts t! t + ✏2⌧ , which also means that dt! dt + ✏2d⌧ . As ✏2 is small we treat t and ⌧

as independent variables. Now all the di↵erent parts can be inserted into eq. (4.65), and

everything can be ordered according to the powers in ✏

�
@t + ✏2@⌧ � L0 � �✏2L1 � . . .

� �
✏u1 + ✏2u2 + . . .

�

= ✏2M0u1u1 + 2✏3M0u1u2 + ✏3N0u1u1u1 + . . .
(4.72)

As di↵erent powers are orthogonal to each other [155], we can write equations for each

power of ✏. For the nth power it can be written as (@t � L0)un = Bn where the Bn’s for

the first three powers are found to be

B1 = 0,

B2 = M0u1u1,

B3 = (�@⌧ + �L1)u1 + 2M0u1u2 + N0u1u1u1,

(4.73)

where it is observed that Bn only depends on um<n. For an equation of the form Ly = f ,

where L is a bounded linear operator, to have a solution, the force f has to be orthogonal

to the solutions of the adjoint homogeneous problem

hv, fi = 0, (4.74)

for every v that solves vL† = 0. This condition is known as the Fredholm alternative [155]

or the solvability condition [156]. For our problem, the adjoint operator is L† = �
 �
@t �L0,

for which we have two linearly independent solutions (and the conjugate of these)

v(↵)
L

e�i!
(↵)
0 t

⇣
�
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@t � L0

⌘
= 0, (4.75)

where the arrow indicates that the derivative is acting to the left. The Fredholm alterna-

tive then states that the system only has solutions if

Z 2⇡/!
(↵)
0

0

v(↵)
L

e�i!
(↵)
0 tBn dt = 0 8 ↵ 2 {1, 2}. (4.76)
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From the O(✏) equation (n = 1) we find that u1 has a form

u1 = W1(⌧)v
(1)
R

ei!
(1)
0 t + W2(⌧)v

(2)
R

ei!
(2)
0 t + c.c., (4.77)

where W↵(⌧) is a complex function that only depends on the slow time. As B2 is written

in terms of u1 this will also be a periodic function in t and this extends to all Bns. The

periodicity makes it possible to write Bn as a double Fourier series in t
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X

k,q

B(k,q)
n

(⌧) exp
⇣
it
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0
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. (4.78)

For there to be solutions, the Fredholm alternative then gives a condition on two of the

Fourier components

v(1)
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B(1,0)
n

(⌧) = 0 and v(2)
L

B(0,1)
n

(⌧) = 0. (4.79)

B1 has no oscillations and therefore trivially satisfies the solvability condition. Inserting

the solution for u1 into B2 we find
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⇣
W 2
↵
v↵
R
v↵
R
ei2!

(↵)
0 t + 2|W↵|2v̄↵Rv↵R + W̄ 2

↵
v̄↵
R
v̄↵
R
e�i2!

(↵)
0 t

⌘

+ 2M0

⇣
W1W2v

(1)
R
v(2)
R

eit!
(1)
0 +it!

(2)
0 + W̄1W̄2v̄

(1)
R
v̄(2)
R

e�it!
(1)
0 �it!

(2)
0

+ W̄1W2v̄
(1)
R
v(2)
R

e�it!
(1)
0 +it!

(2)
0 + W̄2W1v̄

(2)
R
v(1)
R

eit!
(1)
0 �it!

(2)
0

⌘
,

(4.80)

where we used the tensors’ symmetry properties to collect similar terms. By inspection, it

is seen that B2 also has no component, which gives rise to just one of the oscillations such

that B2 also trivially satisfies the solvability condition. This means one has to consider B3

to get a condition on W1 and W2. To compute B3, one needs u2, and as this is determined

from the O(✏2) equation, we can try a convenient ansatz with the same frequencies as

seen in eq. (4.80)

u2 =
X

↵=1,2

V(↵)
+ W 2

↵
ei2!

(↵)
0 t + V�W̄ 2

↵
e�i2!

(↵)
0 t + V0|W↵|2

+ A++W1W2e
it!

(1)
0 +it!

(2)
0 + A��W̄1W̄2e

�it!
(1)
0 �it!

(2)
0

+ A+�W1W̄2e
it!

(1)
0 �it!

(2)
0 + A�+W̄1W2e

�it!
(1)
0 +it!

(2)
0 + c0u1.

(4.81)

To determine the vectors in this solution we insert the anzats into the O(✏2) equation in
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eq. (4.73) which gives the form of the vectors

V(↵)
+ =V̄

(↵)
� = �

⇣
L0 � i2!(↵)

0 1
⌘�1

M0v
(↵)
R

v(↵)
R

,

V(↵)
0 =� L�1

0 2M0v̄
(↵)
R

v(↵)
R

,

A++ =Ā�� = �
⇣
L0 � i!(1)

0 1� i!(2)
0 1

⌘�1

2M0v
(1)
R
v(2)
R

,

A+� =A�+ = �
⇣
L0 � i!(1)

0 1+ i!(2)
0 1

⌘�1

2M0v
(1)
R
v̄(2)
R

.

(4.82)

Notice that we have no equation for c0, but at O(✏3), this term does not contribute. It

does not contribute because the only terms that contribute to the solvability condition are

those in B3, which has a t-dependence of the form e�i!
(↵)
0 t. The (1, 0) Fourier component

of B3 from eq. (4.78) is found by inserting eq. (4.77) and eq. (4.81) into the O(✏3) equation

in eq. (4.73)

B(1,0)
3 (t) = (�@⌧ + �L1) W1v

(1)
R

+ 2M0

⇣
V(1)

+ v̄(1)
R

|W1|2W1

+ V(1)
0 v(1)

R
|W1|2W1 + A++v̄

(2)
R

W1|W2|2

+ A+�v
(2)
R

W1|W2|2
⌘

+ 3N0

⇣
W1|W1|2v(1)

R
v(1)
R
v̄(1)
R

+ 2W1|W2|2v(1)
R
v(2)
R
v̄(2)
R

⌘
.

(4.83)

The equation for B(0,1)
3 is found by swapping 1 $ 2 and A+� $ A�+. With these two

components, the equations derived from the Fredholm alternative in eq. (4.79) lead to

two coupled equations for W1 and W2

@⌧W1 = ��(1)1 W1 � g1,1|W1|2W1 � g1,2|W2|2W1,

@⌧W2 = ��(2)1 W2 � g2,2|W2|2W2 � g2,1|W1|2W2,
(4.84)

where the non-linear coe�cients in the W1 equation are given by

g1,1 =2v(1)
L

M0

⇣
V(1)

+ v̄(1)
R

+ V(1)
0 v(1)

R

⌘

+ 3v(1)
L

N0v
(1)
R
v(1)
R
v̄(1)
R

,

g1,2 =2v(1)
L

M0

⇣
A++v̄

(2)
R

+ A+�v
(2)
R

⌘

+ 6v(1)
L

N0v
(1)
R
v(1)
R
v̄(2)
R

.

(4.85)

The non-linear elements for W2 are found from eq. (4.85) by the same swapping used

to get B(0,1)
3 . The equations in eq. (4.84) are of the form of two coupled Stuart-Landau

equations [153].
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To solve these coupled equations the complex numbers W are written in their polar

form W↵ = R↵ei✓↵ where R↵ � 0 and ✓ is real. To simplify the resulting real equations

the coupling elements are split into a real and imaginary part: g↵,� = gr

↵,�
+ igi

↵,�
The

four real equations take the form

Ṙ1 = ��(1)1 R1 � gr

1,1R
3
1 � gr

1,2R1R
2
2,

Ṙ2 = ��(1)2 R2 � gr

2,2R
3
2 � gr

2,1R2R
2
1,

✓̇1 = �!(1)
1 �R2

1g
i

1,1 �R2
2g

i

1,2,

✓̇2 = �!(2)
1 �R2

2g
i

2,2 �R2
1g

i

2,1.

(4.86)

The simplest non-trivial solution is to set the amplitudes to be constants such that Ṙ↵ = 0

and R↵ = R↵,c

R2
↵,c

= �
�(↵)1 gr

�,�
� �(�)1 gr

↵,�

gr
↵,↵

gr

�,�
� �gr

↵,�
gr

�,↵

,

✓↵,c = !̃↵⌧ =
⇣
�!(↵)

1 �R2
↵,c

gi

↵,↵
�R2

�,c
gi

↵,�

⌘
⌧,

(4.87)

with ↵ 6= �. This solution represents the critical mode ↵ performing perfect circular

rotations with the frequency set by !̃↵ such that the new steady-state is given by

X =
p

µ
X

↵

⇣
R↵v

(↵)
R

ei(!
(↵)
0 +µ!̃↵)t + c.c.

⌘
, (4.88)

where the slow time ⌧ has been expressed through the fast time t as ⌧ = ✏2t = µt. If

only a single unstable mode is occupied (R2 = 0), such a periodic solution is known as

a limit cycle [152]. For this solution to exist it is necessary that R2
↵,c

> 0. In the case

of two uncoupled Stuart-Landau equations (g1,2 = g2,1 = 0), the two equations both take

the form of a Hopf bifurcation. For the uncoupled limit cycle solution to exist, we see

from eq. (4.87) that �1 6= 0, which means that the EVs from linear stability have to cross

the � = 0 axis with a finite velocity as a function of µ. Furthermore, the evolution F

must have non-zero higher-order derivatives around the NP such that gr 6= 0. These

two conditions, together with the requirement of the system to have a conjugate pair

of critical finite-frequency EVs, are equivalent to the conditions in the Hopf bifurcation

theorem [150].

For the codimension-two case, i.e., double Hopf, these conditions can only confirm a

perfect circular limit cycle, which means that the only state we can determine is when

R↵,c > 0 for both ↵. To understand what happens when one of the R↵,c’s does not satisfy

this condition, it is necessary to consider the normal form of the double Hopf bifurcation.

Before doing this, we will first discuss the result of applying our analysis to the multimode

cavity model.
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4.5.3 Stuart-Landau equations the for multimode polaritons

For constructing the Stuart-Landau equations for the multimode polaritons, it is essential

to consider the symmetries. The first symmetry is the U(1) responsible for the conser-

vation of atom number, which we already discussed. On the mathematical level, this

symmetry is important because the elements in eq. (4.82) contain the inverse of the Jaco-

bian L0 and the eigenvalue of the  0 mode is zero. Consequently, if  0 is not eliminated

from the equations but directly included in the center manifold, then not only will we

break number conservation, but the inverse Jacobian becomes singular due to the zero

eigenvalue of  0. If one tries to circumvent this by adding a small linewidth to the ho-

mogeneous mode, then the specific value of the linewidth will more or less exclusively

determine the value of the inverse Jacobian, thus leading to non-physical results.

The second symmetry is a Z2 symmetry. Considering the equations of motion in

eq. (4.17) one sees that a ⇡ phase shift of the cavity modes �i ! ��i and a momentum-

dependent rotation of the atom states  n ! ein⇡ n, leaves the equations invariant. We

denote this symmetry operation R. In the NP the solution is �i = 0 =  n>0 and  0 = 1

which is invariant under R. As the EOMs are invariant, we expect the same for the

solutions. Within the center manifold, the only relevant modes are the cavity modes

�i and the recoil momentum atom mode  1. Applying R to a vector within the center

manifold vcm amounts to a ⇡ phase shift R(�i, 1) = (��i,� 1)8i. The equations for the

center manifold, therefore, have to obey

RF (vcm) = F (Rvcm)! �F (vcm) = F (�vcm) . (4.89)

Considering the generic derivation in the previous section, this can only be true if M = 0.

In appendix E we derive L0, L1, M0 and N0 directly. As mentioned earlier, we find that

L0 is equivalent to the result found for the complex system in eq. (4.20). Furthermore,

L only linearly depends on µ, meaning that L2 = 0. It is also explicitly shown that M0

indeed is zero on the center manifold but is non-zero beyond the center manifold. M0

being non-zero beyond the center manifold is allowed because R leaves all the even atom

modes invariant. For N0, we find the five distinct elements given by eq. (E.16). Due to the

Z2 symmetry, the coupling coe�cients are entirely determined by N0 and the eigenvectors

of the Jacobian. The solution to the Stuart-Landau for the two-mode case discussed in

fig. 4.2b is shown in fig. 4.7a. Here the absolute value of the first cavity field (gray line) and

the recoil field (black dashed line) have been plotted. The frequency predicted by linear

stability is close to 0.7ER, but because the absolute value is considered, the fields should

be oscillating at twice the frequency 1.4ER, which corresponds to the period ⇠ 0.45E�1
R

observed in fig. 4.7a. As expected from the Stuart-Landau solution in eq. (4.88), the cavity
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Figure 4.7: Plots of the occupation of the recoil field (black dashed) and the first cavity
field (gray) of two di↵erent limit cycle phases. In both cases the distance to the CP is
µ = 0.03

p
⇤c. a) The two-mode case discussed in fig. 4.2b where the limit cycle has a

period of 2⇡/0.7ER ⇡= 0.45E�1
R

. b) The four-mode case from fig. 4.3 at the double Hopf
bifurcation point. As the frequencies are incommensurate, the fields are not periodic.

and the atom oscillate at the same frequency. The steady state is dramatically di↵erent

for the double-Hopf bifurcation point predicted by linear stability in fig. 4.3. The steady

state of the four-mode double-Hopf bifurcation is plotted in fig. 4.7b. The frequencies

of the two unstable modes are ⇠ 0.7ER and ⇠ 1.3ER. The incommensurability of the

two frequencies, leads to the occupations of both the atom field and the first cavity field

not being periodic. As the atom field couples to two di↵erent frequency limit cycles, it is

observed that the atom field and first cavity field do not oscillate in the same manner.

4.5.4 Double Hopf normal form

Having seen the single limit-cycle and the two limit-cycle steady states, we now investigate

the possible steady states the four-mode system can exhibit. To this extent, we consider

the generic double Hopf bifurcation. It can be shown that if the two di↵erent frequencies

are not commensurate, such that k!(1)
0 6= l!(2)

0 for k, l > 0, k + l  5, and all gr

↵,�
6= 0

then a system with a double Hopf bifurcation can, su�ciently close to the bifurcation,

be mapped to a form like eq. (4.86) [150]. This form is known as the truncated normal

form. If one further neglects the correction to the frequencies, one arrives at two equations

commonly referred to as the amplitude equations

Ṙ1 = �(1)1 R1 � gr

1,1R
3
1 � gr

1,2R1R
2
2,

Ṙ2 = �(2)1 R2 � gr

2,2R
3
2 � gr

2,1R2R
2
1.

(4.90)
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The topology of the bifurcation diagram for these equations is rich and contains 36 di↵er-

ent kinds of bifurcations; however, these are separated into two main groups. If gr

1,1g
r

2,2 > 0

then the system falls into what is known as the ”simple” case which has 15 di↵erent phases,

whereas if gr

1,1g
r

2,2 < 0 then the system belongs to the ”di�cult” case [150] which has 21

di↵erent phases. One di↵erence between the two cases is that the ”di�cult” case can have

an emerging limit cycle in the amplitude equations, which is impossible in the ”simple”

case. Such an amplitude limit cycle is an additional limit cycle in the system that is

not directly related to the frequencies of the critical modes. Another di↵erence is that

the ”simple” case phases are not topologically changed by the inclusion of higher-order

terms in eq. (4.90), whereas the topology of the ”di�cult” case phases can be qualitatively

changed when higher-order terms beyond those derived from our Stuart-Landau approach

are included in the amplitude equations in eq. (4.90).

The first task is to identify if our multimode model falls into the ”di�cult” or the

”simple” case. To solve this task, it is necessary to explore the parameter space in some

fashion. For the four-mode case, we have four detunings, three coupling coe�cients, and

four cavity losses, which lead to an eleven-dimensional parameter space. A complete

mapping of this parameter space is intractable. We are only interested in the part of this

phase space that contains a double Hopf bifurcation but finding all regions of phase space

that contains a double Hopf bifurcation is a challenging problem.

To make the problem tractable, we constrain the parameter space to the four-mode

case already considered, where the system can be split into two groups: two detunings

with a magnitude smaller than the recoil energy and two with a magnitude larger than

the recoil energy. For the below-recoil group, the mode with the smallest magnitude has a

negative detuning, while the one close to recoil energy has to have a positive detuning. For

the above-recoil group, the mode with the larger magnitude has to be negatively detuned

from its sideband, while the mode closest to the recoil energy has to be positively detuned.

Furthermore, we do not let any coupling coe�cients be zero and choose all cavity losses to

be in the range {ER/100, ER/10}. Within these constraints, we perform a uniform random

sampling of all the allowed parameters. A weighting between the below- and above-recoil

momentum groups is then introduced so that the modes in the below-recoil group have

their coupling coe�cients scaled by
p
�/2 and the modes in the above-recoil group have

their coupling coe�cients scaled by
p

1� �/2. Using the parameter � 2 {0, 1}, we can

find the point where both groups become critical simultaneously, such that the system

has a double Hopf bifurcation.

The result of this sampling is shown in fig. 4.8 and from fig. 4.8a, it is observed that

gr

1,1g
r

2,2 > 0, meaning that the system always falls in the ”simple” case. The next step

is to identify which of the 15 possible steady states in the ”simple” case the system can
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Figure 4.8: Random sampling of the restricted parameter space, consisting of 6.7 ⇥ 104

points, for the double Hopf bifurcation according to the constraints discussed in sec-
tion 4.5.4. ✓↵ are the e↵ective o↵-diagonal couplings from eq. (4.91). In a) it is shown
that the system always falls in the ”simple” case as no points have a negative value along
the x-axis. It also shows that the o↵-diagonal couplings can have very di↵erent amplitudes.
b) The relation between the o↵-diagonal couplings for each data point. The majority of
the points fall in the second and fourth quadrants. The third quadrant has no points, and
the points in the first quadrant always fall above the gray line, which is a plot of 1/✓1.

exhibit. The first feature of our system is that �(↵)1 > 0 for all points in the considered

parameter space. Consequently, the linear solution always leads to the growth of the two

limit cycles. The steady-state can, however, change due to the o↵-diagonal couplings gr

↵,�
.

By mapping to a normal form [150], one finds that the relevant values for distinguishing

the di↵erent phases are the o↵-diagonal couplings divided by the opposite diagonal terms

✓↵ =
gr

↵,�

gr

�,�

, with � 6= ↵. (4.91)

In fig. 4.8b, it observed that either the two o↵-diagonal couplings have di↵erent signs or

they are both positive with a product ✓1✓2 > 1. That ✓1✓2 > 1 can be seen by the fact

that all points lie above the gray line in fig. 4.8b which shows 1/✓1. These features mean

that only 6 of the 15 ”simple” case phase portraits are possible in the parameter space

we have investigated.

The six di↵erent phase portraits are sketched in fig. 4.9. The phases fig. 4.9a and

fig. 4.9b are phases with only one fixed point, and only one limit cycle survives such that

the steady state is similar to fig. 4.7a. These phases are reached when the data point falls

in the first quadrant of fig. 4.8b, and one of the growth rates dominates such that

�(↵)1 > ✓1�
(�)
1 . (4.92)
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R1

R2

a) b) c)

d) e) f)

Figure 4.9: The di↵erent phase portraits possible based on the parameter sweep in fig. 4.8.
The individual sketches are borrowed from figure 8.26 in [150]. A black(open) dot indicates
a (un)stable fixed point.

In fig. 4.9c, the system has two fixed points, with only one of the limit cycles being

stable. In this case, the oscillation of the system would depend on the initial state of

the system. The system falls into this state when the o↵-diagonal coupling gr

↵,�
are both

positive, and their growth rates are close to each other such that

✓�1
↵

<
�(↵)1

�(�)1

< ✓�, (4.93)

where ✓↵ > ✓�. From the discussed data, 166 data points fall into this phase. By

investigating the EVs movement for a random configuration of the 166 data points, it

is seen, in fig. 4.10a, that these configurations possess a specific feature. Namely one

of the unstable modes is the EV which was initially purely atomic. These phases are

straightforward to quantify as they are the only ones in our restricted phase space, where

both frequencies of the instabilities in the double Hopf bifurcation are above or below the

recoil frequency. By checking the other 166 points, it is observed that they all are of this

nature, with frequencies either below or above the recoil. To check that the system has

a bistability at such a point, we numerically integrate the original equations in eq. (4.17)

slightly into the critical region with di↵erent initial conditions. If the initial condition has

a significant imbalance between the two cavity groups, the system ends in the limit cycle

with the largest overlap of the initial condition. In fig. 4.10b, we have initialized the system

with random but small fluctuations in the cavity but with di↵erent amplitudes of the recoil
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Figure 4.10: A random datapoint from the sweep in fig. 4.8, that falls within the
class topologically equivalent to fig. 4.9c. The approximate parameters (in units of
the recoil energy) are � = (�0.80, 0.96, 1.69,�1.73)T ,  = (0.08, 0.05, 0.01, 0.10)T ,
c = (0.29, 0.20, 0.54, 0.76) and the critical coupling is

p
⇤c = 0.42. a) The EV move-

ment from the linear stability of the system around the critical point. Each point in b)
represents the resulting frequency of the limit cycle after long numerical integration of
the center manifold with a di↵erent initial condition. The system is chosen to be slightly
inside the critical region with

p
⇤ = 1.03

p
⇤c. Each initial condition has a fixed amplitude

of the recoil momentum mode but a random phase. The cavity part of the initial condition
is random but only of a small magnitude such |�i(0)| < 10�3.

momentum mode. The phase of the recoil mode was chosen randomly. In this figure, one

sees that for small magnitude | 1(0)| < 0.05, this particular configuration always ends up

at the high-frequency (more photonic) fixed point, while for larger magnitude, the system

ends up at the low-frequency fixed point which has more atomic admixture. There is a

region in the middle where the separatrix is sensitive to the phase of the initial atomic

state. or the small random seed in the cavity field. By choosing di↵erent parameters,

one can still have a bistability (for example, any of the other 165 found configurations),

but the dependence of the initial conditions will be very di↵erent. Because of the large

parameter space of the system, one could look for parameters where the bistability is

sensitive to specifically chosen quantities. The large di↵erence between the steady states

due to a small change in initial conditions could make the bistable parameter region of

the system useful for sensing applications.

The three phases in fig. 4.9(d-f) constitute cases where both limit cycles acquire a

finite value and the steady states will be similar to fig. 4.7. These phases emerge when

the couplings gr

↵,�
have di↵erent signs, corresponding to the data points in the second and

fourth quadrant in fig. 4.8b. In these phases, the system has two di↵erent limit cycles

happening simultaneously, which leads to the system evolving on a two-dimensional torus

in its steady-state configuration. Of all the approximately 7000 data points, half of them
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possess this steady state, which means that both modes have physical solutions to the

amplitude equations eq. (4.87).

4.5.5 Symmetry breaking of the steady states

So far we have seen that the multimode polariton can show a wide variety of steady states,

and we will now connect these to the trajectories in the physical phase space. For a single

limit cycle, the trajectory can be understood by considering the symmetry in eq. (4.89). To

this extent, consider first the zero-frequency instability. The reflection symmetry on the

center manifold means M0 = 0, and we can therefore redo the Stuart-Landau derivation

for an instability at zero frequency. If the critical mode is at zero frequency, then there

are a few changes in the derivation. First, the left and right eigenvectors have to be

identical and real because the critical EV is real (it is zero). Secondly, there is no fast

time dependence but only the slow time dependence due to the growth of the unstable

mode, so we have dt! ✏2@⌧ . The di↵erent un therefore instead obey the equation

�L0un = Bn, (4.94)

where the Bn’s are identical to the ones in eq. (4.73). The solution u1 simplifies to

u1 = R(⌧)v where R(⌧) is a real function and v is the critical eigenvector. Lastly, the

inner product in the Fredholm alternative no longer contains an integral over the period

but is simply a dot product between the vectors. The result is that for a zero-frequency

instability, one arrives at an equation equivalent to the single mode version of the R↵

equation in eq. (4.86)

Ṙ = �1R� gR3. (4.95)

This describes a pitchfork bifurcation and has two time-independent solutions Req =

±
p
�1/g if g > 0 (again restricting the discussion to the relevant case of the supercritical

bifurcations). The new fixed points after crossing the CP is then a constant version of

eq. (4.88) and given by X = ±
p

µ�1/gv. By applying the symmetry operation R to one

of the solutions v acquires a sign change, and R, therefore, leads to the other possible

solution. This is the same as in the Dicke model [132]. Transforming the atoms with R

leads to  n ! ei⇡n n which is equivalent to a displacement by ±⇡/Q in space. The two

solutions, therefore, correspond to the density wave with an amplitude that scales with
p

µ and has either a maximum or a minimum at x = 0. Dual to the displacement of

the atomic density wave, the coherent field of the cavity has a phase of ±⇡ depending on

which of the two solutions the system is in. Going beyond the CP leads to the spontaneous

breaking of this symmetry as the system chooses one of the two solutions.

For the limit-cycle solution, the symmetry can lead to a similar case where two di↵erent
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solutions are connected through R. If the periodic solution is always invariant under the

symmetry transformation, then solutions are known as F-cycles [150]. Conversely, if

the symmetry transformation on the center manifold is a reflection, then it is known

that the periodic solution x(t) is invariant under the symmetry transformation if time is

simultaneously shifted by half of the minimal period (T )

Rx(t) = x(t + T/2). (4.96)

Such periodic solutions are known as S-cycles. Because of the reflection symmetry in our

center manifold, we know that the limit cycle is one where the system oscillates between

the atoms having a maximum at x = 0 and a maximum at x = ⇡/Q. Simultaneously the

cavity field phases are rotating between ±⇡. With this discussion we have shown how

Z2-symmetry impacts a time-periodic system.

For the single limit cycle, the atoms oscillating between the two symmetry broken

states, as observed both experimentally [142] and numerically [135,138,141], is, therefore,

a direct consequence of the reflection symmetry of the center manifold and is independent

of the specific realization considered (as long as its normal form is that of the Hopf

bifurcation). For the case of two simultaneous limit cycles, the system evolves on a two-

torus. The two frequencies have to be commensurate for this system to be periodic. If

they are not, then the dynamics of both atoms and cavity will still oscillate, but the signal

will not be periodic in time as seen in fig. 4.7b.

4.6 Atom collisions

Having thoroughly investigated the system for non-interacting atoms, we now seek to

understand if the features are robust when collisions between the atoms are included.

For the previously investigated single cavity mode systems in the literature, a limit cycle

emerged when the pump was modulated at a frequency comparable to the recoil energy.

Including the contact interaction between atoms was numerically found to lead to heating

[141] and was argued to be the leading cause of the short lifetime of the experimentally

observed time crystal in [142]. It is, therefore, necessary to understand the e↵ect of weak

contact interactions in the considered multimode setup.

4.6.1 Linear stability with a weakly interacting BEC

The main features derived for the non-interacting system are based on the linear stability

analysis. We thus first need to study how this is a↵ected by weak contact interactions.

To this extent, we consider the classical atom equation eq. (4.15) in the small g regime.
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The first step is understanding how the contact interaction a↵ects the NP fixed point. In

this case, the only mode with any occupation is the zero-momentum atom mode, which

in this phase is described by the equation

i ̇0 = g| 0|2 0. (4.97)

A phase shift can be used to eliminate this energy shift and e↵ectively change the atoms’

chemical potential. The shifted atom equations take the form

i ̇k(t) =

✓
k2

2M
� ia,k � g| 0|2

◆
 k(t) +

X

i

⌘i Re�i(t) ( k+Q(t) +  k�Q(t))

+ g
X

k0,q

 ̄k0 q k+k0�q.
(4.98)

Having changed the chemical potential for the atoms, one observes that  0 = 1 and

 k 6=0 = �i = 0 is again a fixed point of the full evolution.

As the cavity equations are una↵ected by the shift of the chemical potential, they

still only couple to recoil momentum modes, and their Jacobian is unchanged. The only

part of the Jacobian that changes are the atomic one. Due to the momentum-conserving

nature of the contact interaction, the equations of motion are still invariant under the

transformation  k ! ei⇡k k and a ⇡ phase shift of the cavity modes.

The Jacobian is the gradient of the EOMs evaluated at the fixed point, such that the

only relevant terms are linear in the deviations around the NP fixed point. For the linear

stability analysis, the only relevant collision terms are therefore

g
�
| 0|2 k +  ̄�k 

2
0

�
. (4.99)

They have the feature that the k’th mode couples to itself and �k. Momentum is,

therefore, still a good quantum number. Mixing the k and �k modes lead to the known

Bogoliubov collective modes of a BEC [157]. The cavity coupling still only couples to

modes at the recoil momentum, which makes it sensible to di↵erentiate between atom

modes that are part of the polariton and those that are not. The atom modes that do

not couple directly to the cavity (k 6= ±Q) are then the usual phonon modes [151, 158].

For the polariton instability, we thus only have to consider the recoil momentum as in

the non-interacting case. Since the Q and �Q modes are coupled, the part of the system
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that contributes to the Jacobian is

F (�i) = (�i�i � i)�i � i
⌘i
2

�
 ̄0 1 +  ̄1 0 +  ̄0 �1 +  ̄�1 0

�
,

F ( 1) = (�i(ER + g)� a) 1 � i
X

i

⌘ip
2
(�̄i + �i) 0 � ig ̄�1,

F ( �1) = (�i(ER + g)� a) �1 � i
X

i

⌘ip
2
(�̄i + �i) 0 � ig ̄1,

(4.100)

which should be compared to eq. (4.19). Like in the non-interacting case, an infinitesimal

broadening of the atom modes identical for Q and �Q is assumed. Once again, the

Jacobian can be written in a block form similar to eq. (4.20) with the cavity blocks (Aj)

being unchanged but the o↵-diagonal blocks acquiring a slightly di↵erent form

Bj = �i
⌘j
2

(1,1)⌦ (�z + i�y) ,

Cj = �i
⌘j
2

 
1

1

!
⌦ (�z + i�y) ,

(4.101)

where 1 is the 2 ⇥ 2 identity matrix. The atomic block changes due to the coupling

between positive and negative momentum and are given by

D =

0

BBBB@

�iẼR � a 0 0 �ig

0 iẼR � a ig 0

0 �ig �iẼR � a 0

ig 0 0 iẼR � a

1

CCCCA
, (4.102)

where ẼR = ER + g. The determinant can now be computed using the same technique as

in section 4.4.1. The equation determining the possible frequencies of the unstable modes

is

!
Nc�1X

j=0

c2
j
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�
j
�
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�
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�2⌘
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(4.103)

The physically allowed solutions are those that lead to real values for the critical coupling

strength

⇤c =
ER(ER + 2g) + 2

a,1 � !2

2ER

P
Nc�1
j=0 c2

j

(�2
j+

2
j�!2)�j

!4+2!2(2j��2
j)+(�2

j+
2
j)

2

. (4.104)

It is seen that these equations are equivalent to their non-interacting counterparts in

eqs. (4.31) and (4.32) apart from E2
R

being modified to the Bogoliubov dispersion ER(ER+



Atom collisions 123

0
0.2
0.4
0.6
0.8
1.0

Figure 4.11: The same phase diagram as fig. 4.4 but with a contact interaction of g =
0.1ER included.

2g). For small values of g, the linear stability results’ qualitative features are unchanged.

That a small g does not have a big impact on the linear stability is exemplified by the

computation of the phase diagram in fig. 4.4 but with significant interactions included.

Comparing the phase diagram in fig. 4.11 with fig. 4.4, which has no collisions, one sees

that they are qualitatively equivalent. The only main change is that the separatrix in

the atomic instability has shifted to larger ✏. This shows that the features discussed

for the phase modulation setup in chapter 3 are not sensitive to small changes in the

atom energy or interactions. For the generic two- and four-mode systems considered, the

main e↵ect is a non-trivial renormalization of the parameters. All the scenarios discussed

in the non-interacting case are also present with interactions but for slightly di↵erent

parameters.

One new feature di↵erent from the standard result [107] is that at a finite frequency,

the critical coupling is potentially more sensitive to the specific atomic dispersion. To see

this consider the critical coupling when only a single cavity mode is relevant to the system

(while assuming that the system through some other mechanism has a finite frequency

instability)

⇤c =
ER(ER + 2g) + 2

a
� !2

2ER

�
�2

j
+ 2

j
� !2

�
�j

⇣
!4 + 2!2

�
2
j
��2

j

�
+
�
�2

j
+ 2

j

�2⌘
. (4.105)

For a zero-frequency instability, the two ER’s in the denominator and numerator can-

cel each other such that the interactions only leads to a renormalization of the energy

ER ! ER + 2g. The cancellation of ER in the fraction is not possible at finite frequency.

Therefore, the lowest order e↵ect of including interactions in the limit cycle is not a sim-

ple renormalization of the recoil energy. If instead of interacting atoms, one considers
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atoms at a finite, but either very low or very high temperature then it is found that the

critical-coupling equation at ! = 0 is again only changed by ER ! kBT [105,108]. As the

only change is a renormalization of the recoil energy, it means that for a zero-frequency

instability, one can not see a qualitative di↵erence between a finite temperature cloud

and an interacting cloud by investigating the critical coupling. It would be interesting to

investigate how the parameters for the finite-frequency instability change when the atoms

have a finite temperature to see if one can observe a qualitative di↵erence between the

atomic states.

4.6.2 Beyond linear stability

Having seen that the linear stability is qualitatively the same as the non-interacting case,

we now discuss what happens beyond the CP. The linear stability analysis has shown that

interactions do not drastically change the center manifold, meaning that for small values

of g, the structure of the di↵erent bifurcations remains unchanged. However, previous

studies [141], and experiments [142] found that the atoms heat up due to the contact

interactions. Heating is not captured within the center manifold, so one must go beyond

it to capture these e↵ects fully, and we leave this for future investigations. Instead, we

consider the situation where the contact interaction is weak (g ⇠ 10�2ER), such that

the perturbations to the non-interacting Stuart-Landau results are negligible. First, we

consider the case where the system exhibits a single-limit cycle. Following our previous

approach, we assume the system crosses the critical point from the normal phase. As the

limit cycle emerges and stabilizes, a finite occupation in the center manifold is generated.

Using the solution for the center manifold in eq. (4.88), when only one limit-cycle mode

is occupied, the recoil momentum X and P quadratures are

Xa,Q =
p

µR
�
cxe

i!ct + c.c
�
,

Pa,Q =
p

µR
�
cpe

i!ct + c.c
�
,

(4.106)

where cx and cp are the complex coe�cients from the right eigenvector of the center man-

ifold and !c is the frequency of the limit cycle. From the quadratures, we can reconstruct

the  Q field using the inverse transformation of eq. (4.59)

 Q = c+ei!ct + c�e�i!ct, (4.107)

with c+ =
p

µ/2R (cx + icp) and c� =
p

µ/2R (c̄x + ic̄p). Notice that generally |c+| 6=
|c�|.

In section 4.5.1, we discussed how enforcing normalization was essential for the center

manifold calculation. Because of this construction, we can find the homogeneous atom
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Frequency Magnitude Momentum
0 b0 ⇠ 1� µ 0
!c |c±| ⇠ pµ Q
2!c |b±| ⇠ µ 0

Table 4.1: A table of the occupied atomic modes when the system is in a single limit cycle.
The modes and their properties are derived from the Stuart-Landau equation.

component in the limit cycle from the center manifold

 0 =
q

1� 2| Q|2

=
p

1� 2 (c+c̄� + c�c̄+ + |c+|2ei2!ct + |c�|2e�i2!ct)

⇡ 1� c+c̄� � c�c̄+ � |c+|2ei2!ct � |c�|2e�i2!ct

= b0 + b+ei2!ct + b�e�i2!ct.

(4.108)

Here the square root was expanded around µ = 0, similar to the approximation underlying

the Stuart-Landau equation. In the last line, the Fourier coe�cients of the homogeneous

field have been defined as

b0 = 1� 2 Re (c+c̄�) and b± = �|c±|2. (4.109)

The occupied atom fields and their characteristic scalings from the Stuart-Landau

results are shown in table 4.1.

The limit-cycle can be destroyed through two di↵erent mechanisms. The first to go

deeper into the superradiant state. By increasing µ it is necessary to include the next

correction to the fixed point in eq. (4.81) which adds higher harmonics to steady state.

Another e↵ect of going deeper into the superradiant state is scattering from  Q into

 2Q, which does not obey a reflection symmetry. When these modes become important,

our center manifold analysis is insu�cient, and we numerically find the limit cycle to

be destroyed. The sensitivity to going beyond the center manifold is not unexpected

considering that M0 is now non-zero in the Stuart-Landau equation. The scattering

from  Q to  2Q happens through scattering of a pump photon into the cavity. For the

occupation of the  2Q to be significant, it is, therefore, necessary that the occupation of

 Q is large. By staying close to the CP our Stuart-Landau equation within the center

manifold is valid. However, there is a second mechanism that can destroy the limit cycle

even close to the CP. This second mechanism is for the atoms to scatter into phonon

modes that are not commensurate with the cavity. Scattering into phonon modes is only

possible with finite contact interactions between the atoms and we now seek to understand

how the phonon scattering is a↵ected by the limit cycle in the polariton.
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Figure 4.12: Four di↵erent scattering events between the atomic parts of the limit cycle
described by table 4.1. All four scattering events are momentum conserving and involve
the scattering o↵ a  0(0) state. In a) two atoms from the homogeneous and stationary part
of the system collide. This process is of O(g). In b), the homogeneous atom collides with
an atom with recoil momentum and a frequency equal to the limit cycle frequency, which
makes this process of O(g

p
µ). In c), the homogeneous atom collides with a homogeneous

atom oscillating at twice the limit cycle frequency. This process is like the one in d) of
O(gµ). In d), two atoms with opposite recoil momentum collide, generating a phonon at
a small q value. Notice that this process can also be done if the atoms have the same
direction of their momenta. In that case, the two final momenta will have Q added to
them.

In the limit cycle, the atoms can be in three di↵erent states as shown in eqs. (4.107)

and (4.108): a homogeneous spatial configuration that is constant in time, namely with

magnitude b0, a spatial density modulation with oscillates with frequency !c and has

magnitude |c±| and a homogeneous spatial configuration that oscillates at 2!c with mag-

nitude |b±|. Due to the interactions between the atoms, these states can scatter o↵ each

other, which gives rise to new phonon modes. The four scattering processes that are

lowest order in g and involve the most occupied atomic modes according to table 4.1 are

shown in fig. 4.12. In the regime of small µ, the fastest processes are those involving the

homogeneous stationary atom mode because this mode has a magnitude of O(1) as shown

in table 4.1. The dominating process is, therefore, fig. 4.12a where two stationary atoms

scatter o↵ each other. They can scatter into two atoms with momentum ±q such that

momentum is conserved. Energy also has to be conserved, requiring ✏q + ✏�q = 0. In the

regime of small µ, the amplitude of the density modulation is tiny. The dispersion of the

phonon modes is therefore well approximated as that of the bare phonons ✏q = q2, which

is here written in units of the recoil energy. Since the dispersion is quadratic, energy

conservation can only be satisfied if q = 0, which means that the scattering process in

fig. 4.12a can not generate occupation in any phonon modes.

The next scattering channel is that of fig. 4.12b. Here an atom mode carrying recoil

momentum and with the frequency of the limit cycle scatter against the state  0(0),

which makes this process of order O(g
p

µ). For this process to be energy conserving, it
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is necessary that
✏Q�q + ✏q � !c = 0,

(1� q)2 + q2 � !c = 0,

! q =
1

2
± 1p

2

r
!c �

1

2
.

(4.110)

This scattering process thus acts as a source for two phonon modes at q and Q� q, such

that they will grow with a rate related to g
p

µ. This scattering channel is closed when

! > 1/2. The dominating scattering channels then become of O(gµ) and correspond

to fig. 4.12c and fig. 4.12d. Here energy conservation leads to an outgoing momentum

given by q =
p
!c. At the same order, there is also the process of fig. 4.12d but with both

incoming momenta in the same direction. This scattering channel is only open if the limit-

cycle frequency is above the recoil energy, as the momentum must satisfy q =
p
!c � 1.

For !c < 1/2, the fastest growing phonon mode will therefore grow at a rate proportional

to gµ. We, therefore, predict that by changing !c from above ER/2 to below ER/2, the

growth rate of the phonon modes should drop significantly.

Deeper inside the limit cycle phase, due to the large density modulation, one can no

longer use the crude approximation of a quadratic phonon dispersion. An interesting

aspect of this is that in the static case, this leads to the opening of band gaps [159].

Opening of band gaps could close o↵ specific scattering channels as a function of the

limit-cycle frequency.

Our preliminary studies have shown that the dominating growth rates of the phonon

modes are linear in g and either proportional to µ or
p

µ. Since µ can be tuned straight-

forwardly, we expect that there is an experimentally relevant regime where the limit cycle

will persist for many oscillations before being destroyed by the growing phonon modes. An

intriguing aspect is that the lifetime of the limit cycle should be significantly a↵ected by

changing the frequency of the limit cycle. As the frequency is tuneable in the multimode

polariton system, it provides an ideal platform for these investigations experimentally and

theoretically.

Lastly, we will consider what happens when the system has two limit cycles. In this

case, the coupled Stuart-Landau equations lead to the recoil momentum mode moving on

a two-torus

 Q = a+ei!at + a�e�i!at + c+ei!ct + c�e�i!ct, (4.111)

where !a and !c are the frequencies of the two di↵erent limit cycles. In the investigated

cases, we always considered one of the limit cycles to have a frequency greater than the

recoil energy. Consequently, the fastest growing phonon mode is predicted to grow with

a rate of g
p

µ. The two-torus system will not have modes that grow faster than the

single mode case, but it will have more of them, as the number of possible scattering
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channels increases due to the two di↵erent frequencies. Similarly to the single mode

case, the momentum of the dominant growing phonon modes can be found using energy

conservation. In conclusion, we can state that for experiments where the single limit cycle

is observable at !c > Er/2, the two-torus solution should have a comparable lifetime.

4.7 Summary and discussion

In this chapter, we first performed a linear stability analysis of the classical equations for

the multimode cavity model in the regime where the cavity had a sub-recoil linewidth.

The analytical equations for the critical coupling and frequency have been derived for

an arbitrary number of cavity modes. A careful investigation of these equations for

the one-, two- and the four-mode system has shown that a negatively detuned cavity

mode can greatly impact how the polariton became unstable. For the one-mode case, a

negatively detuned cavity mode made the atom cloud directly unstable at infinitesimal

pump power, and no polariton emerges. The situation was qualitatively changed when a

second positively detuned cavity mode was included. The positively detuned cavity mode

could stabilize the system, which allowed a polariton to form that became unstable at

a finite frequency. By controlling the detuning of the bare cavity modes, the frequency

of the polariton instability could be directly tuned. We found that the four-mode cavity

mode system could have two di↵erent finite-frequency instabilities at the same critical

pump power.

To investigate the fate of the unstable polariton mode beyond the critical point, we

have generalized the Stuart-Landau equation to describe the case of two simultaneous

finite-frequency instabilities. We found that these took the form of a double Hopf bi-

furcation, and through a normal form analysis, it was shown that the four-mode system

could exhibit a single limit-cycle steady state, a bistable region where the initial condi-

tions determined the steady state, and a two-torous solution where two limit cycles were

simultaneously present in the system. We used the symmetry of the equations of motion

to explain why a single limit-cycle steady state will be a state where the systems peri-

odically oscillate between two states connected by a Z2 symmetry. For the four-mode

case, the periodicity of the system could be broken if the two di↵erent limit cycles were

not commensurate. Finally, we have discussed some preliminary results of the e↵ect of

including contact interactions between the atoms. Here it was explained how that the

presence of the limit cycle opened up new scattering channels. Which scattering channel

were dominant could be changed by adjusting the limit-cycle frequency.

Our results gives rise to several questions that are worth further investigation. The

first is finishing the analysis of the e↵ect of atom interactions. Here the precise form of
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the rate still has to be calculated. With this result, it is then possible to investigate if

there are regimes where cavity cooling is e�cient enough to prevent the growth of the

phonon modes. Another exciting aspect is further exploring the bistability observed for

the double Hopf bifurcation. If the sensitivity of the bistability can be selectively chosen by

tuning the experimental parameters, this could be interesting for applications. Following

these ideas it is worth understanding how the two-cavity-photon process that has been

neglected a↵ects the limit cycle. It is known that for the linear stability analysis, it only

amounts to a shift of the cavity detunings, which can be compensated by changing the

sideband frequencies. However, beyond the normal phase, it gives rise to a second optical

potential for the atoms, and it would therefore lead to perturbations to the coe�cients of

the Stuart-Landau equations. By tuning the values, these perturbations can certainly be

made negligible, but one could investigate if tuning the two-cavity-photon process could

give rise to steady states with an additional limit cycle in the amplitude equations.



Chapter 5

Polaron-polaritons

5.1 Introduction

In chapter 3, the focus was on the spectral features, while the occupation of the spectrum

was included through classical equations in chapter 4. This last chapter considers a driven

system with strong interactions between bosonic and fermionic degrees of freedom. The

spectral properties of both degrees of freedom will change due to the interaction. Because

the system is driven, it is also necessary to consider the change in the occupation of the

spectrum. As it is necessary to capture the perturbation to the spectrum of fermionic

degrees of freedom, it is not possible to approach the system using classical equations as

in chapter 4. Instead, we solve the coupled Dyson equations for the retarded and the

Keldysh propagator.

In this chapter, the type of system considered is a two-dimensional semiconductor

inside a cavity. The research field of two-dimensional materials has evolved dramatically

since the discovery of graphene [160] and monolayer transition metal dichalcogenides

(TMD) [161]. From the perspective of polaritons, the TMD monolayers are exciting be-

cause they have very strong photoluminescence [162,163]. The strong photoluminescence

arises from the fact that these materials have a large exciton binding energy on the order of

hundreds of meVs [164–166]. TMD monolayers also have an additional degree of freedom

because they exhibit two di↵erent valleys within the first Brillouin zone [167, 168]. This

gives rise to an e↵ective description of the TMD monolayers with two di↵erent species of

electrons. An important property of the TMD monolayers is that they are structurally

stable at room temperature and can be embedded inside solid-state microcavities. It is

experimentally possible to realize high-quality solid-state microcavities such that strong

coupling between the exciton and the cavity can be achieved, giving rise to polaritons.

The main motivation for our work is the recent developments [99, 169–171], where

experimental groups have been able to add a gate voltage to the TMD monolayer while it

130
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is inside a cavity. The gate voltage makes it possible to inject electrons into a conduction

band of a di↵erent valley than the electrons that form the exciton.

As the conduction electrons introduced by the voltage bias are not constituents of the

excitons, the system can e↵ectively be described as a two-dimensional Bose-Fermi mixture

where the bosons are excitons, and the fermions are the conduction electrons in the other

valley. In the limit where there is only a single exciton in the system, the exciton’s

interaction with the electrons leads to the formation of a quasiparticle known as a Fermi

polaron. The Fermi polaron system has been widely studied in three dimensions and

in two dimensions [172–178]. The experimental realization of a quasi two-dimensional

quantum gas [179] has motivated several di↵erent theoretically approaches such as a

variational ansatz [180–184], non-self-consistent ladder approximation [185], functional

renormalization group [186] and even diagrammatic Monte Carlo [187]. Motivated by the

above-mentioned experimental developments with TMD monolayers in cavities, the large

interest in Fermi polarons has carried over into investigations of the e↵ects of polariton

formation either through a variational approach [188,189] or with the non-self-consistent

ladder approximation [190,191]. Indeed, since the excitons can be created by absorbing a

photon from the cavity, this gives rise to excitons-polaritons that couple to electrons. All

the previous theoretical approaches have been restricted to thermal equilibrium. However,

due to the finite lifetime of excitons and photons, the system must be driven for a finite

density of exciton-polaritons to be present in the steady state. This chapter goes beyond

the previous theoretical work by non-perturbatively including drive and dissipation via

non-equilibrium field theory.

Apart from the TMD monolayers, two-dimensional polaritons also appear in quantum

well systems [192], where the study of quantum polaritonic fluids has been made possible

by the existence of non-equilibrium Bose-Einstein condensation even at room temperature

[193–195]. This has attracted the attention of a large community in recent years, and

exciton-polariton condensation has now also been observed with TMD monolayers [196].

Already for these systems, where no additional electrons are present to form polarons,

the theoretical description of non-equilibrium condensation has been limited to either

quantum kinetic theories [197] or semiclassical equations like the ones we introduced

in chapter 4. Our approach extends previous theories by simultaneously describing the

coupled dynamics of the response and correlation functions at and in the vicinity of

condensation. It is also directly applicable to the present case of interest where gated

electrons in TMD monolayers lead to the formation, and potentially condensation, of

exciton-polaron-polaritons.

Doing the out-of-equilibrium self-consistent calculations comes with a host of chal-

lenges, and our work so far has been concerned with finding ways to make the calcula-
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tions feasible and reasonably accurate. Section 5.2 is devoted to deriving the model and

its action, while section 5.3 derives the self-energies for our non-equilibrium self-consistent

ladder approximation. The numerical methods we have developed are described in sec-

tion 5.4, and some first results are presented in section 5.5.

We find that our method can capture the known features of the Fermi polaron and

that coupling the exciton to the cavity leads to the formation of a quasiparticle, the

polaron-polariton. The polaron-polariton is an exciton strongly coupled to light and the

Fermi sea simultaneously. Including the cavity leads to more than just a dressing of the

polaron as it renormalizes the coupling to the Fermi sea. The cavity can significantly alter

the polaron, and we can change the qualitative features of the lowest energy excitation

by shifting the cavity detuning. We explore the system’s behavior when a continuous

laser drives the cavity and find an accumulation of excitations at finite momentum. The

accumulation is explained by a competition between cavity loss and momentum relaxation

induced by electron scattering. Because of the hybrid nature of the polaron-polariton,

both the loss and the momentum relaxation can be qualitatively altered by changing the

cavity detuning.

While implementing the non-equilibrium self-consistent ladder approximation is com-

plicated, it is versatile as our method can also be applied to three-dimensional systems

with only minor modifications. It, therefore, allows exploring non-equilibrium features in

many-body physics. While this by itself is a major theoretical motivation, it is important

that our models should describe current experiments with monolayer semiconductors in

cavities well.

5.2 Model

The two-dimensional polaron-polariton system is complex because there is a strong cou-

pling between the cavity and the exciton but also a strong coupling between the exciton

and the electron gas in the conduction band. The exciton and photon are strongly cou-

pled, leading to polariton formation, while the strong interaction between excitons and

electrons leads to the formation of polarons. We seek to construct a method that treats

both e↵ects on the same level. In addition, a non-equilibrium treatment is essential due

to the drive and loss of the cavity.

5.2.1 Non-interacting constituents

Choosing the simplest possible building blocks for the system is essential as the complexity

arises due to their interactions. To do this, we first describe how the di↵erent bare parts

of the system are modeled.
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Electrons

A significant experimental achievement is that by gating the TMD monolayer [99, 169],

electrons of a di↵erent valley than those creating the exciton can be excited to the con-

duction band. These electrons are well described as a two-dimensional free fermion gas

with an e↵ective mass me. The electrons’ chemical potential µe is tuned by varying the

gate voltage. The last free parameter for a free electron gas is the inverse temperature

� = 1/TkB. With this simple description, the bare electron propagators are

GR

e,0(p) =
1

! + µe � k2

2me
+ i0+

,

GK

e,0(p) = �2i⇡ (1� 2nF (!)) �

✓
! + µe �

k2

2me

◆
,

(5.1)

where nF (!) =
�
e�! + 1

��1
is the Fermi-Dirac distribution. To simplify the notation

define p = (!,k), p = (!, |k|) and k = (kx, ky)T . The propagators are the generalization

of the free propagators from eq. (A.40) to a spatially homogeneous system. The isotropy

of space means that the propagators only depend on the magnitude of the momentum

k = |k| and not the direction.

Excitons

An exciton is a tightly bound pair consisting of an electron in the conduction band and

a hole in the valence band. Due to the dipole moment generated by separating the

hole and electron, excitons interact with phonons. The microscopic description of the

excitons themselves is therefore complicated [198]. TMD monolayers have the property

that the exciton binding energy is on the order of several hundred meV’s [196], which is

exceptionally high. In these materials, the exciton binding energy is the largest energy

scale, which makes the excitons stable quasiparticles with long lifetimes. To the lowest

order, the excitons can be modeled as a single species of particles independent of the

electrons in the other valley, and at low temperatures, the perturbation can be included

as a phenomenological decay rate of the exciton.

In the TMD systems the e↵ective mass of the hole is similar to e↵ective electron mass

me [199] such that the exciton mass is approximately mx = 2me. In this simple model of

the exciton, the bare propagators are

GR

x,0(p) =
1

! � k2

2mx
+ i0+

,

GK

x,0(p) = �2i⇡�

✓
! � k2

2mx

◆
,

(5.2)
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where the exciton chemical potential has been set to zero. As excitons consist of an

electron-hole pair, they are bosonic quasiparticles. For bosons, the chemical potential is

equivalent to a detuning, which should be interpreted as the cost of creating excitations

with zero momentum.

The combination of high binding energy and low temperature means that the thermal

energy is insu�cient to create an exciton in a TMD monolayer. To occupy the exciton

states, it is, therefore, necessary to drive the system, which is done through the cavity. In

TMD bilayers, the excitons can be injected electrically, and their thermal condensation

has been observed [200].

Cavity

The most straightforward description of the cavity is as a slab of material with a refractive

index ñ between two mirrors. Let the cavity dimensions be Lx⇥Ly⇥Lz, where Lz is the

length between the mirrors perpendicular to the two-dimensional material. Due to the

boundary set by the cavity, the modes have three discrete quantum numbers (nx, ny , nz)

and energy given by [85]

!kx,ky ,kz = c/ñ
q

k2
x

+ k2
y
+ k2

z
, (5.3)

with ki = ni⇡

Li
, where c is the speed of light in vacuum. If the slab is thin but long in

the x and y directions such that Lz ⌧ Lx ⇠ Ly, the level spacing between di↵erent kz is

large compared to the spacing between the transverse directions. For thin enough slabs,

the longitudinal energy spacing will be the largest scale in the system. The longitudinal

mode index is then set by the one closest to the exciton’s binding energy. If the cavity is

approximated as infinitely large in the transverse directions, the transverse level spacing

goes to zero, and the transverse spectrum becomes continuous. Expanding around zero

transversal momentum, the cavity dispersion is approximated as

!(kx, ky) ⇡
cnz⇡

ñLz

+
1

2

cLz

ñnz⇡

�
k2
x

+ k2
y

�
= E0 +

k2

2mc

, (5.4)

where E0 is the constant energy o↵set due to the longitudinal mode and mc = ñnz⇡

cLz
the

corresponding photon mass.

The cavity mirrors are inherently lossy, so the system is not energy-conserving. To

get non-trivial steady states, the loss has to be compensated by external driving. We

consider driving non-resonantly away from modes that have an appreciable occupation,

which means that the imprinted phase from the laser is lost through the relaxation pro-

cess, and we can therefore model the laser as an incoherent environment with a narrow

frequency distribution. To this extent, both loss and drive are approximated by coupling

to an external electromagnetic environment. Assuming the coupling to the environment is
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small, such that the cavity and environment do not hybridize (quasiparticle weight of bare

cavity mode weight close to unity), the coupling leads to renormalization of the cavity

propagators as shown in section 2.8. Under those conditions, the retarded self-energy of

the cavity is constant

⌃R

c
= � � i�. (5.5)

The constant shift is combined with E0 to give an e↵ective photon detuning �c. This

detuning can be freely tuned by varying the pump frequency as for the ultracold atom

system considered previously. The loss rate � describes photon leakage out of the cavity

and is determined by the cavity geometry and quality. Here we assume that it is identical

for all transverse modes, which is a good assumption because the energy scale of the

transverse modes is small compared to the total energy in the cavity mode. As seen in

section 2.8, incoherent pumping a↵ects the Keldysh self-energy through the distribution

function derived in eq. (2.114). This result can be modified to model a pump laser by

writing the occupied part of the cavity Keldysh self-energy as

�⌃K

c
(p) = i2(p), (5.6)

where (p) is a function describing the pump envelope in energy and momentum. To

simplify the analysis, we assume that the pump does not break the isotropy of space and

only depends on the magnitude of the momentum. (p) is proportional to �, which is

small, but also to the occupation of the modes, which is determined by the intensity of

the laser. It is, therefore, possible to increase the e↵ective drive strength of the cavity

without requiring large �.

Accounting for drive and dissipation, the bare cavity propagators are given as

GR

c,0(p) =
1

! ��c � k2

2mc
+ i�

,

GK

c,0(p) =
�2i

⇣
� + (p)

⌘

⇣
! ��c � k2

2mc

⌘2

+ �2
.

(5.7)

5.2.2 Interactions

As already mentioned, the system contains two distinct types of interactions: interac-

tions between the exciton and the cavity and interactions between the excitons and the

electrons. In both cases the form is most intuitive in real-space r = (rx, ry)T and time

t. Similar to the composite index introduced for momentum and energy, we use the

composite variable x = (t, r) for space and time.



136 Polaron-polaritons

Exciton-cavity

The exciton is a localized particle with a Bohr radius on the order of a few nanometers

[201]. Due to the small spatial extension, the interaction with the electromagnetic field

can be approximated as a dipole interaction as discussed in section 3.2. The dipole

interaction is not number conserving as it contains counter-rotating terms but similar

to the discussion of the laser section 3.2, the counter-rotating terms can be neglected

on the time scale the system is probed. The remaining process describes annihilation

of an excitation of the complex exciton field b(x), through creation of an excitation in

the conjugate complex photon field ā(x) at the same point in space-time. The resulting

interacting term in the action is of the form

Sx�c = �⌦
X

↵,�={+,�}

Z
dt

Z
d2r ā↵(x)�z

↵,�
b�(x) + H.c., (5.8)

where ⌦ is the coupling strength between exciton and cavity and �z

↵,�
is the third Pauli

matrix.

The bare constituents are diagonal in reciprocal space and frequency, which makes it

advantageous to Fourier transform the interaction. To keep the notation compact and

transparent, the Fourier transform is written as

f(x) =
1

A

X

p

eip·xf(p), (5.9)

where the dot-product is defined as p ·x = k ·r�!t and A�1
P

p =
R

d!
2⇡

R
d2p
(2⇡)2 . Rotating

from the ± basis to the Keldysh basis gives an action with a similar form as the one

discussed in section 2.8

Sx�c = �⌦
1

A

X

p

X

↵,�={c,q}

ā↵(p)�x

↵,�
b�(p) + H.c., (5.10)

where �x is the first Pauli matrix. Crucially, this interaction is quadratic in fields and

diagonal in p. Similar to the case considered in section 2.8, this means that the interaction

with the cavity can be included in an exciton self-energy given by diagrams equivalent to

those in fig. 2.6b and fig. 2.6c

⌃R

xc
(p) = ⌦2GR

c,0(p),

�⌃K

xc
(p) = ⌦2�GK

c,0(p).
(5.11)

Because of the linear coupling between exciton and cavity, the self-energies are exact.

The excitonic component of the polariton is of most interest because this is the part
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that couples to the electrons. Conversely, given the full exciton propagator, the dressed

cavity propagators are directly given by

GR

c
(p) =

1
�
GR

c,0(p)
��1 � ⌦2GR

x
(p)

,

GK

c
(p) =

�
i2� + i2(p) + ⌦2GK

x
(p)

�
|GR

c
(p)|2,

(5.12)

where we have anticipated that the approximation we will use for the exciton-electron

interaction leaves the exciton propagator translation invariant. We will refer to the cavity-

dressed exciton as the bare polariton, since the exciton propagator includes the cavity

through the self-energies.

Exciton-electron

The exciton consists of a spatially separated electron-hole pair. We have discussed that

it is tightly bound and that we can therefore approximate it as a point-like particle. The

interaction between the exciton and the electron is, therefore, like that of a dipole and

a charge. For a quantitative treatment, one would have to treat the spatial dependence

of the two-body potential, but if one only considers low energies and densities, then the

short-range behavior of the potential will not be probed during the scattering event. At

the lowest level of approximation the interaction can then be characterized by an s-wave

contact-interaction [202]

Hx�e = g

Z
d2r b†(r)c†(r)c(r)b(r), (5.13)

where c is the annihilation operator of the electrons. The corresponding interaction term

in the action is

Sx�e = �g
X

↵={+,�}

Z
dx b̄↵(x)c̄↵(x)c↵(x)b↵(x). (5.14)

Opposite to the previously considered ultracold system with repulsive interactions, the

collisions can now lead to bound states and are therefore essential to capture the main

qualitative features of the system correctly. For the two-body scattering problem in two

dimensions, any attractive interaction leads to the existence of a bound state [203, 204].

Di↵erently from the three-dimensional case, the scattering length is directly related to the

binding energy of the bound state EB through as = 1/
p

mEB, which for two dimensions

is always positive.

For TMD monolayers, bound states between one hole and two electrons have been

found to also have large binding energies on the order of tens of meVs [205–207] and

are referred to as trions. These bound states correspond to a scattering process where
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p3

p2

p1

Figure 5.1: The vertices between trions (double arrows), electrons (straight lines), and
excitons (wavy lines). The dashed line represents a quantum field, and the solid line a
classical field. Only the first vertex has the energy-momentum structure explicitly shown,
but it is identical for all four vertices. The vertices are generated by the exciton-electron
scattering in eq. (5.13) and described by eq. (5.16). Along with the four vertices shown
here, there are another four vertices with the arrows reversed. These correspond to the
conjugate processes.

the exciton collides with an electron, and they move together. In the TMD monolayer

system, both the electrons and the trions obey fermionic statistics. If we want to capture

any perturbation to either the electron’s or the trion’s spectrum, then we have to go

beyond classical approaches. To that extent, we will develop a self-consistent theory for

the propagators based on the Dyson equation.

To e�ciently write Dyson equations, it is convenient to include the trions directly in the

action. This can be achieved through a Hubbard-Stratonovich transform, similarly to how

the noise was included in the semiclassical equations in (4.3). The Hubbard-Stratonovich

transform is a way of rewriting the two-body interactions between the electrons and

excitons as an interaction with an auxiliary trion field �(x) through

exp (iSx�e) = exp

0

@�ig
X

↵,�={+,�}

Z
dx b̄↵ c̄↵�

z

↵,�
c� b�

1

A

=

Z
D[�̄±, �±] exp

✓
i

X

↵,�={+,�}

Z
dt

Z
d2r

�̄↵�z

↵,�
�↵

g

� b̄↵ c̄↵ �
z

↵,�
�� � �̄↵�

z

↵,�
c� b�

◆
,

(5.15)

where the space-time dependence of the fields has been suppressed. After Fourier trans-

forming and Keldysh rotating, the contact interaction leads to an energy and momentum

conserving interaction

Sx�e = � 1p
2A2

X

↵,�,�={c,q}

X

p1,p2,p3

M�

↵,�
b̄↵(p1)c̄�(p2)��(p3)�(p1 + p2 � p3) + c.c.,

(5.16)

where the factor of 1/
p

2 originates from the Keldysh rotation and the elements in M�

↵,�
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are

M c

↵,�
= �x

↵,�
and M q

↵,�
= �↵,� (5.17)

The interaction in eq. (5.16) leads to four di↵erent vertices that are shown in fig. 5.1.

Together with this interaction term, there is also a quadratic term for the bare trion,

which defines the bare trion propagator

GR

�,0(p) =
1

1/g + i0+
. (5.18)

Conservation laws

With the introduction of the trion field into the action, it is essential to understand the

conservation laws di↵erent constituents of the system obey. The exciton-cavity coupling

makes the exciton driven and dissipative, and it, therefore, obeys neither particle nor

energy conservation. Electrons can scatter o↵ the excitions, but electrons can not be

exchanged into excitons or vice-versa, so the interaction conserves the electron number.

What happens when one introduces the trion? This composite field contains one electron,

so one could naively expect that the new conserved quantity is the sum of electrons and

trions. However, the trions also contain an exciton that can be lost and generated, so one

would not expect the trion number to be conserved. Our approach is based on the action,

so this confusion can be cleared up using Noether’s theorem [38]. The non-equilibrium

nature of the cavity leads to additional coupling of the ± branches for the exciton fields.

Consequently, Noether’s theorem for the contour fields of the exciton does not lead to

conserved currents [82]. The electron and trion do not have direct coupling between the

contour fields (apart from the contour endpoints). Consequently, the conserved currents

will be independent of the branch index. To understand the conserved currents, it is thus

su�cient to consider an action of the form

S =

Z
dxL =

Z
dx c̄(x)

✓
i@t �

r2

2me

+ µe

◆
c(x) +

�̄(x)�(x)

g

� c̄(x)b̄(x)�(x)� �̄(x)b(x)c(x),

(5.19)

where L is the Lagrangian. The Lagrangian is invariant under the global symmetry

 =
�
c, c̄, �, �̄

�
!

�
ei✏c, e�i✏c̄, ei✏�, e�i✏�̄

�
8✏. (5.20)

Because this is an infinitesimal transformation, it can be written as

 n !  n + ✏�n n, with � = (i,�i, i,�i)T . (5.21)
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The theory then has a conserved current given by [38]

jµ,n =
@L

@ (@µ n)
�n n. (5.22)

As the trion field does not have its own dynamics (no @µ� in L) there are no conserved

currents for the trions. Furthermore, as the trion couples to the electron through c and

not @µc, the electron conservations laws are not a↵ected by the trion field, and eq. (5.22)

gives
jt,e = c̄(x)c(x),

jr,e =
i

2me

(c̄(x)rc(x)� c(x)rc̄(x)) .
(5.23)

We thus find that the only conserved currents in the system are those of the electrons.

The trion occupation can instead be shown to be related to a quantity known as Tan’s

contact [208–210], which relates the two-body physics to the many-body system.

Two-body scattering

The bare retarded trion propagator is a constant, which leads to a lack of conserved

quantities and a divergence of the bare action at large momentum and energy. Such a

divergence invalidates any perturbative approach, and the theory has to be renormalized.

One approach is to impose a UV cut-o↵, which means cutting o↵ the integrals at a chosen

large momentum and energy. To make the theory consistent, one must renormalize the

contact interaction so that the correct scattering length is reproduced. We will take a

slightly di↵erent approach, renormalizing the bare trion propagator through the vacuum

self-energy. In theory, the two approaches are identical, but their numerical implementa-

tion is slightly di↵erent. For both cases, the renormalization relies on the solution of the

two-dimensional scattering problem with an attractive �-potential at the origin.

In two dimensions, the s-wave vacuum T-matrix for a single particle of mass, m, is

related to the energy of the bound state, EB, through [211]

T (!) =
2⇡

m

1

log
�
EB
!

�
+ i⇡

. (5.24)

This is derived by considering the scattering phase shift, which is connected to the mea-

surable cross-section. The bound-state energy is, therefore, indirectly measurable. The

vacuum T-matrix can equally be computed from the Lippmann-Schwinger equation [212]

T (q,q0;!) = hq| V (r) |q0i+
Z

d2k

(2⇡)2
hq| V (r) |q0i T (k, q0;!)

! � k2

2m + i0+
. (5.25)
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For an attractive regularized delta-function potential in two-dimensions hq| V (r) |q0i = g.

The Lippmann-Schwinger equation can then be rewritten in the same way as the Dyson

equation in eq. (2.53)

T (q,q0;!) =
1

1
g
�
R

d2k
(2⇡)2

1

!� k2

2m+i0+

. (5.26)

The Lippmann-Schwinger equation can be set equal to the asymptotic result in eq. (5.24)

1
1
g
�
R

d2k
(2⇡)2

1

!� k2

2m+i0+

=
2⇡

m

1

log
�
EB
!

�
+ i⇡

. (5.27)

This equation connects the contact interaction used in our theory to the physical bound

state energy in the experimental setup. The bound state energy is connected to the

two-dimensional scattering length as through [213]

EB =
1

2ma2
s

. (5.28)

5.3 Dyson equations

Having dressed the exciton with the cavity, we can now derive the Dyson equations for

the electron and exciton propagators. The first step is to find an approximation for the

self-energy. As the interaction in eq. (5.16) contains three di↵erent fields, the lowest-

order diagram that is fully connected requires two vertices. The �-functional constructed

from two vertices is shown in fig. 5.2a. Because of the self-consistent treatment, the

next contribution to � requires six vertices as seen in fig. 5.2b. Using fig. 5.2a our self-

energy will capture three-body process illustrated by the trion self-energy diagram in

fig. 5.2c [214]. However, the process shown fig. 5.2d also describes a three-body process

but is not generated by self-energy insertions in fig. 5.2a. When the binding energy is large

enough, the electron and the excition can bind together so strongly that the trion becomes

the new ground state, giving rise to a polaron to trion transition [174]. In two-dimensions,

the importance of the corrections from fig. 5.2b is amplified to an extent where the self-

consistent solution, using only fig. 5.2a, gives worse predictions for the phase transition

than the non-self-consistent theory [181]. The reason the self-consistently solution is

worse than the non-self-consistent solution is that the process in fig. 5.2d has been shown,

through diagrammatic Monte Carlo methods [178], to almost exactly cancel against the

process in fig. 5.2c. This cancellation has only been investigated in the impurity limit

where there is no occupation of the exciton, and to our knowledge, it is unknown how

the cancellation of the two processes in fig. 5.2c and fig. 5.2d is a↵ected by finite exciton

occupation. It is clear that when the three-body process becomes important, only using
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a)
� =

b)

c) d)

Figure 5.2: a) The lowest order �-functional. Deriving self-energies from this functional
and substituting all internal propagators with the full propagators constitutes a conserving
theory. b) The next contribution is of significantly higher order. Notice that the crossing
electron lines do not signal an interaction but the lines going over and under each other.
c) The lowest order diagram generated by insertion of self-energies in a) which describes
three-body processes. d) The lowest order diagram of b) that also describes three-body
processes.

the two-vertex �-functional in fig. 5.2a should not be expected to give good quantitative

predictions [186]. For our numerical approach, it is challenging to include the diagrams in

fig. 5.2b because their momentum structure is not a convolution. On top of the involved

momentum and energy structure of the diagrams in fig. 5.2b, the Keldysh structure also

leads to several hundreds of di↵erent configurations as discussed in section 2.7.

Even though the quantitative predictions might not be accurate in the high-binding

energy limit, our method still seems to capture the qualitative features there.

Using the �-functional in fig. 5.2a, the self-energy for particle ↵ 2 {x, e, �} is con-

structed by taking the functional derivative of � with respect to the propagator G↵

⌃↵ =
��

�G↵

. (5.29)

Diagrammatically the functional derivative corresponds to cutting one propagator of type

↵ in fig. 5.2. Notice that the �-functional only describes the topology of the diagrams and

does not include any information about the Keldysh structure. The Keldysh structure is

generated by considering the four di↵erent configurations of the vertices in fig. 5.1. When

the self-energies are created from �, and all internal bare propagators are promoted to

full propagators, then conservation laws obeyed by the action are not broken by the

approximation to the self-energy as discussed in 2.4.2.
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a) b)
�� = (G�,0��G�,0)n =

n

=

Figure 5.3: a) The topology of the single loop diagram that contributes to the trion self-
energy. b) The resulting nth term of the perturbative series, and it is seen that the choice
of self-energy leads to the well-known ladder approximation.

5.3.1 Trion

Our approximation for the full retarded trion propagator is

GR

�(p) =
1

1
g
� ⌃R

�(p)
. (5.30)

The topology of the self-energy is found by cutting the trion propagator in fig. 5.2a. The

self-energy is shown in fig. 5.3a. The corresponding nth term of the series expansion of

the Dyson equation is shown in fig. 5.3b. From the nth term, it is seen that the self-energy

approximation corresponds to the self-consistent ladder approximation, also known as the

self-consistent T-matrix approximation [61].

Taking the Keldysh structure of the vertices in fig. 5.1 into account, the diagrams

contributing to the retarded trion self-energy are shown in fig. 5.4. Following section 2.4.2

the mathematical form of the self-energy is
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i
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X

p0
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e
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x
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(p� p0)
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(p0)

+ GR

e
(p� p0)

�
�GK

x
(p0) + GR

x
(p0)�GA

x
(p0)

�◆
,

(5.31)

where the vacuum contributions have been extracted from the Keldysh propagator ac-

cording to eq. (2.82). The essential property of the self-energy is that it is a convolution

in energy-momentum space, which is a direct consequence of using the contact interaction

and � in fig. 5.2.

As discussed in section 2.7, the causality of the retarded and advanced propagators

can lead to cancellations of some of the diagrams. For the single loop diagrams in ⌃R

�, the

cancellations are particularly simple and found by Fourier transforming back to space-
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�R
�(p) =

GK
e (p ≠ pÕ)

GR
x (pÕ)

+

GR
e (p ≠ pÕ)

GK
x (pÕ)

Figure 5.4: The single loop diagrams that contribute to the retarded trion self-energy.

time. The transformation will be explicitly shown in eq. (5.47), and the result is

1

A

X

p0

G↵(p⌥ p0)G�(p0) =

Z
dt

Z
d2rG↵(x)G�(±x)e�ip·x, (5.32)

where ↵, � 2 R, A. The simple one-loop process comes in two di↵erent variations. One

is the particle-hole process, where one of the internal propagators carries the sum of

the energy. This process is identified in the diagram by the arrows of the two internal

propagators pointing in opposite directions. The particle-hole diagram is only non-zero if

the two propagators have poles in the opposite half-planes (↵ 6= �). The trion self-energy

in fig. 5.3a is not of the particle-hole type but instead called a particle-particle diagram,

meaning that one propagator carries the di↵erence of the energies, and consequently,

the two internal arrows point in the same direction. For the particle-particle diagram,

causality dictates that the internal propagators must have poles in the same half-plane

(↵ = �), which leads to cancellation of two of the vacuum diagrams in ⌃R

� such that it

takes the form

⌃R

�(p) =
i

2A

X

p0

2GR

e
(p� p0)GR

x
(p0) + �GK

e
(p� p0)GR

x
(p0)

+ GR

e
(p� p0)�GK

x
(p0).

(5.33)

All the propagators in this self-energy have to be the full propagators. In general, it

is impossible to find analytical expressions for these, but the known bare parts can be

separated out, which is essential for the renormalization scheme used here. The most

convenient separation is to write the self-energy into four parts

⌃R

�(p) = ⌃R

�,v
(p) + ⌃R

�,v�
(p) + ⌃R

�,x
(p) + ⌃R

�,e
(p). (5.34)
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The first term is the bare vacuum contribution

⌃R

�,v
(p) =

i

A

X

p0

GR

e,0(p� p0)GR

x,0(p
0) (5.35)

Causality can be used to exchange the bare electron propagator with the bare electron

spectral function: Ae,0(p) = i
�
GR

e,0(p)�GA

e,0(p)
�

= 2⇡�
⇣
! � k2

2me

⌘
.

⌃R

�,v
(p) =

i

A

X

p0

�
GR

e,0(p� p0)�GA

e,0(p� p0)
�
GR

x,0(p
0)

=

Z
d!0 d2k0

(2⇡)2

�
⇣
! � !0 � (k�k0)2

2me
+ µe

⌘

!0 � k02

2mx
+ µx + i0+

=

Z
d2k0

(2⇡)2
1

! � (k�k0)2

2me
+ µe � k02

2mx
+ µx + i0+

.

(5.36)

To make this expression more familiar we introduce the quantities m� = me + mx, M =
memx
me+mx

and µ� = µx +µe and the retarded vacuum self-energy for the trion takes the form

⌃R

�,v
(p) =

Z
d2q

(2⇡)2
1

! � k2

2m�
+ µ� � q2

2M + i0+
. (5.37)

The sum of this self-energy and the bare trion propagator is seen to have a form identical

to the single particle scattering problem in eq. (5.27). The bare divergent propagator can

therefore be renormalized by

1/g � ⌃R

�,v
(p) = T�1

0

✓
! � k2

2m�
+ µ�

◆
=

M

2⇡

 
log

 
EB

! � k2

2m�
+ µ�

!
+ i⇡

!
. (5.38)

The full renormalized trion propagator is then given by

GR

�(p) =
1

T�1
0

⇣
! � k2

2m�
+ µ�

⌘
� ⌃R

�,v�
� ⌃R

�,x
� ⌃R

�,e

, (5.39)

where the self-energies dependence on p has been suppressed. The remaining three self-

energies can be read o↵ from eq. (5.33). One term is due to the dressing of the retarded

exciton and electron propagators, which is still a vacuum term

⌃R

�,v�
(p) =

i

A

X

p0

GR

e
(p� p0)GR

x
(p0)�GR

e,0(p� p0)GR

x,0(p
0). (5.40)

On top of the dressed vacuum term, two self-energies arise due to finite densities in either
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�K
�(p) =

GK
e (p ≠ pÕ)

GK
x (pÕ)

+

GR
e (p ≠ pÕ)

GR
x (pÕ)

+

GA
e (p ≠ pÕ)

GA
x (pÕ)

Figure 5.5: The single loop diagrams contributing to the Keldysh trion self-energy.

the exciton or the electrons

⌃R

�,x
(p) =

i

2A

X

p0

GR

e
(p� p0)�GK

x
(p0),

⌃R

�,e
(p) =

i

2A

X

p0

�GK

e
(p� p0)GR

x
(p0).

(5.41)

These three self-energies fully define the retarded self-energy as functional of the full

solution to the exciton and electron problems.

As the system is not in thermal equilibrium, the occupied part of the trion Keldysh

propagator obeys its own equation

�GK

�(p) = |GR

�(p)|2�⌃K

�(p). (5.42)

To compute �⌃K

� one has to subtract the retarded and advanced diagrams in fig. 5.4 from

the full Keldysh self-energy shown in fig. 5.5. Taking out the vacuum contribution from

all the terms gives

�⌃K

�(p) = ⌃K

�(p)� ⌃R

�(p) + ⌃A

�(p) =
i

2A

X

p0

�GK

e
(p� p0)�GK

x
(p0). (5.43)

The self-energy intuitively shows that trions can only be generated when there is a finite

density of excitons and electrons in the system. Together with the retarded propagator,

these equations fully define the trion within the self-consistent non-equilibrium ladder

approximation.
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�R
x (p) =

GK
�(p + pÕ)

GA
e (pÕ)

+

GR
�(p + pÕ)

GK
e (pÕ)

�K
x (p) =

GK
�(p + pÕ)

GK
e (pÕ)

+

GR
�(p + pÕ)

GA
e (pÕ)

+

GA
�(p + pÕ)

GR
e (pÕ)

Figure 5.6: The retarded and Keldysh self-energy for the exciton that arises from scattering
with the electrons.

5.3.2 Excitons and the dilute limit

The Dyson equation for the retarded exciton propagator contains both a contribution

from the photon interaction and the electron scattering

GR

x
(p) =

1
�
GR

x,0(p)
��1 � ⌃R

xc
(p)� ⌃R

x
(p)

, (5.44)

where ⌃R

xc
, from eq. (5.11), leads to the polariton formation and ⌃R

x
gives rise to polarons.

To maintain the conservation laws, the topology of ⌃x is computed by cutting the exciton

line in fig. 5.2a. The resulting retarded self-energy is shown in fig. 5.6. The exciton

self-energy is di↵erent from the trion self-energy because it is of the particle-hole type

and because both the electron and trion are fermions. Due to the closed fermionic loop,

the self-energy acquires a sign-change as discussed in section 2.4.2. Separating out the

vacuum contribution and using the causality conditions from the particle-hole nature of

the diagrams, the retarded exciton self-energy due to electron scattering takes the form

⌃R

x
(p) =

�i

2A

X

p0

GR

�(p0 + p)�GK

e
(p0) + �GK

�(p0 + p)GR

e
(p0). (5.45)

The form of the self-energy tells us that interaction can only modify the exciton by having

a finite density of electrons. This intuition leads to the physical picture of a polaron that

will be discussed in 5.5.
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The Keldysh self-energy for the excitons is intuitive when the vacuum contribution is

separated out. Following similar steps as for the trion, the occupied Keldysh self-energy

is found to be

�⌃K

x
(p) =

�i

2A

X

p’

�GK

�(p0 + p)
�
�GK

e
(p0)� i2Ae(p

0)
�
. (5.46)

The modification of occupation of the exciton due to the electron interactions require

occupation in the trion but not the electron. This is understood as the only scattering

process that can increase the exciton occupation is a trion decaying into an exciton and

electron. This process is also possible even if there is no finite electron occupation, which

explains the term in eq. (5.46) that is proportional to the electron spectral function.

At this point, the trion and exciton are fully defined, and only the electrons remain. Be-

cause the interaction is symmetric with respect to electrons and excitons, the self-energies

for the electrons are equal to the exciton self-energies with the electron propagators re-

placed by exciton propagators. However, the goal is to model systems similar to the

TMD-cavity systems under continuous driving. To this extent, we have attempted to de-

fine the minimal model but still have many parameters to tune. The bare dispersions and

chemical potentials/detunings/losses give us eight parameters, whereas the driving gives

three (frequency/momentum profile and strength). Additionally, there is also the photon-

exciton interaction strength, binding energy for the exciton-electron scattering, and the

temperature. In its current form, the model has fourteen parameters. The bare masses,

cavity loss, exciton lifetime, and interaction parameters are known for the experimental

setups. This leaves six parameters that can be more or less freely tuned. If the system is

strongly driven, the many excitons scattering with the electrons will significantly heat the

electrons. No energy dissipation mechanism has been included for the electrons, meaning

they can only cool down by coupling to excitons that can dissipate energy through the

cavity interaction. Experimentally the TMD monolayer is embedded in a solid-state ma-

terial inside a cryostat, which will act as a heatsink for the electrons. The simplest way to

implement this mechanism is by coupling the electrons to an environment through contact

interactions. This interaction gives rise to an additional self-energy for the electrons. The

challenge is not implementing this mechanism but choosing the appropriate interaction

strength between the environment and the electrons. The electron-environment coupling

strength is currently not known by the experimentalist and is something that will have

a significant impact on the steady-state results. It will have a large impact because the

steady-state obeys a balance between the incoming pump energy and the outgoing energy

through the cavity loss and the cooling of the electrons. The balance will be very sensitive

to the specific choice of the interaction strength between electron and environment. To
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keep the model as minimal as possible, we seek a regime where our results will not be

sensitive to the electron cooling rate. Such a regime exists when the perturbation of the

electrons is negligible. Looking at the self-energies in eqs. (5.45) and (5.46) and exchang-

ing x ! e in the propagators, it is seen that both self-energies vanish when there is no

occupation of the excitons and trions. The trion occupation is linked through eq. (5.43)

to the exciton occupation, so if there are no excitons, then the trion occupation also van-

ishes. In this limit, often called the impurity limit, the electrons will not be perturbed. If

there is a large number of electrons in the system, then a small occupation of the exciton

and trions will not significantly perturb the electrons, and heating of the electrons can be

neglected. This dilute limit is achieved as long as the exciton density is small compared to

the electron density, which clearly indicates how strongly we can drive the system without

considering heating. Within this regime, the only consistent treatment of electrons is to

neglect the self-energies such that the electrons remain in the same thermal state.

Our developed methods can directly be applied beyond the dilute limit (including the

self-consistent treatment of the electrons). However, for the current consideration, this is

only sensible to investigate once the non-equilibrium nature of the dilute limit has been

understood.

5.4 Self-consistent convolution method

The cavity-exciton problem has been solved exactly through the closed-form expression of

the self-energies in 5.11. The hard problem is the self-consistent solution of the exciton-

trion interaction. This section will discuss an e�cient numerical method we developed to

tackle the self-consistent non-equilibrium problem. It is exploiting the fact that all the

self-energies take the form of convolutions in energy and momentum

C(p) =
1

A

X

p0

f(p0)g(p⌥ p0) =
1

A

X

p0

Z
dx dx0 F (x)G(x0)e�ix·p0�ix0·(p⌥p0)

=

Z
dxF (±x)G(x)eix·p = F {F (±x) G (x)} (p) ,

(5.47)

where F {F (x)} (p) =
R

dxeix·pF (x) is the forward Fourier transform from space and time

to momentum and energy. To understand the structure, consider the inverse transform

of the bare retarded electron propagator in eq. (5.1)

GR

e,0(x) =
1

A

X

p

eip·xGR

e,0(p) =

Z
d! d2k

(2⇡)3
eik·r�it!

! + µe � k2

2me
+ i0+

. (5.48)
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One can shift the frequency grid by the dispersion and perform the frequency integral

GR

e,0(x) =

Z
d2k

(2⇡)2
eik·r�i

k2t
2me

+iµet

Z
d!

2⇡

e�i!t

! + i0+
= �i✓ (t)

Z
d2k

(2⇡)2
eik·r�i

k2t
2me

+iµet�0+t,

(5.49)

where the shifted frequency integral is solved by performing the contour integral in the

lower half-plane around the single simple pole. At this point, one of the main challenges

related to doing these calculations out of equilibrium has emerged. Because the calculation

is done in real-time and real frequencies, the momentum integral has a fast oscillating

factor of e�i↵k
2
t. This fast oscillation is extremely di�cult to handle numerically as

the oscillation frequency grows with k2 and therefore requires the grids to be extremely

dense for large momenta. Avoiding this is the main achievement of the imaginary time

approach [215]. By going to imaginary time, the oscillating exponential turns into a

Gaussian, which is ideal due to its fast decay. As the system is not in thermal equilibrium,

we are left with the challenge of the fast oscillating exponential. To make the calculations

easier, we restrict ourselves to isotropic systems and go to polar coordinates

GR

e,0(x) = �i✓ (t)

Z 1

0

dk

(2⇡)2
k

Z 2⇡

0

d� eikr cos��i
k2t
2me

+iµet�0+t

= �i✓ (t)
1X

n�1
in
Z 1

0

dk

(2⇡)2
kJn(kr)e�i

k2t
2me

+iµet�0+t

Z 2⇡

0

d�ein�

= �i✓ (t)

Z 1

0

dk

2⇡
kJ0(kr)e�i

k2t
2me

+iµet�0+t,

(5.50)

where the Jacobi-Anger identity has been used to solve the angular integral [131] and J0(x)

is the zeroth order Bessel function of the first kind. For any isotropic two-dimensional

system, the Fourier transform always takes the form1

F (r) =

Z 1

0

dk

2⇡
kJ0(kr)f(k). (5.51)

This transformation is known as the zeroth order Hankel transformation [155], and it has

the property that the backward transform has the same form as the forward transform.

For the bare propagator, the Hankel transform has a closed form solution [129](6.631.6)

GR

e,0(x) =
�me✓ (t)

2⇡t
ei

r2me
2t +iµet�0+t. (5.52)

The solution for the bare propagator has several important features. First, it is propor-

tional to ✓(t) as any retarded propagator must be and decays on a time scale set by the

1
For a three-dimensional system the only di↵erence is that J0(kr)! 2 sin kr

r .
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inverse lifetime (here 0+). Secondly, at short time scales, the amplitude diverges, and so

does the spatial oscillation frequency. For long-lived functions, it is, therefore, necessary

to have a long time grid that is dense for short times.

The numerical procedure for computing the Fourier transforms must be e�cient be-

cause the self-energies will be calculated repeatedly until all propagators converge. To

achieve convergence, it is crucial to minimize the number of numerical errors introduced

because the errors will accumulate and thereby either spoil the convergence or lead to a

result far from the exact solution. The standard for numerical Fourier transforms is the

highly celebrated Fast Fourier Transform (FFT) algorithm [216]. This algorithm scales

as N log N , with N being the length of the sampling grid. The disadvantage of this al-

gorithm is that the grid length has to be of length 2n with n being a positive integer

and that the grid spacing has to be equidistant. Furthermore, once the grid is chosen in

space/time, then this fully determines the grid in momentum/energy. An equidistant grid

is problematic for several reasons. The bare renormalized trion propagator in eq. (5.38)

decays as 1/ log(!) which requires a long grid in frequency. On the other hand, the

photon-exciton interaction leads to hybridization, which requires a frequency resolution

significantly below 2⌦. To resolve both of these bare features, it is necessary to have a

dense frequency grid at the places where the spectral function has sharp features, and

the grid must extend to large values to ensure the functions have properly decayed. It

is also essential that the functions are properly sampled in (r, t) which, by looking at

eq. (5.52), requires a time grid that is long and must be dense at the origin to sample the

1/t behavior of the bare propagators decently. The FFT requires that the frequency grid

and time grid are related to each other such that �!�t = 2⇡
N

, where N is the number

of grid points and �! (�t) is the grid spacing in frequency (time) and similarly for the

transformation between momentum and space. To use an FFT reliably for our system

would require a vast number of grid points for all grids. For the FFT itself, this is not

detrimental due to its N log N scaling, but the spatial transform cannot be done with an

FFT as it is a Hankel transform. The input function for the Hankel transform depends

not only on momentum but also on time which entangles the spatial and the temporal

transforms. For it to be possible to use long time and frequency grids, it would therefore

be necessary to perform the Hankel transform with a similar scaling as the FFT. Such

algorithms do exist [217, 218] but rely on a logarithmic grid which we know will not be

able to sample the fast oscillations e�i↵k
2
t at large k. As long time grids are needed, the

momentum grid would have to be extremely dense, especially at higher momentum.

Due to these challenges, we will develop a di↵erent strategy for performing the nu-

merical Fourier transformations. The fundamental properties we require of the numer-

ical method are that non-equidistant grids can be used, that the grids are not directly
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constrained by each other, and that the fast oscillation from the bare propagators does

not have to be sampled on the grid. To decouple the di↵erent grids, we will use spline

interpolations to perform the integrals in the transforms. The disadvantage of spline

interpolations is that the transformation cannot scale better than N2 (when both grids

have N points). This disadvantage is outweighed by the spline interpolations allowing

grids with much fewer points to be used. Instead of trying to have a high grid density

everywhere, our approach is trying to estimate the functions as well as possible with a

much smaller number of data points.

The structure of the numerical transformation is inspired by the analytical calculation

for the bare propagator in eq. (5.52), in the sense that we first extract the dominant

bare contribution by shifting the frequency grid. Afterward, the backward Fourier trans-

form from energy to time is performed. The last step is the Hankel transform from

momentum to position, which is done such that the bare fast oscillations are included

semi-analytically.

5.4.1 Spline interpolation and the temporal Fourier transform

The foundation of the numerical transforms is the spline interpolation. The conceptual

idea is to construct a continuous representation of a function, when only its values f(⌫i) =

fi on a grid with N nodes defined by ⌫i are known. The spline interpolation is constructed

by a set of N � 1 piecewise polynomials with the spline on the jth interval being given by

Sj(⌫) =
MX

l=0

al

j
(⌫ � ⌫j)l , with ⌫j  ⌫ < ⌫j+1. (5.53)

The highest order, M , of polynomial possible on each interval determines the order of the

spline. In appendix F, it is shown that all the spline coe�cients can be written as matrix

multiplication with the data points

al

j
= Al

j,n
fn ! ~al = Al ~f, (5.54)

where the arrow indicates a vector and a bold letter represents a matrix. The coe�cients

al

j
are defined by requiring continuity conditions between adjacent intervals. The first

condition is that the spline evaluated at every node gives the corresponding function

value

Sj(⌫j) = f(⌫j)! a0
j

= f(⌫j). (5.55)
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To determine the remaining M � 1 coe�cients one requires that the M � 1 derivatives

are continuous
dk

d⌫k
Sj(⌫)|⌫=⌫j+1 =

dk

d⌫k
Sj+1(⌫)|⌫=⌫j+1 . (5.56)

The kth derivative of eq. (5.53) is straightforwardly calculated as

dk

d⌫k
Sj(⌫) =

MX

l=k

al

j

l!

(l � k)!
(⌫ � ⌫j)l�k. (5.57)

Inserting this into eq. (5.56) one arrives at the spline continuity conditions

�ak

j
=

MX

l=k+1

al

j

 
l

k

!
�⌫ l�k

j
, (5.58)

where

 
l

k

!
= l!

k!(l�k)! is the binomial coe�cient and the nodal di↵erence operator has been

defined as �•j = •j+1�•j. To determine coe�cients that satisfy the continuity conditions,

one can isolate the second highest-order coe�cients and then solve the resulting linear

system. The highest order coe�cients are directly given from setting k = M � 1 in

eq. (5.58)

�aM�1
j

= aM

j
M�⌫j ! aM

j
=

�aM�1
j

M�⌫j
. (5.59)

Rewriting the remaining M � 2 continuity equations for the M � 1 coe�cients can be

done systematically for arbitrary M , but it generally has to be done by hand. We will

use the cubic (M = 3) and the quintic splines (M = 5) for our calculations. The matrix

forms of the matrices Al are derived in appendix F.

With an e�cient way to compute the spline coe�cients, one can compute the Fourier

transform between time and frequency

F (t) =

Z 1

�1

d!

2⇡
exp(�i!t)f(!). (5.60)

We consider functions with finite support and define the two end values where the function

value becomes negligible as !1 and !N . This interval can be split into N � 1 pieces and

the spline interpolation in eq. (5.53) can be used to represent the function [219,220]

F (t) =
NX

j=1

MX

l=0

al

j

Z
!j+1

!j

exp(�i!t)(! � !j)
l. (5.61)

The piecewise integral has a closed form solution, and using the spline continuity con-
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ditions, the sum over the spline order can be collapsed to only the largest coe�cient.

The calculation requires some care, and the interested reader is referred to [220] for the

details. Under the assumption that the function vanishes at the boundaries, the Fourier

transform can be written as

F (t) =
NX

j=1

aM

j
J (t) (Ej(t)� Ej+1(t)) (5.62)

with

J (t) = (�i)M+1 M !

tM+1
,

Ej(t) = e�i⌫jt �
MX

k=0

(�i⌫jt)
k

k!

(5.63)

Notice that the divergence at J (0) is exactly cancelled by Ej(0)�Ej+1(0) = 0 such that

the Fourier transform is well defined for all real values of t and ⌫i.

The temporal Fourier transform evaluated on the grid tn can be found using

Fn =
X

j

En,jfj, (5.64)

where the matrix transformation is defined as

En,j =
NX

k=1

J (tn) (Ek(tn)� Ek+1(tn)) AM

k,j
. (5.65)

It is seen that E only depends on the grid points, meaning that it only has to be computed

once the grids are defined or if they are changed. The spline Fourier transform has no

requirement on the grids having the same number of points nor on them being equidistant.

Because the transformation is implemented as a matrix-vector multiplication, it scales as

NtN!, with N↵ being the number of grid points in grid ↵.

All the functions considered obey the causal structure of the propagators in eq. (2.39).

This means that any advanced propagator is the conjugate of the retarded propagator

GA(k,!) = ḠR(k,!). (5.66)

Additionally, the negative time propagators can be mapped to positive time

GA(k,�t) = ḠR(k, t). (5.67)
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Similarly, the anti-Hermitain nature of the Keldysh propagators allows one to write

�GK(k,�t) = ��ḠK(k, t), (5.68)

which makes it possible to only consider a grid with t � 0 and only retarded and Keldysh

propagators.

A typical retarded propagator has the form

GR(!) =
! � E � i�

(! � E)2 + �2
, (5.69)

which shows that the imaginary part decays as !�2 while the real part only decays as

!�1. The realization makes it possible to improve the Fourier transform from frequency

to time by using the Kramers-Kronig relations from eq. (2.64)

GR(t > 0) =

Z
d!

2⇡
e�i!tGR(!) =

Z
d!

2⇡
e�i!t

�
i Im GR(!) + Re GR(!)

�

= iF�1
�
Im GR(!)

 
� F�1

⇢
P
Z

d!0

⇡

Im GR(!0)

! � !0

�

= i2F�1
�
Im GR(!)

 
,

(5.70)

where the relationship between the Kramers-Kronig relations and the Fourier transform

from appendix B has been used.

5.4.2 Hankel transform

To deal with the fast oscillations, we recall that they originate from bare dispersions. The

function that has to be transformed is therefore well described as

f(k,!) = fs(k,! + ��(k)), (5.71)

where ��(k) = � k
2

2m�
+µ�. By shifting the ! grid, �� enters only as a phase. The Fourier

transformation from energy to time is then written as

f(k, t) =

Z
d!

2⇡
e�i!tfs(k,! + ��(k)) = ei��(k)t

Z
d!0

2⇡
e�i!

0
tfs(k,!0) = ei��(k)tfs(k, t),

(5.72)

where !0 is the shifted grid. Having chosen the appropriate mass and chemical potential

in ��(k), fs(k, t) will be a slowly oscillating function. The resulting Hankel transform
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that has to be performed takes the form

F (r, t) = eiµ�t

Z
dk

2⇡
kJ0(kr)e�i↵(t)k2fs(k, t) = eiµ�tH�1

↵
{fs(k, t)} (5.73)

where ↵ for the backward transform is

↵(t) =
t

2m�

. (5.74)

If the forward transformation, to momentum from position, is performed then the trans-

formation has the same form with the factor of 2⇡ removed, k $ r and ↵(t) replaced

by

↵r(t) = �m�

2t
. (5.75)

The form of the fast oscillation in the forward transformation follows from eq. (5.52). As

the forward and backward transformations have the same form, the same method can be

used to do the transformation.

To perform the backward transformation, space, time, and momentum are discretized

H�1
↵

{fs} (ri, tj) = H↵;i,j =

Z
kN

0

dk

2⇡
k J0(kri)e

�i↵jk
2
fs(k, tj)

=
N�1X

n=0

Z
kn+1

kn

dk

2⇡
k J0(kri)e

�i↵jk
2
fs(k, tj).

(5.76)

As fs is a slowly changing function it can be interpolated using a spline: kfs(k, tj) =
P

M

l=0 al

n,j
(k � kn)l with kn  k < kn+1. The Hankel transform takes the form

H↵;i,j =
N�1X

n=0

MX

l=0

al

n,j

Z
kn+1

kn

dk

2⇡
J0(kri)e

i↵jk
2
(k � kn)

l =
N�1X

n=0

MX

l=0

al

n,j
W l

i,j,n
, (5.77)

where

W l

i,j,n
=

Z
kn+1

kn

dk

2⇡
J0(kri)e

i↵jk
2
(k � kn)

l. (5.78)

W depends on three grids and the order of the interpolation, and it is, therefore, a huge

tensor object, making direct computation ine�cient or even impossible. To solve this

issue, W must be factorized. As the fast oscillation must be treated exactly, the best

option is to factorize the Bessel functions. The Bessel functions satisfy the recurrence

relation [221, 10.6.2]

J(1)
n

(z) = �Jn+1(z) +
n

z
Jn(z), (5.79)

where the exponent in parenthesis denotes the first derivative with respect to the argu-



Self-consistent convolution method 157

ment. Using the derivates, the naive factorization is a Taylor expansion around each node

kn

J0(kri) ⇡
P�1X

p=0

J(p)
0 (x)|x=knrir

p

i

(k � kn)
p

p!
, with kn  k  kn+1. (5.80)

The Taylor expansion is a poor choice because it does not guarantee that the resulting

integrand is continuous. For it to be continuous, it would require that

J0(knri) =
P�1X

p=0

J(p)
0 (x)|x=kn+1ri

rp
i
(kn+1 � kn)

p

p!
(5.81)

should be true for all grid choices, which is not the case for finite P . To guarantee the

continuity of the expansion, one can instead use a two-point Hermite interpolation [222].

The Hermite interpolation has the property that it not only gives the correct function

values at the given nodes but also that all the P � 1 derivatives are continuous. For K

nodes and P �1 derivatives at each node, this gives rise to a polynomial of order KP �1.

By choosing to do the Hermite interpolation between the two neighboring points kn and

kn+1, it is guaranteed that the P � 1 derivatives and the values are correct at all nodes,

with the lowest order of the polynomial. As long as �kn = kn+1 � kn < 1, then going to

higher order in P is guaranteed to decrease the error as the errors are given by [222]

J0(k)� h(k) =
J(2)
0 (a)

2
(k � kn)

P (k � kn+1)
P

=
J2(a)� J0(a)

4
(k � kn)

P (k � kn+1)
P , with kn  k  kn+1,

(5.82)

where h(k) is the Hermite interpolation. Robustness is essential to achieve convergence of

the self-consistent iterations, so we use a high interpolation order P = 13. The coe�cients

of the 2P � 1 = 25 degree polynomial are found by computing the generalized divided

di↵erences as derived in appendix G.1 which gives

J0(kri) =
2P�1X

p=0

bp
i,n

(k � kn)
p, with kn  k  kn+1. (5.83)

With this approximation for the Bessel function, the tensor W is given by

W l

i,j,n
=

2P�1X

p=0

bp
i,n

Z
kn+1

kn

dk

2⇡
ei↵jk

2
(k � kn)

l+p =
2P�1X

p=0

bp
i,n

I l+p

n,j
. (5.84)

With this method, W has successfully been decomposed into two matrices at the price of
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the additional sum over p. The remaining element is the integrals in I

Ip

n,j
=

Z
kn+1

kn

ei↵jk
2
(k � kn)

p dk

2⇡

= ei↵jk
2
n

Z
kn+1�kn

0

ei↵jk
2+2i↵jknkkp

dk

2⇡

= ei↵jk
2
n
@p

@⌘p

Z
kn+1�kn

0

ei↵jk
2+⌘kdk

2⇡

����
⌘=2i↵jkn

.

(5.85)

This last integral can be solved exactly2

Z
kn+1�kn

0

ei↵jk
2+⌘kdk

2⇡
=

p
i⇡

8⇡↵j

ei⌘
2
/(4↵j)

 
erf

 s
i

↵j

⌘

2

!
� erf

 s
i

↵j

2i↵j�kn + ⌘

2

!!
,

(5.86)

where erf is the error function [223]. Using this integral one can e�ciently compute Ip

n,j
,

which is shown in appendix G.2. As the integral is solved exactly, we are not relying on

a su�cient sampling of the fast oscillation, and the full Hankel transform can be written

as

H↵;i,j =
Nk�1X

n,m=0

2P�1X

p=0

MX

l=0

bp
i,n

Ip+l

n,j
Al

n,m
f(km, tj) =

PX

p=0

MX

l=0

✓
Bp �

⇣
Ip+l �

�
Al � f

� ⌘◆
,

(5.87)

where � denotes matrix contraction as in the previous chapters, and � denotes the

Hadamard (element-wise) product.

The complexity of the Hadamard product is given by the number of elements in the ar-

rays and is, therefore, O(NkNt). The complexity of the first matrix-matrix multiplication

is O(N2
k
Nt). While the last matrix-matrix multiplication is O(NrNkNt). The matrix-

matrix multiplication in the spline Fourier transforms scales as O(NtN!Nk). Considering

the complexity, one would conclude that they are equally fast. However, the Fourier

transform has no additional overhead, while the Hankel transform has an overhead of

around 2P � 1 + M , which is ⇠ 30. Because of this overhead, the Hankel transform will

be around an order of magnitude slower than the Fourier transform.

Constructing the arrays B and I is described in appendix G. Building these arrays is

time-consuming and takes around 30 minutes for grids with a length of N ⇠ 500. B and

I depend on the grids, me and mx, which means that if the exciton and electron masses

and time, space, and momentum grids are unchanged during the calculation, then the

arrays only have to be computed once for each choice of grids and masses.

2
For example Using Mathematica
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5.4.3 Structure of a self-energy computation

The ! grid has to be long to avoid introducing errors in the Fourier transform due to

finite boundary terms. To capture narrow features, each type of propagator is shifted by

the dispersion and the chemical potential. The sharp features are then close to ! = 0 on

the shifted grids, meaning that the ! grid only has to be dense around ! = 0 and can

then be logarithmically spaced away from the center. By shifting the frequency grids,

the fast oscillation naturally emerges in transforms. To illustrate how the numerical

transforms are used, consider the vacuum contribution to the retarded trion self-energy

in eq. (5.40). In the dilute limit, the electron propagator is the bare propagator, which

was transformed in eq. (5.52). The first step is then to find the space-time representation

of �GR

x
(k,!) = GR

x
(k,!)�GR

x,0(k,!). It is sampled on the shifted grid with �x = � k
2

2mx
,

and one can immediately do the backward transformation to time

�GR

x
(k, t) = F�1

�
�GR

x
(k,!)

 
(k, t). (5.88)

�GR

x
(k, t) is then the slowly oscillating function which must be multiplied with the fast

oscillation exp (�ik2t/2mx) to get the full time-dependence. Using the modified Hankel

transform, the real-space representation is

�GR

x
(r, t) = H�1

x

�
�GR

x
(k, t)

 
(r, t). (5.89)

The self-energy is now a simple product

⌃R

�,�v
(r, t) = iGR

e,0(r, t)�G
R

x
(r, t). (5.90)

To transform the self-energy back to momentum, we are precomputing four di↵erent

transformations defined by eq. (5.75) with the possible options

↵r(t) =

⇢
mx

2t
,

m2

2t
,

me + mx

2t
, 0

�
. (5.91)

For the vacuum case considered here the slowest oscillating function is found when ↵r(t) =

(me + mx) /2t = m�/2t, and the oscillation due to the electron chemical potential is

removed. Because both constituents of the self-energy are retarded propagators, the

optimal phase will generally be the one that removes oscillation due to the bare dispersion.

When the self-energy is not only made up of retarded propagators, the optimal phase

to remove the fast oscillation is less obvious. The ideal phase is less evident because the

Keldysh propagators are connected to the occupation and vanish for high momentum.

In practice, we consider each self-energy term independently and check which of the four
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options removes the most oscillations in real space. As the oscillation is a generic feature

of that specific self-energy, the optimal phase is mainly independent of parameters and

interactions. Therefore, the optimal phases only have to be determined when implement-

ing the algorithm. Having found the optimal phase for the self-energy, its representation

in momentum and time is

⌃R

�,�v
(k, t) = eiµetH�

⇢
e�i

r2m�
2t �iµet⌃R

�,�v
(r, t)

�
, (5.92)

where the oscillation inside the transform cancels the one in ⌃R

�,�v
(r, t), such that only

the slowly oscillating function is passed to the modified Hankel transform. The temporal

oscillation from the chemical potential that was removed has to be multiplied back by

hand, while the fast oscillation due to r2 is taken care of by the Hankel transform.

Adding and removing the di↵erent phases has the purpose of reducing errors in our

transforms. The slower oscillating the sampled functions are, the fewer errors will be

introduced due to the spline interpolation, thus leading to more accurate transformations.

The last step is the forward Fourier transform to frequency. As we work on di↵erent

shifted grids in frequency, we must shift the self-energies to the same grid as the other

terms in the Dyson equation. Shifting to the correct grid can be done without significant

overhead by multiplying with a phase before Fourier transforming

f(! � k2 + µ) =

Z
dtei!t

⇣
e�ik

2
t+iµtf(t)

⌘
. (5.93)

Shifting the grid can lead to sub-optimal accuracy if e�ik
2
t+iµtf(t) is not optimally sampled

on the time grid. This is generally the case if the self-energy di↵ers significantly from the

bare dispersion. To avoid this loss of accuracy, an alternative approach would be to

shift the self-energy to the optimal grid and do the Fourier transform. Having found a

good representation in frequency, one could interpolate the self-energy on this grid and

evaluate it on the dispersion-shifted grid. Such a procedure comes with high overhead

in computation time because the self-energies can significantly change throughout the

iterations, which requires one to interpolate between di↵erent grids at each iteration.

Instead, we choose a time grid that is su�cient to keep these errors small.

For the trion, we rely on the bare dispersion of the bound state. Fourier transforming

and shifting to the proper grid, the self-energy takes the form

⌃R

�,�v
(k,!) = F

⇢
e
�i

k2

2m�
t+i✏�t

⌃R

�,�v
(k, t)

�
(k,!), (5.94)

where ✏� is a shift such that the trion propagator is most ideally sampled on the frequency
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grid. By repeating this procedure for all the self-energies and finding the optimal phases,

all the self-energies can be computed. Having computed all self-energies, all the propa-

gators can be computed. This process is then iterated until the propagators no longer

change on the level of our numerical precision.

5.4.4 Subtraction schemes

If our transforms were exact, then this would be everything needed for the calculation.

However, the physical system we consider has various features that give rise to errors

in the transformations. To minimize these error, a variety of di↵erent numerical tricks

have to be used. We denote these tricks as subtraction schemes. This section will briefly

discuss the main ideas behind the most essential subtraction schemes. We will start with

two generic features and then consider more specific cases afterward.

One important technical detail is that even though the momentum, time, and position

grids are only computed at the initialization, the frequency grid can be recomputed at

a low cost. Depending on the features seen in the spectral functions and �GKs, during

the iterations, one can then optimize the grid by adding points on the fly to ensure that

all sharp features are resolved properly on the frequency grid. This is possible because

we use the spline Fourier transform that does not link the ! and t grids, unlike a normal

DFT/FFT.

Another technical detail is that using Fourier transforms makes it challenging to go

to zero temperature for the electrons. This is because, at zero temperature, the Fermi

surface is a Heaviside function. Fourier transforming a Heaviside function numerically

is di�cult as it is sensitive to truncation at high energy. As soon as the temperature

increases, the Fermi surface smoothens, and the numerical Fourier transform becomes

much better behaved. This does not pose a significant drawback as long as we can

consider temperatures much smaller than the other energy scales in the system.

The remaining tricks described in this section are features of a di↵erent physical origin

and will therefore be discussed separately.

Artificial linewidths

In the dilute limit, the electron spectral function is proportional to �(!� k2 + µe), which

is impossible to sample reliably on a grid. It is, therefore, necessary to give it some finite

linewidth, which should be as small as possible. Apart from being able to sample the

spectral function, our method also has one more requirement, namely that everything

must vanish at the end of the grids. The ideal artificial linewidth is one that broadens

the spectral function enough that it can be well interpolated near the pole but still has
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the spectral function decay quickly away from the pole. The simplest choice to broaden

the pole is to add a constant imaginary part

GR

e,Markov
(!) =

1

! + i�e
, (5.95)

where we are working on the shifted grid and therefore have no explicit momentum de-

pendence. Adding a small constant imaginary part resembles coupling weakly to an

environment with a flat spectral density as discussed in section 2.8. A constant imaginary

part e↵ectively gives rise to a Lorentzian broadening of the spectral function

Ae,Markov(!) =
2�e

!2 + �2
. (5.96)

However, for large !, this only decays as !�2. To improve upon this, we instead broaden

the linewidth in a non-Markovian fashion and write the electron propagator as

GR

e,nM
(!) =

1

! � �e

↵!� 1
!+I

. (5.97)

Using such a broadening is a good choice in the limit of ↵� 1� �e because the spectral

function takes the form

Ae,nM(!) =
2�

�2 + !2 + ↵2 (!4 + !6)
. (5.98)

Close to the dispersion (! ⌧ 1) this has the same Lorentzian form as the Markovian

approximation in eq. (5.96) but for ! > 1 this instead decays as !�6.

The excitons are coupled to the cavity, which gives rise to broadening, and they also

have a finite but long lifetime in the experiments. Because the e↵ective photon mass

is much smaller than the exciton mass, the cavity broadening is only prominent at low

momentum. If the exciton develops an extremely long lifetime due to the driving, then the

functions do not decay before the truncation of our time grid which leads to a dramatic

loss of accuracy when transforming the self-energy to ! space. To optimize for the smallest

possible linewidth, we only add an artificial broadening to the self-energy parts below our

resolution threshold. This finite exciton lifetime carries over into the bare trion, which

guarantees that we do not move past the branch cut of the logarithm for negative energies.

Analytical subtractions

The best case scenario is when a challenging step for the numerical transforms can be

done analytically. This is the case for the bare electron and exciton propagators, as they
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have an infinite lifetime. To separate out the bare parts of the propagators, the Dyson

equation can be rewritten

G =
1

G�1 � ⌃
= G0

1

1�G0⌃

= G0 + G0

X

n=1

(G0⌃)n = G0 + G2
0⌃

X

n=0

(G0⌃)n

= G0 +
G2

0⌃

1�G0⌃
= G0 +

G0⌃

G�1
0 � ⌃

= G0 + �G.

(5.99)

Applying this to the exciton propagator, the correction takes the form

�GR

x
(p) =

GR

x,0(p)
�
⌃R

x
(p) + ⌃R

xc
(p)

�
�
GR

x,0(p)
��1 � ⌃R

x
(p)� ⌃R

xc
(p)

. (5.100)

The bare exciton propagator can then be analytically transformed to x following the same

calculation as the electron propagator in eq. (5.52) and only �GR

x
(p) has to transformed

numerically.

Besides directly taking care of the bare exciton propagator the rewriting in eq. (5.100)

is also useful because ⌃R

xc
(p) is known analytically from eqs. (5.7) and (5.11), which allows

us to subtract another closed-form term

�GR

x
(p) =

�
GR

x,0(p) + �GR

xc
(p)

�
⌃R

x
(p)

�
G�1

x,0(p)
��1 � ⌃R

x
(p)� ⌃R

xc
(p)

+ �GR

x,c
(p), (5.101)

with

�GR

x,c
(p) =

⌃R

xc
(p)GR

x,0(p)
�
GR

x,0(p)
��1 � ⌃R

xc
(p)

=
⌦2GR

x,0(p)
�
GR

x,0(p)
��1 �

GR

c,0(p)
��1 � ⌦2

=
⌦2

⇣
! � k2

2mx
+ i0+

⌘⇣
! + �c � k2

2mc
+ i�

⌘
� ⌦2

⇣
! � k2

2mx
+ i0+

⌘ ,
(5.102)

where the bare cavity propagator is given in eq. (5.7). Shifting this onto the bare dispersion

of the exciton and finding the roots of the cubic denominator (�i), this correction can be

analytically transformed to the time domain

�GR

x,c
(k, t) = ⌦2e

�ik2t
2mx

✓
e�i�1t

(�1 � �2) (�1 � �3)
+

e�i�2t

(�2 � �1) (�2 � �3)
+

e�i�3t

(�3 � �2) (�3 � �1)

◆
,

(5.103)

which can be numerically transformed with the Hankel transform using ↵ = x.

The non-Markovian bare electron propagator also has a known analytical form given

by eq. (5.97), and this propagator can be Fourier transformed to time in a similar manner.
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For the GR

e,nM
, the slow oscillation is independent of momentum, and the Hankel transform

can be done analytically as in 5.52. The space-time representation of the non-Markovian

electrons is then given as

GR

e,nM
(r, t) = �me

2⇡
ei

r2me
2t +iµetGR

e,nM
(t). (5.104)

It is worth noting that using non-Markovian electrons means that, even in the dilute limit,

one can no longer take out of a common factor of GR

e,0 in eq. (5.40).

Log continuum of trion

As the bare trion propagator inherits a minimum broadening from the exciton, the pole

at �EB can be integrated numerically. However, the bare trion propagator poses another

challenge: the continuum’s spectral function decays as a 1/ log! for large !. This requires

extremely long frequency grids, compromising the quality of the transforms with more

well-behaved numerical self-energies. To avoid using such long grids, the Fourier transform

to time of the bare trion propagator is carried out separately. Using the causality structure

discussed in eq. (5.70), we do the integral around the pole separately and therefore split

the integration into three parts

GR

�,0(k, t) = 2iei��(k)t

✓Z 1

�Eb+c

d!

2⇡
Im GR

�,0(!)e�i!t +

Z �Eb+c

�Eb�c

d!

2⇡
Im GR

�,0(!)e�i!t

+

Z �Eb�c

�1

d!

2⇡
Im GR

�,0(!)e�i!t

◆
,

(5.105)

with c > 0 being chosen such that the peak is properly captured by the integration routine.

To evaluate the two integrals that contain the tails, we take advantage of the fact that

the derivative of the propagator decays faster than the propagator itself and therefore

integrate by parts

Z 1

�Eb+c

d!

2⇡
Im GR

�,0(!)e�i!t =


Im GR

�,0(!)
i

t
e�i!t

�1

�Eb+c

�
Z 1

�Eb+c

d!

2⇡
Im

✓
d

d!
GR

�,0(!)

◆
i

t
e�i!t.

(5.106)
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As the propagator goes to zero at ! =1, the upper limit of the boundary term vanishes.

This can be repeated N times until the integral is accurate enough

Z 1

�Eb+c

d!

2⇡
Im GR

�,0(!)e�i!t =
NX

n=0

Im

✓
dn

d!n
GR

�,0(!)

◆
e�i!t

(it)n+1

�����
!=�Eb�c

+

Z 1

�Eb+c

d!

2⇡
Im

✓
d(N+1)

d!(N+1)
GR

�,0(!)

◆
e�i!t

(it)N+1
.

(5.107)

With this result, it is possible to compute the transformation of the bare trion with high

accuracy without a↵ecting the performance of the rest of the calculation.

Optimized sampling of multiple poles

A characteristic feature of all the systems considered in this thesis is that interactions

give rise to multiple poles in the propagator. The photon coupling gives rise to the upper

and lower polariton, while the electron interaction leads to the formation of attractive

and repulsive polaron branches. As these poles can be far separated in energy, it can

be challenging to sample both properly on the same grid. To overcome this issue, the

propagator can be split into several pieces. In the case of two well-separated branches,

the ”lower” and ”upper” propagators are defined through

GR(k,!) =

✓
1�✓(!�!0)

◆
GR(k,!)+✓(!�!0)G

R(k,!) = GR

L
(k,!)+GR

U
(k,!), (5.108)

where !0 is a suitable point between the two branches, which is updated through the

iterations. For clarity, the split has been written using a Heaviside function, but as

discussed at the start of the section, this leads to artifacts in the Fourier transforms.

To avoid this, the Heaviside is replaced by a Fermi function at a temperature where the

broadening of the distribution is small compared to !0.

Once the two new propagators have been defined, they can be shifted such that they

are both optimally sampled on the frequency grid.

5.5 Results

Having described the main ideas of our numerical method, we now show some first results.

We will start by considering the polaron without the cavity, which has been thoroughly in-

vestigated in the literature. Having seen that our results are in good qualitative agreement

with previous results, the cavity coupling will then be included such that the polaron-

polaritons are formed. Finally, driving of the system through the cavity will be considered.
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Figure 5.7: The attractive contact interactions between the exciton (red) and the Fermi
sea of electrons (blue) give rise to new states depending on the binding energy. At small
binding energies, the Fermi sea is almost unperturbed by the exciton as sketched in a).
When the binding energy is increased, the attractive interaction makes the electrons clos-
est to the exciton move towards it, and the exciton ends up being dressed by a cloud of
fermions, as shown in b). This configuration is known as the attractive polaron. At these
intermediate binding energies, the system has an excited state known as the repulsive po-
laron sketched in c). In this excited state, the electrons are pushed away from the exciton,
making it metastable. Apart from the attractive and repulsive polarons, the exciton can
also form a bound state with just a single electron which is the trion state illustrated in
d).

For all calculations, a finite gate voltage will be assumed such that all parameters can be

expressed in units of the Fermi energy ✏F .

5.5.1 Polarons

Without driving and at low temperatures, the self-energies that depend on �GK

x
vanish,

and the system enters the impurity limit. In this limit, the system can have di↵erent

states depending on the magnitude of the binding energy compared to the Fermi energy.

The electrons weakly interact with the exciton for small binding energy, so the system’s

state is close to the non-interacting system as sketched fig. 5.7a. As the binding energy is

increased, the attractive interactions make it energetically favorable for the electrons to

move closer to the exciton, which leads to a dressing of the exciton by a cloud of electrons.

This state is known as the attractive polaron (AP) and is shown in fig. 5.7b. While the

AP is energetically favorable, the system can have an excited state known as the repulsive

polaron (RP), shown in fig. 5.7c, that can be metastable. The RP is physically understood

as the exciton repelling the nearby electrons, which is the reason why it is energetically

unfavorable. As the binding energy is increased, the dressing cloud of APs gets denser

until, at some point, the energetically preferable state is when the exciton forms a bound

state with a single electron, namely the trion state that is sketched in fig. 5.7d. The trion

only becomes energetically favorable at a very large binding energy. Below this critical

binding energy, the trion state is an excited state of the system.

These are the di↵erent states we describe in our theory, but it is worth pointing out
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Figure 5.8: a) Spectral function of the exciton at zero momentum for di↵erent binding
energies. The value of the binding energy is determined by the color coding, such that a
brighter color is equivalent to a larger binding energy. The corresponding value of ⌘ can be
read o↵ by the dashed vertical lines in b). In b), the quasiparticle weight of the attractive
polaron is shown as a function ⌘.

that the system can have more bound states. These become energetically favorable if the

exciton/impurity mass is significantly larger than the electrons in the gas. The trimer state

consisting of one impurity and two electrons becomes favorable when mx/me > 3.33 [224]

and the tetramer, consisting of one impurity and three electrons, becomes the ground state

when the ratio is greater than five [225]. The mass ratio is two for the TMD monolayer

setup, and these additional bound states can therefore be neglected.

To see that our calculations qualitatively capture the known physical features, we first

consider the exciton spectral function at k = 0 and at a low temperature of � = 200✏F in

fig. 5.8a. Here the exciton spectral function is plotted for di↵erent values of the binding

energy indicated by the colored dashed vertical lines in fig. 5.8ab. For small binding

energy, Ax contains a single sharp peak close to ! = 0. This peak is the AP and shows

that the AP emerges from the non-interaction bare state. As EB increases, the AP peak

is pushed towards lower energy, and a broad continuum feature emerges around ! ⇡ 1.

It is from this continuum that the repulsive branch emerges.

In the standard Fermi-polaron field, it is more common to work with the scattering

length instead of the binding energy. For a two-dimensional system, one can then define

the logarithm of the product of the scattering length and Fermi momentum (kF )

⌘ = log (kFas) = log

✓
kFp

2EB✏FM

◆
= �

log
⇣

EBmx

me+mx

⌘

2
, (5.109)

where the binding energy’s relation to the scattering length through eq. (5.28) was used,

and EB was written in units of ✏F . This quantity is insightful because it is inversely related
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Figure 5.9: The energy and linewidth of the attractive polaron as a function of ⌘. In a)
the dark line is the energy of the AP and the dashed line is the energy of the bound state
in the trion. The inset shows the logarithm of the absolute di↵erence � = |!AP � !�|/✏F .
The dark line in the inset is the logarithm of the di↵erence between the solid and dashed
line in the main plot. Here it is seen that at around ⌘ = �1.25 the trion becomes more
energetically favorable than AP, which is seen by the change in sign of the slope. The
bright line in the inset is the same di↵erence but for a mass-balanced system. Here no
crossing is observed. In b), the linewidth of the AP is shown. The linewidth should be
compared to the artificial broadening used for the bare exciton, which is 10�3✏F .

to scattering amplitude in the presence of a Fermi sea, and the system is strongly interact-

ing when |⌘| is small. Conversely, when |⌘|� 1, one can treat the system perturbatively

in powers of 1/⌘ [226].

In 5.8a, it is observed that the linewidth of the RP only becomes narrow for large

binding energy (⌘ < 0) and is, therefore, a bad quasiparticle for ⌘ ⇡ 0. While the

linewidth decreases, it is also seen that the peak position of the RP moves towards 0.

Both of these features are similar to experiments [179] and the non-self-consistent ladder

approximation [185] for equal masses.

Oppositely to the RP, the attractive polaron is narrow for all ⌘, and one can reliably

extract meaningful quasiparticle parameters. The quasiparticle weight as a function of ⌘

is shown in fig. 5.8b, and it is seen that for small binding energy, Zap is close to 1. This

is as expected as the AP emerges from the bare exciton such that limEB!0 Zap = 1. As

the interactions increase, we observe a decrease of Zap, understood as the quasiparticle

weight being transferred into the repulsive continuum. The same behavior is observed in

three dimensions [227]. While the AP is losing quasiparticle weight, its energy quickly

decreases, as shown in fig. 5.9a. Just like the AP is decreasing in energy, so is the trion.

This is illustrated by the dashed line in fig. 5.9a. For large binding energy, we expect

the trion to become energetically favorable, signaling the polaron to trion transition. We

observe this in the inset of fig. 5.9a. Here the logarithm of the di↵erence between the
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energies of the AP and the trion is plotted, and a change of sign of the slope for large

binding energies means that we predict the trion to be energetically favorable. As we are

plotting a function of the absolute value of the di↵erence !AP�!�, a node in the di↵erence

translates into a sign change of the slope in the absolute value. The intersection angle of

the crossing is extremely shallow in two dimensions and is also at large binding energies.

Furthermore, the phase transition is only a true phase transition for zero temperature.

We are considering a finite but low temperature and include a finite width to the exciton.

The combination of these two e↵ects is that the linewidth of the AP, shown in fig. 5.9b, is

finite even when the AP is the system’s ground state. We also observe a slight broadening

of the AP as the binding energy is increased, which we attribute to a combination of

using finite temperature and, at large binding energy, not capturing three-body processes

of the form fig. 5.2d. The three-body processes describe the broadening of the AP and

the trion, so we cannot quantitatively rely on our method when the missing processes

in fig. 5.2d become important. That our calculations are struggling in the large binding

energy regime is made more evident by considering the mass-balanced system (mx = me).

The bright line in the inset of fig. 5.9a is the logarithm of the di↵erence between the

AP and trion energy for the mass balanced case. Here we observe no transition as the

intersection angle is even shallower for this mass ratio. However from both FRG [186]

and Diag-MC [187, 228] the transition is found to be ⌘ = �1.0 ± 0.2. The polaron to

trion transition is challenging in two dimensions because the shallow intersection angle

makes the predictions very sensitive to errors. For our method, it is further problematic

as the transition also happens in the parameter region where our current implementation

is the most susceptible to errors. It is susceptible to errors because the results have a

strong dependence on the artificial linewidth, as it sets the scale for the linewidth of the

interacting system as seen in fig. 5.9b. Here we see that the AP linewidth for small binding

energy (large ⌘) starts at 10�3✏F , which is the value of the artificial broadening used in

the exciton. Even though we observe an increase in the linewidth, it remains on the same

order of magnitude as the introduced linewidth. With a small linewidth being important,

it is also necessary to use very low temperatures, which further increases the numerical

errors in our current implementation.

While the polaron to trion transition requires more careful investigations, one signif-

icant advantage of our real-time approach is that it gives direct access to the spectral

function without having to perform an analytic continuation. The analytic continua-

tion is an ill-defined procedure numerically and, therefore, very challenging in general.

In fig. 5.10a the full momentum resolved spectral function, for the exciton at ⌘ = 0 is

plotted. At k = 0, the AP is narrow, while the RP is broad and without a well-defined

quasiparticle peak. As the momentum increases, the AP broadens due to scattering with
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Figure 5.10: The spectral functions for the exciton (Ax(k,!)) and the trion (A�(k,!)) at
⌘ = 0 in plot a) and b) respectively. a) The exciton spectral function shows the narrow
linewidth of the AP at k = 0 and a broad repulsive continuum at higher energy. At higher
momentum, the AP broadens and is no longer a good quasiparticle at k ⇠ 0.7kF . b) The
trion shows a sharp onset at low energy followed by a large continuum. The trion spectral
function vanishes at larger momentum. Both colorbars have been truncated to resolve the
broader features.
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Figure 5.11: The quasiparticle properties of the AP at ⌘ = 0 as a function of momen-
tum. In a) the solid line is the dispersion of the AP extracted from the spectral function
fig. 5.10a, and the dashed line is the bare dispersion shifted down. This demonstrates the
large e↵ective mass of the AP, which is map ⇡ 2.9mx. b) shows the lifetime of the AP,
which starts to increase super exponentially for k > 0.7kF .

the electrons. As quantified in fig. 5.11b, this broadening is highly non-linear, and for

momentum above 0.7kF , the AP starts losing its quasiparticle nature. After this point,

it enters into the continuum and no longer exists. The linewidth of the AP is not the

only thing that is significantly changed compared to the bare exciton, also the e↵ective

mass of the AP is significantly altered as seen in fig. 5.11a. For the considered parameters

we find an e↵ective mass map ⇡ 2.9mx. The mass of the AP increasing with the binding

energy is a well-known feature [229]. Looking at fig. 5.10a, one observes that while the AP

broadens for large momentum, the broad RP continuum gets narrower until it recovers

the bare dispersion. The RP merging with the bare dispersion at large momentum is the

main reason our numerical method is successful, as we rely on the bare dispersions for

large momentum to avoid sampling highly oscillatory functions on finite grids.

The same physical features are visible in the trion spectral function shown in fig. 5.10b.

For small momentum, the trion has a narrow feature that shifts the AP down, while for

large momentum, the trion is in the particle-particle scattering continuum. As there

is only a small weight at large momenta, the trion has minimal e↵ect on the exciton,

which explains why the RP connects to the bare dispersion. As observed in [182], where

the system was investigated using a variational ansatz, the trion spectral function has

a minimum at finite momentum. The e↵ective mass of the trion at zero momentum is,

therefore, negative. This e↵ective mass becomes positive at large binding energy as the

trion spectral function approaches that of the bare trion. One feature worth pointing out

in the trion spectral function is that the bound state of the trion is sitting on the edge

of the continuum. For non-self-consistent and variational calculations, one finds a clear
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separation between the log continuum and the bound state for large binding energy. The

clear separation is because, for a non-self-consistent calculation, the scattering is among

the bare excitons and bare electrons. The continuum, therefore, also starts at zero. In a

self-consistent calculation, the scattering continuum of the trion arises due to scattering

between polarons and electrons. The attractive polaron has an energy that is ⇠ EB lower

than the bare exciton. Scattering between the attractive polaron and bare electrons,

therefore, leads to a continuum starting close to the energy of the attractive polaron.

With this, we close our comparison to the equilibrium polaron problem. Our self-

consistent approach captures all the features qualitative level, and most of them even

quantitatively. To achieve a good quantitative agreement for the polaron-trion transition,

it would be necessary to include the missing three-body scattering e↵ects and do a more

thorough investigation of how the small artificial linewidth and finite temperature a↵ect

the predictions for the transition.

5.5.2 Undriven polaron-polaritons

The attractive and repulsive polarons are the emerging quasiparticles arising from the

contact interaction with the Fermi sea. We now investigate what happens when the cavity

is coupled to the exciton. To contain the discussion we will consider parameters that are

inspired by the recent experiments [99, 169, 171] and choose: ✏F = 5meV, � = 0.08✏F ,

⌦ = 0.8✏F and �✏F = 50. For the binding energy, we stay at unitarity EB = 3/2✏F , which

is smaller than the explored TMD materials that have EB = 7✏F . The one other parameter

which is chosen more liberally is the e↵ective photon mass. In the current experiments,

the photon mass is around 10�5me, which requires a very dense momentum grid at small

values, and we, therefore, chose mc = 1/2 ⇥ 10�3me to speed up the computations. To

ensure that the larger photon mass does not qualitatively alter the e↵ects seen, a few data

points with mc = 1/2⇥10�4 have been computed, and the same qualitative features were

found but at a smaller momentum.

With these parameters, we first investigate how the AP spectral function is a↵ected

when the cavity has two di↵erent detunings �c as shown in fig. 5.12. In fig. 5.12a,

the cavity detuning is chosen such that the bare cavity is 0.3✏F higher in energy than

the AP at zero momentum. The choice of detuning in fig. 5.12a will be referred to as

positive cavity detuning as the cavity has higher energy than the AP. Because of the

strong coupling between the exciton and the cavity of ⌦ = 0.8✏F , the quasiparticle that

emerges in the exciton spectral function is pushed down in energy at small momenta. The

emerging quasiparticle is the lower polariton arising from the cavity interacting with an

exciton dressed by electrons and forming the AP. It is denoted as the lower attractive

polaron-polariton (LAPP). To compute the dispersion the quasiparticle approximation
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Figure 5.12: The bare dispersion of the attractive polaron from fig. 5.11, the bare cavity
and the resulting lower attractive polaron-polariton dispersion arising from the coupling
between the cavity and the exciton. The resulting dispersion is determined using the quasi-
particle approximation from section 2.5. In a) the cavity is detuned such that it is 0.3✏F
above the attractive polaron, and in b) the cavity is detuned to be below the attractive
polaron by 0.3✏F .

from section 2.5 has been applied to the converged result for GR

x
(!, k). In fig. 5.12b �c is

chosen such that the bare cavity mode is 0.3✏F lower in energy than the AP at k = 0 and

will be referred to as negative cavity detuning. In this case, the emerging LAPP is pushed

below the bare cavity because ⌦ > !AP ��c. Because of the strong cavity coupling, the

LAPP dispersion di↵ers from the AP up to much greater momentum than the extent of

the cavity dispersion. For both cavity detunings, the LAPP dispersion does not fully join

the AP dispersion until momentum k ⇠ 0.3kF .

In section 5.5.1, it was found that the AP was a good quasiparticle, and one could

therefore imagine that retarded propagator for the LAPP can be found by adding the

cavity self-energy in eq. (5.11) to the AP quasiparticle

GR(k,!) =
Zap

! � !ap(k) + i�ap � ⌦2

!��c� k2

2mc
+i�

. (5.110)

Applying the quasiparticle approximation to this propagator at k = 0 and looking at the
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lowest energy !� one finds

!� � !ap(k = 0)� ⌦2

!� ��c

= 0

! !� =
!ap + �c �

q
(!ap ��c)

2 + 4⌦2

2
,

(5.111)

where the cavity and AP linewidth have been neglected as they are both small compared

to the energy di↵erence |!ap ��c| = 0.3✏F . For the positive detuning case in fig. 5.12a,

the result is !� = �3.36✏F which suggests that the LAPP should be pushed significantly

further down than the �3.03✏F found in fig. 5.12a. Similarly for the negative case in

fig. 5.12b, where eq. (5.111) predicts an energy of the LAPP of �3.66✏F while the self-

consistent calculation gives !� = �3.37✏F .

One can also compute the new quasiparticle weight of the LAPP according to eq. (5.110)

Z� = Zap (1� @! Re ⌃(0,!�))�1 = Zap

✓
1 +

⌦2

(!� ��c)
2

◆�1

 Zap, (5.112)

which predicts that the LAPP’s quasiparticle weight must always be smaller than the Zap.

By including the k-dependence to the dispersion, the prediction is unchanged because

(!� ��c)
2 � 0 for all values of !�(k). This prediction is consistent with considering

the system in terms of hybridizing the AP with the cavity. The prediction states that

the weight in the AP is shared between the two new quasiparticles, the LAPP and the

upper attractive polaron-polariton (UAPP) that one would have found if the larger energy

solution in eq. (5.111) was used instead of !�. As the coupling redistributes the spectral

weight, neither of the new quasiparticles can have a Z greater than Zap. The quasiparticle

weight found from the converged self-consistent solution is shown in fig. 5.13a. Here one

sees that the prediction from eq. (5.112) is qualitatively wrong in the sense that for both

the positive and negatively detuned cavity case, the LAPP acquires a Z > Zap for most

values of k. Combined with the overestimation of the splitting from eq. (5.111) it is clear

that the approximation in eq. (5.110) is both quantitatively and qualitatively wrong.

The approach in eq. (5.110) fails because it does not account for how the hybridization

between the cavity and the exciton a↵ects the polaron formation. The correct physical

picture requires one to consider the exciton’s hybridization with the cavity when interact-

ing with the Fermi sea as done in section 5.2.2. The phenomenology is that the exciton in

the AP is hybridized with the cavity. The LAPP then emerges from the lower polariton

(LP) part of the exciton in the AP when the system interacts with the Fermi sea. Because

the LP is part cavity part exciton, it interacts less e�ciently with the Fermi sea. The

less e�cient interaction with the Fermi sea leads to an e↵ective binding energy for the
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Figure 5.13: The remaining two quasiparticle parameters (Z and �) for the attractive po-
laron and the lower attractive polaron-polariton in the case with di↵erent cavity detunings
as shown in fig. 5.12. The quasiparticle weight is plotted in a) and the linewidth is shown
in b).

LAPP that is less than that of the AP. In fig. 5.9a, it was shown that smaller binding

energy (larger ⌘) decreases the splitting between the repulsive and attractive polaron.

The e↵ective decrease of the binding energy, due to the cavity coupling, therefore, pushes

the LAPP up in energy, which explains why eq. (5.111) overestimated the lowering of the

LAPP energy.

Similarly, in fig. 5.8b, it was shown that decreasing the binding energy added more

quasiparticle weight to the AP, so an e↵ective smaller binding energy is also consistent

with the increase of Z seen in fig. 5.13a. This argument does not explain the highly

non-monotonic nature of the quasiparticle weight nor why Z0 is smaller than Zap for the

negatively detuned case. If the cavity only leads to an e↵ective decrease of the binding

energy, then one would expect that the quasiparticle weight would continuously increase

as the momentum is lowered. A continuous increase would be expected because, at smaller

momentum, the LAPP is more photonic. However, as momentum gets smaller, the UP

polariton acquires more spectral weight, meaning that even if the AP-part of the LAPP

acquires more spectral weight due to the decreased electron dressing, the polariton spectral

weight has to be shared with the upper polariton. The peak in the quasiparticle weight

is an e↵ect of the fact that there is a trade-o↵ between having less electron dressing and

having more weight in the UP.

With this understanding, one can also explain the qualitative di↵erence between the

positive and negatively detuned case seen in fig. 5.13a, where the spectral weight of the
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negatively detuned cavity is much smaller than it is in the case for a positively detuned

cavity, even though their parameters are very similar. In the positive detuned case, the

cavity sits above the AP as seen in fig. 5.12a. The e↵ect of having the cavity sitting above

the AP is that the LAPP is mostly excitonic at low momenta, whereas the higher energy

UAPP is mostly photonic. The quasiparticle weight of the LAPP at small momentum is,

therefore, fairly large as most of the quasiparticle weight remains in the excitonic part of

the particle. This feature is qualitatively changed by having a negative detuning of the

cavity as in fig. 5.12b. Because the photon is below the AP, the LAPP at small momenta

is now mostly photonic. The e↵ect is that most of the quasiparticle weight now goes to

the UAPP because of its more excitonic character, resulting in a significant decrease in

the quasiparticle weight.

The di↵erent nature of the LAPP at small momentum for the two di↵erent detunings

is observed in the linewidth of the LAPP shown in fig. 5.13b. Because the cavity has a

much larger linewidth than the AP, the LAPP is lossier at low momentum when �c < 0

because it is more photonic. Conversely, the more excitonic nature of the LAPP in the

�c > 0 case means it inherits less cavity loss.

5.5.3 Driving of polaron-polaritons

We have seen how the cavity coupling significantly changes the nature of the quasiparticle

and that changing the cavity detuning can significantly alter the nature of the lowest

energy excitation. We will now explore how the system reacts to continuous driving. We

consider a narrow laser profile with a Gaussian frequency distribution

(!) = 0 exp

 
� 1

2

✓
! � �
�

◆2
!

, (5.113)

which is independent of momentum. The driving strength of the laser is determined by

0, which is proportional to the laser intensity. The carrier frequency of the laser is set

by �, and � sets the linewidth of the laser. A narrow linewidth of � = 0.05✏F is chosen

such that the cavity can be driven at well-defined energies. The exciton is indirectly

driven through the cavity’s contribution to the exciton Keldysh self-energy in eq. (5.11).

Computing the cavity Keldysh propagator using eqs. (2.83) and (5.6) one finds that the

self-energy responsible for driving takes the form

�⌃K

xc
(k,!) = i2(!)⌦2|GR

c,0(k,!) =
i2(!)⌦2

⇣
! ��c � k2

2mc

⌘2

+ �2
. (5.114)
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Due to the indirect nature of the drive, the exciton only experiences the drive along the

bare cavity dispersion and, as a consequence of the small photon mass, can only be driven

at small momentum.

The loss of photons in the cavity allows the system to dissipate energy. By driving the

system, the steady state will be a state with a balance between dissipation and driving

and a finite occupation of excitons. The steady state is non-trivial because the exciton’s

interaction with the electrons allows the exciton to relax down in energy by transferring

momentum to the electrons. This relaxation has been explored using a quantum kinetic

equation in [230]. In this work, there is no strong coupling to the cavity, and the quasi-

particles are the repulsive and attractive polaron and not polaron-polaritons considered

here. Furthermore, in [230], it was assumed that the finite density of excitons did not

change the spectral function, which is a common assumption when working with kinetic

equations. Because of the strong hybridization with the cavity, we can explore how the

photonic nature of the LAPP a↵ects the driven steady state and can investigate how the

spectrum is modified by driving.

To explore this, we consider the two cases in fig. 5.12 and drive the system above

the LAPP with � = �2.4✏F . The driving is then gradually increased until our self-

consistent method fails to converge. The code fails to converge because the driving leads

to the accumulation of occupation of a specific mode. When this happens, then the

e↵ective driving of this mode leads to a decrease in its linewidth. At some point, this

linewidth becomes so small that our numerical integrals contain errors that accumulate

faster than the convergence rate. A small linewidth indicates that the bosonic mode

that is being occupied is close to being unstable. The di�culty we face is, therefore,

equivalent to the di�culties that arise close to a phase transition, where the correlation

length of the fluctuations diverges. How close we can drive the system to an actual phase

transition is an interesting question that is best addressed within the scope of thermal

equilibrium, as the behavior of the systems is better understood. In thermal equilibrium,

it is easier to di↵erentiate between the numerical calculations becoming unstable due to

error accumulation and the physical instability due to a nearby phase transition. The

question of how close our current numerical implementation can go to a phase transition

is left for further work. For the remainder of the section, we will focus on how the steady

state of the positive and negatively detuned cavity is a↵ected by the drive.

The first property we consider is the exciton density computed by integrating��GK

x
(k,!)/2

over frequency and momentum. The resulting density as a function of the drive strength

is shown in fig. 5.14a. Both densities are only a few percent of the electron density which

justifies using the thermal non-interacting electron propagator in the self-energies.

The first striking feature is that the densities increase sub-linearly with the drive



178 Polaron-polaritons

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.01

0.02

0.03

0.04

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

Figure 5.14: The density of the exciton in a) and the density of the trion in b) as a function
of the pump power. The horizontal dashed lines indicate the density ⇢x = 0.0409⇢e, which
will be used to compare the two di↵erent cases. The dots indicates the actual data points
computed which are connected with lines to guide the eye.

strength. The sub-linear scaling can indicate that either the drive becomes less e�cient

for higher densities or that the LAPP e↵ectively interacts repulsive with each other. At

the end of our analysis, we will see that the non-equilibrium nature of the polariton can

explain this sub-linear response of the drive.

The density is the momentum and frequency integrated Keldysh propagator, which

means that most information about the system is lost. To understand the sub-linear

behavior and di↵erentiate between the possible explanations, it is necessary to investigate

the properties of the systems in momentum and frequency.

Before moving on, we first explain the other features of the density. For example,

the fact that the density of the negatively detuned case increases significantly faster than

the positively detuned case. It increases faster because the exciton is driven at di↵erent

momentum in the two cases. In the positively detuned case, the drive is centered at

� = �c, and the photon is therefore driven at the bottom of its dispersion at k = 0. In

the negatively detuned case, the laser is driving at the same frequency but �c = ��0.6✏F ,

such that the laser is driving the photon at a finite momentum around k =
p

0.6✏F2mc ⇠
0.05kF . As the laser is driving all momentum equally, the large phase space at finite

momentum e↵ectively means that exciton in the �c < 0 case is driven much harder.

This suggests that to compare the two cases, one should not compare them for equal

drive strengths but instead for equal densities. The point chosen for the comparison is

indicated in fig. 5.14a by the dotted horizontal line where both the negative and the

positive case have an exciton density of ⇢x/⇢e = 0.0409.

In fig. 5.14b the density of the trion is computed and seen to imitate the behavior of

the exciton. The trion density is expected to follow the exciton density closely because

the photon only a↵ects GR

x
for small values of momentum, and the perturbation of GR

�
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Figure 5.15: Spectral features at finite driving. In a) the relative change of the LAPP
quasiparticle energy between zero exciton density and an exciton density of 0.0409⇢e (the
horizontal line in fig. 5.14) is shown. The change in the LAPP quasiparticle linewidth is
shown for the same densities in b).

due to the polariton formation is therefore small As the electron density is kept constant

and at a low temperature, the Keldysh self-energy of the trion in eq. (5.43) is related to

exciton density. The absolute value of the trion density should not be understood as the

trion’s physical density of trions as the trion has no physical bare dispersion. Instead, the

absolute value of the trion density is related to the Tan contact [208]. Even though the

absolute value of the density is not equivalent to the number of trions per area, the way

the trion is occupied can still be directly inferred from �GK

� .

Having considered the total density, we now investigate momentum and frequency-

resolved features. The first element considered is the dispersion of the LAPP. We are

interested in how the system is changed by having a finite exciton density and therefore

consider the relative change between ⇢x = 0 and ⇢x = ⇢ = 0.0409⇢e given by

�!0(k) =
!0,⇢(k)� !0,0(k)

!0(k)
, (5.115)

where !0,0(k) is the LAPP dispersion at zero exciton density. The relative change of the

quasiparticle energy is plotted in fig. 5.15a. The relative change is observed to be on the

order of 0.1%, which validates thinking of the LAPP energies as mostly unperturbed by

the considered densities.

Even though the changes are small, they are by no means trivial. Independent of

the polariton nature (negative or positive detuned cavity), the dispersion is shifted down

by a constant for large momentum. Because the shift is independent of the polariton

nature, the shift is understood as the e↵ect of changing the trion self-energy by having

a finite occupation in the exciton according to eq. (5.41) and the self-energy correction

of the exciton due to a finite occupation of trions in eq. (5.45). At small momentum,
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the two di↵erent detunings do behave qualitatively di↵erently. In the positive case, the

quasiparticle energy at k = 0 is decreased slightly, whereas, in the negatively detuned

case, the energy is increased. This means that for the negatively detuned cavity, the zero

momentum mode becomes less favorable for increasing exciton density.

While the changes in the quasiparticle energy are small and negligible, this is not the

case for the quasiparticle linewidth. The relative change of the quasiparticle linewidth,

defined analogously to eq. (5.115), is shown in fig. 5.15b and seen to change by up to

80% of the undriven linewidth. Consistent with the previous interpretation, the change

of the linewidth also goes to a constant for large momentum. As momentum is decreased,

the linewidth increases until it suddenly starts decreasing. The increased linewidth for

intermediate momentum is due to the drive happening at higher energy than the LAPP.

This leads to a quick relaxation down to the LAPP dispersion at large momentum3. From

there, the excitons have to scatter o↵ the electrons to decrease their momentum. This

is energetically favorable as the dispersion bends down, and the lower momentum modes

are therefore driven by the relaxation of the higher momentum modes, which in turn

gives rise to a large linewidth of the high momentum mode. Following this reasoning,

one would expect that the excitons would continue decaying down until they hit zero

momentum. If this was the case, then the finite momentum modes should always have a

larger linewidth when there is a finite exciton density in the system compared to when

the system is not driven. This is the case for polaron as discussed in section 5.5.1.

However, the hybridization of the cavity increases the linewidth at small momentum, as

discussed in fig. 5.13b. The increased loss that happens when the LAPP starts bending

down means that the occupation accumulates at a finite momentum which is seen in

the momentum distribution in fig. 5.16a. The accumulation at finite momentum means

that all these modes are driven by those at higher momentum, and their linewidth is,

therefore, significantly decreased compared to when there is no occupation. Because the

LAPP becomes more photonic at small momentum, its linewidth again increases as the

momentum decreases, as seen in fig. 5.13b. The e↵ect is a minimum linewidth at finite

momentum because the excitons move down the dispersion due to relaxation, but they

are lost with a higher rate, and the low momentum modes are not as e�ciently driven

because there are fewer particles to drive them. The cavity hybridization can therefore

be understood as leading to a competition between momentum relaxation rate and loss

rate.

By just considering the energy of the quasiparticle, one would have expected that the

negatively detuned case would be much better at getting the population to k = 0 because

its dispersion is much steeper. Instead, one observes the opposite in fig. 5.16a. Based on

3
On the scale of the characteristic photon momenta
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Figure 5.16: a) shows the momentum distribution for the LAPP at the same two densities
as in fig. 5.15 while b) shows the frequency of the minimum of the quasiparticle linewidth
as a function of the density.

the above discussion, one could expect that this is because of the increased loss of the

�c < 0 case seen in fig. 5.13b. This argument is insu�cient to explain the qualitative

di↵erence between the detunings seen in both fig. 5.15b and fig. 5.16a. The negatively

detuned case has a much smaller change of its linewidth at small momentum, and its

momentum distribution is centered at larger momentum because the negative case has a

much lower relaxation rate at small momentum because it is less excitonic. This means

that even if the two cases were engineered to have the same linewidths, the negatively

detuned case would accumulate at large momentum and e↵ectively drive the k = 0 mode

very ine�ciently. Another indicator for this e↵ect is observed by looking at the frequency

of the minimum of the linewidth as a function of the density as shown in fig. 5.16b.

Because the dispersion is barely modified, it is su�cient to consider the frequency of the

minimum linewidth, as the momentum changes accordingly. Here, the minimum moves

down along the LAPP dispersion with increasing density. As explained above, it moves

down because the increased density can compensate for a larger loss rate, meaning the

particles reach further down the dispersion before being lost through the cavity. Because

the relaxation rate is less e�cient for the negative detuning, one observes a much smaller

non-linear impact on !m even though the dispersion is much steeper.

Having understood how the system is a↵ected by the drive, we can now explain the

sub-linear dependence of the density as a function of the drive strength seen in fig. 5.14a.

At large drive strength, the population is pushed further into the lossy region, which

means that more particles are lost. It is, therefore, necessary to drive the system harder

when the density is increased because the average loss rate per particle is increased. From

this understanding, we can also predict that the system should not be able to condense

at finite momentum. The system can not condense at finite momentum because if the

occupation grows, then it will move further down the dispersion, and the particles will
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Figure 5.17: The occupation and spectrum of the trion when the excitons are driven to
a density of ⇢x/⇢e = 0.0409. a) A plot of �GK

�(k,!), which is occupied below the trion
continuum. b) The trion spectral function A�(k,!) which is similar to the ⇢x = 0 one in
fig. 5.10b but shows an emerging feature near k = 1.2kF . This feature arises due to the
finite density of the excitons.

experience more loss. The only way for the system to condense is, therefore, when the

peak of the population is at k = 0. When that is the case, increasing the drive strength

directly corresponds to adding more particles at k = 0, and the e↵ective loss rate is

therefore unchanged by increasing the drive strength.

These results show that modifying the spectral function is important for the driven

system, as the linewidth is significantly perturbed by driving. We have seen how various

non-trivial observations can be understood by the interplay between loss and the e↵ective

momentum relaxation rate. Both these features can be qualitatively changed by simply

changing the cavity detuning.

To close o↵ the section, we will point out that while the trion is a slave to the exciton,

the trion propagators are qualitatively changed when the exciton has a finite density. This

is shown in the spectral function and occupied Keldysh propagator shown in fig. 5.17.

Because the exciton has occupation at small momentum, it is possible to create trions

formed by an exciton at k = 0 and an electron at k = kF . The trion keldysh propagator

then starts forming occupation along a parabolic band seen in fig. 5.17a. Because the

occupation of the excitons is not at k = 0, there is a significant deviation from a simple
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parabolic band.

This occupation is along a dispersion that does not exist for the undriven trion spectral

function shown in fig. 5.10b. The finite exciton occupation, therefore, also leads to a

modification of the trion spectrum seen in fig. 5.17b at k > kF . The e↵ect here is

small because our occupation is small and is distributed over many momentum modes.

With this we show that, even within the dilute limit, where the electrons are assumed

unperturbed, the occupation of the trion does not happen by filling up the undriven trion

spectral function; instead, one has to include the self-energy corrections that arise from a

finite exciton density.

5.6 Summary and discussion

In this chapter, we have described a method to self-consistently compute the steady states’

spectral properties and occupation of a many-body driven-dissipative system using real

frequencies. The method presented applies to any system where the interaction can be

approximated as a contact interaction in space and time. Inspired by the recent exper-

imental progress in setting up gated TMD monolayers inside cavities, we have focused

on the specific case of polaron-polaritons in two dimensions in the dilute limit. We have

shown that our self-consistent calculation can capture the qualitative features of the po-

laron system and that including the cavity leads to interesting e↵ects that arise from the

interplay between the non-equilibrium nature of the cavity and the many-body-driven

momentum relaxation through electron interaction.

We have here shown some first results but also remark that there is a long list of

exciting things that should be studied. We have focused on non-equilibrium e↵ects, but

even in equilibrium, there are interesting questions one should investigate. Our method

has the advantage of having direct access to the spectral functions without performing an

analytic continuation. One should study how close our current numerical method can go

to a condensation transition of the excitons within thermal equilibrium. By understanding

this, one could investigate the properties of condensation in two dimensions which happens

through a BKT transition [231]. This would lead to investigations of two-dimensional

Bose-Fermi mixtures both in and out of equilibrium. Having seen that the trion is not

simply occupied along its undriven spectral function, it is also relevant to investigate how

the occupation of the system is a↵ected by going across the polaron to trion transition

seen for mx = 2me in fig. 5.9.



Chapter 6

Conclusion

In this thesis, we studied two systems with strong interactions between a cavity light field

and a many-particle system. These hybrid systems require that drive and dissipation are

treated together with the interactions in the many-particle system. To this extent, we

have used non-equilibrium field theory for the theoretical description of the systems. The

construction and properties of the non-equilibrium field theory have been discussed in

chapter 2. Considering the example of a linearly coupled environment, we showed how

incoherent loss and drive emerged from the microscopic theory and how the field theory

relates to the master equation from open quantum system.

In chapter 3 we focused on a system consisting of an ultracold bosonic atom cloud

trapped inside a near-planar cavity. Inspired by the experimental realizations, we consid-

ered driving the atom cloud with a transverse pump laser. The combination of a large

number of atoms in the cloud and the external pumping made it possible to strongly

couple the light field and the atomic motion, leading to the formation of polaritons. By

using a periodic phase modulation of the laser with a frequency similar to the transverse

cavity mode splitting, we derived an e↵ective model with tuneable interactions between

the di↵erent transverse cavity modes. The derivation relied on the large energy scale

separation between the detuning of the laser to the electronic transition, the transverse

cavity mode splitting, and the recoil energy of the atomic cloud. It was shown how the

e↵ective interactions between the transverse cavity modes led to polaritons that consisted

of several di↵erent cavity modes. In the regime where the cavity linewidth was smaller

than the atomic recoil energy, we showed how strong coupling between the di↵erent cavity

modes led to avoided crossings between the polaritons.

In chapter 3, we found that the phase diagram for the superradiant transition was

drastically modified when some cavity modes acquired an e↵ective negative detuning. The

modification to the superradiant phase was explained in chapter 4, using the microscopic

quantum action to derive classical equations for the atom motion and the cavity field.

184



185

From these we derived analytical equations for the critical coupling and frequency of the

unstable polariton mode in the multimode model. By investigating the eigenvalues of the

linearized equations around the normal phase, we developed a qualitative description of

how the multimode polariton becomes unstable at a finite frequency, due to the coupling

to both a positively- and a negatively-detuned cavity mode. The qualitative description

allowed us to fully explain the phase diagram found in chapter 3. With this description we

showed that there where parameter regions where two finite-frequency polariton modes

could become unstable simultaneously. By deriving the two-mode generalization of the

Stuart-Landau equations, it was shown that the finite-frequency unstable polariton modes

led to the emergence of stable limit cycles inside the superradiant phase. The two-mode

Stuart-Landau equations also showed that two limit cycles could co-exist and that at the

level of the classical equations, the transition into the superradiant phase was equivalent

to a double Hopf bifurcation. To understand all the possible steady states for the two-

limit-cycle system, we mapped the results from the two-mode Stuart-Landau equations

to the normal form of the double Hopf bifurcation. This mapping showed that for our

parametrization of the two-limit-cycle case, the steady state could be either a single limit-

cycle or the co-existence of two limit cycles. There were also parameters for which we

proved that the system was bistable and, therefore, sensitive to the initial state. Lastly,

we explored how interactions within the atom cloud a↵ect the finite-frequency polariton

instability. The resulting analytical equations for the critical coupling and frequency were

similar to the previous equations without atom interactions. The only change was that the

bare dispersion of the atom cloud was modified to be that of the Bogoliubov dispersion.

Transitioning into superradiance at finite frequency was shown to be more sensitive to the

form of the dispersion than the normal zero-frequency transition. While the features of

the linear stability were not significantly a↵ected by the atom interactions, we showed that

the combination of a limit cycle and atom interactions opened new scattering channels

for the atoms. These allowed the atoms to scatter into modes that did not belong to

the limit cycle and suggested that the generic limit cycle is only metastable. Using the

Stuart-Landau result, we discussed the scaling of the scattering rates and showed that

the dominant scattering channel could be closed by changing the frequency of the limit

cycle. We hypothesized that this should lead to a qualitatively di↵erent scaling of the

scattering rates, which could significantly extend the limit cycle’s lifetime.

In chapter 5 we moved from the ultracold gas to considering a two-dimensional semi-

conductor inside a cavity. This was inspired by recent experiments where a Transition-

metal dichalcogenide (TMD) monolayer was placed inside a cavity. The TMD monolayer

coupled strongly to the cavity by optical excitation of an exciton in the TMD, forming

exciton-polaritons. By gating the monolayer, the experiments could generate a back-
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ground gas of electrons that interacted strongly with the exciton, dressing it to form

polarons. The strong interaction between the electrons and the excitons, and in turn the

polaritons, required us to solve out-of-equilibrium coupled Dyson equations both the spec-

trum and the occupation simultaneously. To do this, we considered the coupled equations

within a non-perturbative ladder approximation. The drive and dissipation made it im-

possible to use an imaginary time formulation, and the coupled equations had to be solved

in real time. Solving the equations in real time is numerically challenging due to fast os-

cillations in time and space. To deal with these oscillations, we developed a numerical

method to Fourier transform functions that did not rely on sampling the fast oscillations.

The numerical method works for any isotropic system in two and three dimensions. We

compared the results of our method to the known results for the Fermi polaron problem

and found that it captured the qualitative features well. In the regime close to the polaron-

trion transition, our non-perturbative ladder approximation missed important processes,

and the quantitative prediction power of our theory was poor in this parameter region.

With this knowledge, the system was considered far from the polaron-trion transition. We

investigated the spectrum of the emerging polaron-polariton that arose due to the strong

cavity-exciton-electron coupling. It was shown that the cavity dressing of the exciton led

to an e↵ective decrease of the trion binding energy, meaning that the interplay between

the strong cavity-exciton coupling and the strong exciton-electron coupling required that

both interactions were treated at the same level in the calculation. We found that by

changing the detuning of the cavity, it was possible to drastically change the nature of

the lowest energy excitation, which we used to explain the qualitatively di↵erent behavior

of the steady state when the system was driven. The combination of cavity loss at small

momentum and the e↵ective decrease of the trion binding energy led to the accumula-

tion of occupation at a small finite value of momentum. We showed that by driving the

system harder, the occupation accumulated at lower momentum, which was explained by

the increased number of particles that drove the low-momentum modes. Based on our

results, we hypothesized that in the considered cases, the polaritons could not condense

unless they reached zero momentum.



Appendix A

Action for a free theory

The derivation presented here is based on a previous work [232] and follows [33] and [34].

Here we will construct a correct continuum representation of the free action. The focus

here is on a single mode with the Hamiltonian given as

H = !0a
†a, (A.1)

where !0 is the energy required to add one excitation to the mode. We write the thermal

state of a free system (with � = 1/kBT ) as

⇢0 =
e��(H�µa

†
a)

Tr
⇥
e��(H�µa†a)

⇤ = e��(H�µa
†
a)(1⌥ )±1 =

e��(H�µa
†
a)

N , (A.2)

with  = e��(!0�µ) and N = (1⌥)⌥1. µ is the chemical potential. The upper sign is for a

bosonic system, and the lower sign is for a fermionic one. The discrete partition function

is then defined by eq. (2.29). The last remaining element there is the initial state overlap

⌦
�+
1

�� ⇢0
��±��

1

↵
=

e±�̄
+
1 �

�
1 

N , (A.3)

here the normalization and notation for the thermal state from eq. (A.2) has been used.

Inserting the results of all the overlaps and multiplying together all the resulting

exponentials, the partition function takes the form of a multidimensional Gaussian integral

Z =
1

N

Z  
NY

j=1

d[�̄+
j
,�+

j
]d[�̄�

j
,��

j
]

!
exp (iSd) , Sd =

X

↵,�

�̄↵G
�1
↵,�
��. (A.4)

Sd is the discrete action for our theory. The ↵/� indices contain all degrees of freedom
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(± and time index). G�1 is thus a 2N ⇥ 2N matrix which takes the form

iG�1 =

0

BBBBBBBBBBBBBBBBBBB@

�1 ±
h+ �1

h+ �1

· ·
· ·

�1 h�

�1 h�

�1 ·
· ·

1 ·

1

CCCCCCCCCCCCCCCCCCCA

=

 
�A B

C �D

!
. (A.5)

The inverse G�1 is a 2⇥2 block matrix, where the diagonal elements emerge from the over-

counting corrections in the identity resolutions in eq. (2.21). The h+(�) elements originate

from the evolution overlaps along the forward (backward) leg of the contour. The two

o↵-diagonal blocks contain only one non-zero element each. The fields corresponding to

the initial time couple through , while the fields at the end of the contour couple through

an identity. All other entries in this matrix are zero.

By including source terms to the partition function we can promote it to a generating

functional

Sd

⇥
J̄ , J

⇤
=
X

↵,�

�̄↵G
�1
↵,�
�� +

X

↵

�
�̄↵J↵ + J̄↵�↵

�
. (A.6)

The generating functional still has the form of a Gaussian integral and can be solved

exactly [33]

Z[J̄ , J ] =

Z NY

j=1

d[z̄j, zj]e
�

PN
i,j z̄jMjizi+

PN
j (z̄jJj+J̄jzj) =

e
P

i,j J̄i(M
�1)ijJj

det(M)±1 , (A.7)

Where the elements are identified as M = �iG�1 and zj = �↵. For bosons, the result

is valid when all eigenvalues of M have non-negative real parts, and for fermions, it is

valid for any invertible M . This di↵erence is because Grassmann integrals are always

convergent [233]. Correlation functions can now be evaluated by taking derivatives of the

generating functional followed by setting the sources to zero

⌦
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Using eq. (A.7) the correlation function is found to be given by the inverse of G�1

⌦
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Considering correlation functions di↵erent from the two-point function, it is seen that

with a quadratic theory, the odd-point functions vanish. The higher-order even correlation

functions are also accessible from the generating functional e.g. the four-point function is

given by
⌦
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(A.10)

This generalizes to all higher order 2n-point functions such that one has to sum over all

possible combinations of iG. For fermions, one has to consider the anti-commutation,

which leads to each term being multiplied by the parity of its corresponding permutation.

This is known as Wick’s theorem and is exact as long as the theory is quadratic. It means

that for a quadratic theory, the only elements needed are the two-point functions.

The two-point functions are usually called the propagators, as they give the probability

of finding an excitation created at a specific point x0 at a later point xf . The correlations

thus carry information about how excitations propagate through the system.

A.1 Propagators for the free system

To avoid errors introduced by the Trotter decomposition in eq. (2.16) it is necessary to

take the continuum limit.

From eq. (A.9) it is seen that all the propagators can be read out if the determinant

and inverse of eq. (A.5) are found. To compute the determinant the relation det(O) =

exp [Tr log(O � 1+ 1)] for a matrix O, is used and log(x + 1) is expanded around x = 0

det
�
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" 1X
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i

�
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�i
#!

. (A.11)

Inspecting the form of the matrix power, one finds that the first case where it has a

non-zero trace is at i = 2N , with 2N being the size of G�1. For this case the matrix is a

purely diagonal with the constant elements (h+h�)N�1 . Therefore, the trace inside the
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exponential will only be non-zero when i = n2N with n being an integer. Re-summing

these terms, the sum can be written as a logarithm
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The form of h± is given by eq. (2.28) such that

det
�
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�
= 1� (1 + �2!2

0)
N�1(±). (A.13)

Before taking the limit of n!1 it is important to remember that the time slice length,

� = (t � t0)/N , is inversely proportional to N . The limit where N ! 1 is, therefore,

equal to �! 0, which implies that
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(A.14)

As a result, the determinant exactly cancels the normalization (N ) from the thermal

state eq. (A.2). This is a consistency check of the theory as the partition function is the

”zero-point” correlation and must be unity due to the identical Hamiltonian on both legs

of the contour

Z =
1

N det(�iG�1)±1 = 1. (A.15)

To compute the inverse of eq. (A.5), it is advantageous to use its 2⇥2 block structure.

With D being invertible N ⇥N matrices, the inverse is given by [234]

(�iG�1)�1 = iG =

 
A �B

�C D

!�1

,

=

 
(A� BD�1C)�1 (A� BD�1C)�1BD�1

D�1C(A� BD�1C)�1 D�1 + D�1C(A� BD�1C)�1BD�1

! (A.16)

As A and D are both triangular matrices, they can be written as 1 + T, with T being a

strictly triangular matrix (zero in diagonal). For a strictly triangular matrix of dimension

N , it is known that the matrix power vanishes for an exponent � N [156]. Using the
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general property

�
1� xN

�
= (1� x)

�
1+ x + x2 + x3 + .. + xN�1

�
, (A.17)

and substituting x = �T, the inverse is found as

1 = (1+ T)

 
1+

N�1X

i=1

(�1)iTi

!

! (1+ T)�1 = 1+
N�1X

i=1

(�1)iTi.

(A.18)

iG can now be computed for a finite dimensionality. For N = 6, one finds

iG =
1

det (�iG�1)

⇥

0

BBBBBBBBB@

1 ±h+h2
� ±h2

� ± ±h� ±h2
�

h+ 1 ±h+h2
� ±h+ ±h�h+ ±h2

�h+

h2
+ h+ 1 ±h2

+ ±h�h2
+ ±h2

+h2
�

h2
+h2

� h+h2
� h2

+ 1 h� h2
�

h2
+h� h+h� h� ±h2

+h� 1 h�

h2
+ h+ 1 ±h2

+ ±h2
+h� 1

1

CCCCCCCCCA

.
(A.19)

Notice that because the determinant here is a consequence of the inversion and not the

functional integral, it is in the denominator for both bosons and fermions.

Generalizing this result to arbitrary N does not require inverting larger matrices, as

the structure of the matrix is extendible. The two diagonal blocks in eq. (A.19) describe

propagation between a field configuration on the same branch (upper block = forward leg,

lower block = backward leg), while the o↵-diagonal blocks describe propagation between

the two contour legs. The four di↵erent propagators are necessary to accommodate for the

non-equilibrium situation. Inspecting the form of eq. (A.19) the four di↵erent propagators,

for arbitrary N , are taking the form

iG++
k,l

=
�
✓(k � l)hk�l

+ ± ✓(l > k)(h�h+)N�1hk�l

+ 
�
/ det

�
�iG�1

�
,

iG��
k,l

=
�
✓(l � k)hl�k

� ± ✓(k > l)(h�h+)N�1hl�k

� 
�
/ det

�
�iG�1

�
,

iG<

kl
= iG+�

k,l
=
�
±hl�1

� hk�1
+ 

�
/ det

�
�iG�1

�
,

iG>

kl
= iG�+

k,l
=
�
(h+h�)Nh�l

+ h�k

�
�
/ det

�
�iG�1

�
,

(A.20)

where ✓(x) is a discrete Heaviside function which is unity when the argument condition is

satisfied and zero otherwise. In the continuum limit the propagators can be found using
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lim
N!1

h± = e⌥i�!0

iG++(t, t0) =
(✓(t� t0) exp [�i!0(t� t0)] ± ✓(t0 � t) exp [�i!0(t� t0)]

1⌥ 

= exp [�i!0(t� t0)]

✓
✓(t� t0)(1 ± nB/F ) ± ✓(t0 � t)nB/F

◆
,

iG��(t, t0) = exp [�i!0(t� t0)]

✓
✓(t0 � t)(1 ± nB/F ) ± ✓(t� t0)nB/F

◆
,

iG<(t, t0) = ± exp [�i!0(t� t0)] nB/F ,

iG>(t, t0) = exp [�i!0(t� t0)]
�
1 ± nB/F

�
,

(A.21)

where nB/F is thermal occupation given by the Bose/Fermi distribution

nB/F =
1

e�(!0�µ) ⌥ 1
. (A.22)

It is important to notice that the continuum representation is not completely reflecting

the discrete theory. This is seen by considering t = t0. In the discrete version, one

Heaviside is zero while another one is unity, whereas, in the continuum representation,

both Heaviside functions look identical. Considering properties in the continuum limit

can be misleading, as it hides several features present in the discrete version. The con-

tinuum theory can therefore be considered a representation of the discrete version. As

mentioned, this is especially important when considering equal time. A consequence is

the explicit correlation between the propagators. When discussing the construction of the

time contour, the correlation among the two legs was already noted as unavoidable. In

the continuum representation one finds the redundancy relation

Ccont = G++(t, t0) + G��(t, t0)�G<(t, t0)�G>(t, t0) = 0. (A.23)

However, there is some ambiguity for t = t0 due to the interpretation of the Heavisides.

To resolve this ambiguity, one considers the discrete case where the same quantity is given

by

Cdiscrete =
1

det(�iG�1)

✓
✓(k � l)hk�l

+ + ✓(l � k)hl�k

�

± ✓(k > l)(h�h+)N�1hk�l

+ 

± ✓(l > k)(h�h+)N�1hl�k

� 

⌥ hl�1
� hk�1

+ � (h�h+)Nh�l

+ h�k

�

◆
.

(A.24)

Considering the di↵erent values of k, l and taking the continuum limit, one finds the
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relations

Cdiscrete =
N!1

8
<

:

e�i!0(t�t0)

det(�iG�1) (1 ± ⌥ � 1) = 0, k 6= l,

1
det(�iG�1) (1 + 1⌥ � 1) = 1, k = l.

(A.25)

This shows that, due to the diagonal elements in the blocks of G�1, the relation eq. (A.23)

is not true for the point t = t0. In special cases, this results in disagreements between the

continuum and discrete representations. A relevant example is the occupation number.

This is given by the equal time correlation function

⌦
a†a

↵
(t) =

⌦
�(t)�̄(t)

↵
=

1

2

�⌦
�+(t)�̄+(t)

↵
+
⌦
��(t)�̄�(t)

↵�

=
i

2

�
G++(t, t) + G��(t, t)

�
= 1 ± nB/F

(A.26)

where the continuum representation has been used directly. In the discrete form, the

operators a† and a do not sample the same field configuration but instead two neigh-

boring time slices. The consequence is that in the discrete form, the occupation number

expectation value is found to be

⌦
a†a

↵
(j�) =

1

2

�⌦
�+
j
�̄+
j+1

↵
+
⌦
��
j+1�̄

�
j

↵�
=

i

2

�
G++

j,j+1 + G��
j+1,j

�

=
N!1

±nB/F .
(A.27)

Compared to the continuum result, this is the correct one and therefore supports thinking

of the discrete representation as more reliable. However the di↵erence between eq. (A.23)

and eq. (A.25) is a Kronecker delta. In the continuum representation this turns into

lim�!0 ��(t�t0) [235], which means that the continuum violation is a manifold of measure

zero [33].

This argument justifies extending the redundancy relation eq. (A.23) to include t = t0

when building the theory. The redundancy relation is not a model-specific result but a

property of the non-equilibrium formalism, which also holds for interacting theories.

A.1.1 Keldysh rotation

We now seek a representation that makes the redundancy in eq. (A.23) explicit. This can

be achieved through a linear transformation

 
�cl

�q

!
=

1p
2

 
1 1

1 �1

! 
�+

��

!
. (A.28)

The indices are commonly denoted as c for classical and q for quantum. The transfor-

mation is referred to as the Keldysh rotation [236]. It e↵ectively uses the redundancy
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eq. (A.23) to reduce the number of propagators. Applying the transformation to the +/�
propagators eq. (A.21), the propagator coupling two quantum fields is given by [237]

iGq(t, t0) =
⌦
�q(t)�̄q(t0)

↵
= iG(t, t0)q,q

=
1

2

�
iG++(t, t0) + iG��(t, t0)� iG<(t, t0)� iG>(t, t0)

�

=

8
<

:
0, t 6= t0

�1/2, t = t0
.

(A.29)

This propagator is, therefore, only important when evaluating equal time correlation

functions, and as discussed, it only has a finite value on a measure of zero. So we can

therefore neglect this propagator. The next propagator is the one coupling two classical

fields

⌦
�c(t)�̄c(t0)

↵
= iGc,c(t, t0)

=
1

2

✓
iG++(t, t0) + iG��(t, t0) + iG<(t, t0) + iG>(t, t0)

+ iG+�(t, t0) + iG�+(t, t0)� iG<(t, t0)� iG>(t, t0)

◆

= iG<(t, t0) + iG>(t, t0) + iGq(t, t0)

= iGK(t, t0),

(A.30)

where the Gq has been set to zero and the GK has the form

iGK(t, t0) = iG<(t, t0) + iG>(t, t0) = (1 ± 2nB/F )e�i!0(t�t
0). (A.31)

This propagator is known as the Keldysh propagator, and when neglecting Gq, it is the

propagator that creates and removes an excitation in the classical field at two points in

time. The propagator that creates an excitation in a quantum field at time t0 and removes

an excitation of a classical field at time t is known as the retarded propagator

iGR(t, , t0) =
⌦
�c(t)�̄q(t0)

↵
= iGc,q(t, t0)

=
1

2

�
iG++(t, t0)� iG��(t, t0)� iG<(t, t0) + iG>(t, t)

�

= ✓(t� t0) (iG>(t, t0)� iG<(t, t0))

= ✓(t� t0)e�i!0(t�t
0).

(A.32)

Here the name eludes to the fact that such a propagation path is only possible if the

t > t0. Conversely, one can create an excitation in a classical field and remove it in the
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quantum field, which gives the result

iGA(t, , t0) =
⌦
�q(t)�̄c(t0)

↵
= iGq,c(t, t0)

=
1

2

�
iG++(t, t0)� iG��(t, t0) + iG<(t, t0)� iG>(t, t)

�

= ✓(t0 � t) (iG<(t, t0)� iG>(t, t0))

= �✓(t0 � t)e�i!0(t�t
0).

(A.33)

This propagator is referred to as the advanced propagator.

The free propagators satisfy the causality conditions in eq. (2.39).

The Keldysh transformation is unitary and does not a↵ect the magnitude of the inte-

gration measure in the field integral. It is therefore only necessary to find an appropriate

action that satisfies

iG↵�(t, t0) =

Z
D
⇥
�̄,�

⇤
�↵(t)�̄�(t0) exp (iS) = i

 
GK(t, t0) GR(t, t0)

GA(t, t0) 0

!
. (A.34)

Here the new measure D
⇥
�̄,�

⇤
is a shorthand notation for the continuum limit of the

measure in the discrete case eq. (A.8).

A general quadratic action can be written as

S =

Z 1

�1
i
⇣
�̄cl �̄q

⌘

t

 
(G�1)a (G�1)b

(G�1)c (G�1)d

!

(tt0)

 
�cl

�q

!

t0

dt dt0. (A.35)

These four objects are directly related to the propagators through the Gaussian integral

in eq. (A.7). Here the Gaussian integral is no longer multidimensional but has been

generalised to a functional Gaussian integral. This amounts to simply changing all sums

to integrals, and all indices to continuous variables [34]. The connection to the propagators

is that the matrix in S is the inverse of the propagator matrix eq. (A.34). This gives the

following set of equations for the components in S

Z
d⌧

 
GK GR

GA 0

!

(t⌧)

 
(G�1)a (G�1)b

(G�1)c (G�1)d

!

(⌧ t0)

=

Z
d⌧

 
GK

t⌧
(G�1)a

⌧ t0 + GR

t⌧
(G�1)c

⌧ t0 GK

t⌧
(G�1)b

⌧ t0 + GR

t⌧
(G�1)d

⌧ t0

GA

t⌧
(G�1)a

⌧ t0 GA

t⌧
(G�1)b

⌧ t0

!

=

 
1 0

0 1

!
�(t� t0).

(A.36)

Solving these equations, one finds a continuum form of S that reproduces the discrete
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propagators

 
(G�1)a (G�1)b

(G�1)c (G�1)d

!

(tt0)

=

 
0 (GA)�1

(GR)�1 (G�1)K

!

(tt0)

! S =

Z 1

�1
i
⇣
�̄c �̄q

⌘

t

 
0 (GA)�1

(GR)�1 (G�1)K

!

(tt0)

 
�c

�q

!

t0

dt dt0.

(A.37)

The o↵-diagonal elements are the inverse’ of the propagators, while the diagonal element

is determined by the relation

Z
GK

(t⌧)(G
A)�1

(⌧ t0) + GR

(t⌧)(G
�1)K(⌧ t0)d⌧ = 0,

! (G�1)K(⌧ 0t0) = �
Z

(GR)�1
(⌧ 0t)G

K

(t⌧)(G
A)�1

(⌧ t0)dtd⌧ = �(GR)�1 �GK � (GA)�1.
(A.38)

The � is a shorthand notation for a continuum form of matrix multiplication overall

degrees of freedom.

For a free theory in the steady state, the propagators will not depend on the specific

times but only on the time di↵erence t � t0. In that case, it is much easier to invert

matrices in the frequency domain as one can do a Fourier transform of the variable t� t0.

A free theory is pathological because the system has no mechanism through which it can

relax. To avoid this problem, one can put in a relaxation mechanism by hand by defining

the Fourier transform, and its inverse as [39]

f(!) =

Z 1

�1
eit(!±i⌘)f(t)dt, f(t) = lim

⌘!0+

1

2⇡

Z 1

�1
e�i!tf(!)d!, (A.39)

where a positive infinitesimal part (⌘) has been added to the energy as an imaginary

contribution with the appropriate signs. This suppresses perpetual oscillations at ±1.

Whether to use +/� depends on which part of the time axis the non-physical correlations

are present. For this trick to make sense, it is important that any physical observable one

computes should be essentially una↵ected by this small infinitesimal value. For numerical

calculations, it is often necessary to include it, and then one has to check that the value

one uses for the infinitesimal decay is not altering the physics observed. To keep ⌘’s

infinitesimal nature in mind, we will write it as 0+. With this extension, the energy
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representations of the propagators are well-defined and given by

GK(!) = �iF (!)

Z 1

�1
eit(!�!0)dt = �2⇡iF (!)�(! � !0),

GR(!) = �i

Z 1

�1
✓(t)eit(!�!0+i0+) =

1

! � !0 + i0+
,

GA(!) = i

Z 1

�1
✓(�t)eit(!�!0�i0+) =

1

! � !0 � i0+
.

(A.40)

where F (!) = coth
⇣
�(!�µ)

2

⌘
for bosons and F (!) = tanh

⇣
�(!�µ)

2

⌘
for fermions. Using

these propagators, the inverse Keldysh propagator can now be derived using eq. (A.38)

(G�1)K(!) = �(GR(!)�1 �GK(!) � (GA(!))�1

= (! � !0 + i0+)i2⇡F (!)�(! � !0)(! � !0 � i0+)

= i2⇡F (!)
1

⇡

0+

(! � !0)2 + (0+)2
⇥
(! � !0)

2 + (0+)2
⇤

= i20+F (!).

(A.41)

On the second line, it has been used that 0+ is a positive infinitesimal, and an infinitely

narrow Lorentzian can thus represent the delta function. The result is that in a free

theory, the inverse Keldysh propagator is an infinitesimal quantity.



Appendix B

Kramers-Kronig relation for the

retarded propagator

A retarded propagator is any propagator that has the form G(t) / ✓(t) The Fourier

transform takes the form

G(!) =

Z 1

�1
dt ei!tG(t) =

Z 1

0

dt ei!tG(t). (B.1)

To ensure that the Fourier transform is well defined, an infinitesimal decay can be added

G(!) = lim
⌘!0+

Z 1

0

dt ei(!+i⌘)tG(t). (B.2)

Using the inverse transform, this takes the form

G(!) = lim
⌘!0+

Z 1

0

dt ei(!+i⌘)t

Z
d✏

2⇡
e�i✏tG(✏) = i

Z
d✏

2⇡

G(✏)

! � ✏+ i⌘

= i

Z
d✏

2⇡

�i⌘G(✏)

(! � ✏)2 + ⌘2
+

(! � ✏) G(✏)

(! � ✏)2 + ⌘2

(B.3)

Taking the limit of ⌘ ! 0+, the second term is seen to be a nascent delta function [155].

When the limit is taken, the first term turns into a principal value of G(!). This is seen by

considering the fraction with ⌘ in the denominator in two limits. First (!� ✏)2 � ⌘2 and

secondly (!�✏)2 ⌧ ⌘2. For the first case, this fraction is unity, and for the second case, it

is zero as (! � ✏)2 /⌘2 ! 0 in this limit. This means that one integrates G(!)/(!�✏) until

one is infinitesimally close to the singularity, which is then ”ignored”. Lastly, it is seen

to be a principal value integral because the singularity limit is approached symmetrically.

198
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The general form of the result is

lim
⌘!0+

Z 1

0

f(!)

! ± ✏+ i⌘
d! = ⌥i⇡

Z 1

0

�(! ± ✏)f(!)d! + P
Z 1

0

f(!)

! ± ✏
d!, (B.4)

where P denotes the principal value. The solution can also be proven with a contour

integral [39, 238] in a similar fashion as the integration in appendix B.2.

The propagator is then given by

G(!) =
G(!)

2
+ P

Z
d!

2⇡

iG(✏)

! � ✏ = P
Z

d!

⇡

iG(✏)

! � ✏ . (B.5)

The last step is to split the propagator into its real and imaginary parts

Re G(!) + i Im G(!) = �P
Z

d!

⇡

Im G(✏)

! � ✏ + iP
Z

d!

⇡

Re G(✏)

! � ✏ . (B.6)

Comparing real and imaginary parts, one arrives at the Kramers-Kronig relations in

eqs. (2.63) and (2.64). The form of the principle value integral with a simple pole in the

denominator is known as the Hilbert transform.

B.1 Derivative relation

Consider a retarded propagator that is explicitly split into real and imaginary parts

G(!) = �(!) + i�(!). (B.7)

Using the Kramers-Kronig relations, the derivative of the real part can be rewritten as a

derivative of the principal value integral of the imaginary part

@!�(!) = @!P
Z

d✏

⇡

�(✏)

✏� ! = @! lim
⌘!0+

✓Z
!�⌘

�1

d✏

⇡

�(✏)

✏� ! +

Z 1

!+⌘

d✏

⇡

�(✏)

✏� !

◆
(B.8)

As the integral limits contain !, one has to use the general form for integrating under the

integral

@!

Z
b(!)

a(!)

f(!, ✏)d✏ = f(!, b(!))@!b(!)� f(!, a(!))@!a(!) +

Z
b(!)

a(!)

@!f(!, ✏)d✏. (B.9)
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Re z

� Im z

Rr

Figure B.1: Contour choice for performing the principal value integral.

Doing this for both terms gives

@!�(!) = lim
⌘!0+

✓
�(! � ⌘)

⇡⌘
�
Z

!�⌘

�1

d✏

⇡

�(✏)

(✏� !)2

� �(! + ⌘)

�⇡⌘ �
Z 1

!+⌘

d✏

⇡

�(✏)

(✏� !)2

◆
.

(B.10)

The integrals can be put back together into a principal value

@!�(!) = lim
⌘!0+

✓
�(! + ⌘) + �(! � ⌘)

⇡⌘

◆
� P

Z 1

�1

d✏

⇡

�(✏)

(✏� !)2
. (B.11)

At first glance, the constant seems to diverge but consider the integral

P
Z

d✏

⇡

1

(✏� !)2
= lim

⌘!0+

✓Z
!�⌘

�1

d✏

⇡

1

(✏� !)2
+

Z 1

!+⌘

d✏

⇡

1

(✏� !)2

◆

= lim
⌘!0+

✓Z �⌘

�1

d✏

⇡

1

u2
+

Z 1

⌘

d✏

⇡

1

u2

◆

= lim
⌘!0+

 
�


1

⇡u

��⌘

�1
�


1

⇡u

�1

⌘

!

= lim
⌘!0+

✓
2

⇡⌘

◆
.

(B.12)

As long as � is analytic, this means that the derivative of the real part is given by

@!�(!) = P
Z 1

�1

d✏

⇡

�(!)� �(✏)
(✏� !)2

. (B.13)
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B.2 Relation to Fourier transform

As a last property of the Kramers-Kronig relations, we discuss the relation to the Fourier

transform. The goal is to derive the Fourier transform of the Hilbert transform

g(t > 0) =

Z
d!

2⇡
e�i!tP

Z
d!0

⇡

f(!0)

! � !0 . (B.14)

As both integrals convergence in the sense of the principal value, the order of integration

can be exchanged

g(t > 0) =

Z
d!0

⇡
f(!0)P

Z
d!

2⇡

e�i!t

! � !0 =

Z
d!0

2⇡2
f(!0)e�it!

0P
Z

d

!

e�i!t

!
. (B.15)

The principal value integral can then be performed along the contour shown in fig. B.1.

The large semicircle integral vanishes

lim
R!1

Z �⇡

0

d�
iRei��it cos�et sin�

Rei�
! 0. (B.16)

For the small semicircle, we can Laurent expand the fraction around z = 0. As the

exponential factor is analytic, there is only the simple pole from the denominator

e�itz

z
=

1

z
+ a0 + a1z + · · · (B.17)

Inserting this expansion into the small semicircle integral

lim
r!0

Z 0

�⇡
d�i

�
1 + a0re

i� + a1r
2ei2� · · ·

�
= i⇡. (B.18)

As there are no poles inside the contour, the result is that

P
Z

d

!

e�i!t

!
= �i⇡. (B.19)

Inserting this into the integral, we find

g(t > 0) = �i

Z
d!

2⇡
f(!)e�i!t = �iF�1 {f(!)} (t). (B.20)

This shows that the Fourier transforming the Hilbert transform only gives rise to multi-

plication by a phase of ei⇡.



Appendix C

Lehmann representation of contour

propagators

In this appendix, the Lehmann representation of the steady-state diagonal part of the

contour propagators and the spectral function are derived. The interacting system is

assumed to be closed such that it can be described by the Hamiltonian H, which is formally

diagonalized by the eigenvectors H |↵i = E↵ |↵i. The state of the system is described

by the density matrix, which is assumed to be diagonal in Hamiltonian eigenbasis ⇢ =
P

↵
c(E↵) |↵i h↵|. The key idea of the Lehmann representation is that the eigenbasis

of the Hamiltonian constitutes a complete basis, and one can therefore insert identities

of this basis. As the Hamiltonian is time independent and diagonal in this basis, the

eigenvalues of the time evolution operator are known through the spectral decomposition

of U †(t) = eiHt. As discussed in the main text, the Lehmann representation allows us to

derive some generic properties for the propagators. These generic properties are strictly

speaking only valid for closed systems in equilibrium, but it is seen that properties of

interest are a consequence of the statics of the excitation, which is unchanged by going

beyond those assumptions.

As we are focusing on a situation where GR and GK commute, it is su�cient to

consider just a single mode, described by the bare annihilation operator a.

The first propagator considered is the retarded propagator, which is given by eq. (2.37)

GR(t, t0) = �i✓(t� t0)
D⇥

a(t), a†(t0)
⇤
⌥

E

= �i✓(t� t0) Tr
�
⇢U †(t)aU(t)U †(t0)a†U(t0)⌥ ⇢U †(t0)a†U(t0)U †(t)aU(t)

�
.

(C.1)

Inserting an identity resolution and writing out the trace and the density matrix, the
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retarded propagator takes the form

GR(t, t0) = �i✓(t� t0)
X

�,↵

✓
c(E�)e

it(E��E↵) h�| a |↵i h↵| a† |�i e�it
0(E��E↵)

⌥ c(E�)e
it
0(E��E↵) h�| a† |↵i h↵| a |�i e�it(E��E↵)

◆

= �i✓(t� t0)
X

↵,�

ei(t�t
0)(E��E↵)|h↵| a† |�i|2 (c(E�)⌥ c(E↵)) .

(C.2)

Next, we Fourier transform from relative time to frequency

GR(!) = �i lim
⌘!0+

Z 1

0

d⌧
X

↵,�

ei⌧(!+E��E↵+i⌘)|h↵| a† |�i|2 (c(E�)⌥ c(E↵))

= � lim
⌘!0+

X

↵,�

|h↵| a† |�i|2 (c(E�)⌥ c(E↵))

! + E� � E↵ + i⌘
.

(C.3)

The spectral function is equal to twice the negative imaginary part of the retarded prop-

agator. In the limit of ⌘ ! 0+ the Lorentzian turns into a �-functions as discussed in

eq. (B.4)

A(!) = �2 Im GR(!)

= 2⇡
X

↵,�

|h↵| a† |�i|2 (c(E�)⌥ c(E↵)) � (! + E� � E↵) . (C.4)

The Lehmann representation of the Keldysh propagator is defined in eq. (2.38), and

is the opposite commutator as for the retarded propagator and without the Heaviside

function. This means that the form is similar to eq. (C.2)

GK(t� t0) = �i
X

↵,�

ei(t�t
0)(E��E↵)|h↵| a† |�i|2 (c(E�) ± c(E↵)) , (C.5)

which can directly be Fourier transformed

GK(!) = �i
X

↵,�

|h↵| a† |�i|2 (c(E�) ± c(E↵)) � (! + E� � E↵) . (C.6)

This is seen to be sign-changing for fermions which is due to the vacuum contribution

included in GK . Separating the vacuum contribution as in eq. (2.82)

�GK(!) = GK(!) + iA(!)

= ⌥i
X

↵,�

2c(E↵)|h↵| a† |�i|2� (! + E� � E↵) . (C.7)



Appendix D

Contour configurations of diagrams:

An algorithm

In this appendix, we will discuss an algorithm to generate all the di↵erent Keldysh vari-

ations of a specific diagram. We will discuss how the causality structure and di↵erent

approximations drastically reduce the number of finite diagrams. The starting point is

Nv vertices of a given type Np propagators connecting the di↵erent vertices. These are

then connected, which gives rise to the specific topology for which we want to find all the

di↵erent contour variations. As an example, consider the same diagram as discussed in

the main text, repeated in fig. D.1 for convenience.

To e�ciently represent the diagrams mathematically, the standard methods from

graph theory are the adjacency matrix, and the incidence matrix [239]. The adjacency

matrix is a Nv ⇥ Nv matrix. The i, j element of the adjacency matrix is one of the ith,

and jth vertex are connected to each and zero otherwise. The incidence matrix (I) is a

Nv⇥Np matrix where the element Iij is 1 if the jth propagator attaches to the ith and its

arrow points towards the vertex. If the arrow points away from the vertex, the element is

-1. This means that each column of the incidence matrix sums to 0. Our goal is to describe

the contour structure of a diagram. We do that by determining if a propagator is of the

retarded, advanced, or Keldysh type, which is determined by the type of the ingoing and

outgoing legs (quantum or classical). This information is encoded in the incidence matrix

because it describes each propagator as having an incoming and an outgoing part. The

only necessary addition to the incidence matrix is to distinguish between quantum and

classical fields. Diagrams can contain propagators that start and end at the same vertex,

giving rise to a closed loop consisting of one propagator. If the propagator in the loop

is a retarded propagator, then it will cancel against the same diagram with an advanced

propagator due to eq. (2.40). In these cases, the only non-zero diagrams are when the

Keldysh propagator is in the loop. A keldysh loop can be included in the algorithm by

204
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v1 v2 v3 v4 v5 v6p1 p2 p3 p4 p5

p6
p7

p8

Figure D.1: A repetition of fig. 2.5 for convenience. The topology of a diagram for in-
teraction between three di↵erent types of fields (di↵erentiated by the arrow and line type)
contributing to the self-energy. It consists of six vertices, each labeled by vi and eight
propagators labeled by pi. Below the diagram is the four possible types of vertex structures
arising from the contour degree of freedom. Due to causality, a configuration with only
classical legs is impossible.

constricting the possible configurations for the vertex with the loop, similarly to how the

end vertices’ configurations will be constrained. Having discussed how to deal with loops

consisting of single propagators, we will continue the discussion of diagrams without such

loops.

To illustrate how the incidence matrix looks, consider the example diagram in fig. D.1.

Here the incidence matrix takes the form

I =

0

BBBBBBBBB@

�1 0 0 0 0 �1 0 0

1 �1 0 0 0 0 1 0

0 1 �1 0 0 0 0 �1

0 0 1 �1 0 1 0 0

0 0 0 1 �1 0 �1 0

0 0 0 0 1 0 0 1

1

CCCCCCCCCA

. (D.1)

The ith row corresponds to the vertex vi and the jth column corresponds to the pjth

propagator. As an example consider the vertex v3. This is contained in the third row.

The third row has a +1 for the second column because the p2 propagator is incident on

this vertex and a -1 for the propagators p3 and p8.

Next, we need to include a degree of freedom to distinguish between quantum and

classical fields. One way of doing this is by making the incidence matrix complex and

let real numbers represent classical fields and imaginary numbers quantum ones. To

generate all possible structures, we first define an array Vc of length Nv containing all

possible configurations for each vertex. It is not necessary to distinguish between in and
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outgoing fields here because this is included in I. In this way, the algorithm has no

assumption about the form of each vertex, and we have a direct way of incorporating

constraints. The constraints can be incorporated by limiting the possible configurations

of the specific vertices in the diagram. For the diagram in fig. D.1 the internal vertices

have four di↵erent configurations such that the entries for jint 2 {2, .., 5} in Vc are all

given by

Vc,jint =

0

BBBB@

i 1 1

1 i 1

1 1 i

i i i

1

CCCCA
. (D.2)

Each row represents a di↵erent configuration, and each column represents a specific leg

of the vertex. The two end vertices must be constrained because we want to separately

compute the contribution to the retarded, advanced, and Keldysh self-energy.

As discussed in section 2.7, the self-energy diagram in fig. D.1 is a self-energy contri-

bution to the double arrow (D) field. For the retarded self-energy ⌃R, we need the D leg

of v1 to be classical, while for v6 we need the D leg to be a quantum field. This means

that there is only a subset of allowed configurations for these two vertices, and they are

e↵ectively only two-legged. These two elements of Vc are therefore

Vc,1 =

 
i 1

1 i

!
, Vc,6 =

 
1 1

i i

!
. (D.3)

As alluded to previously, this is the same way one would deal with a diagram containing

a propagator looping back to its initial vertex. For ⌃K , then both D legs at the ends of

the diagram have to be quantum fields. In that case Vc,1 would have the same possible

configurations as Vc,6.

Now we need to build all possible configurations of the chosen diagram. This is done

by looping over all possible combinations of the form

Aj =
⇣
n1, n2, ..., nNv

⌘
, (D.4)

where each ni takes on a single integer value from 1 up to the number of rows in Vc,i.

Each vector Aj then describes which vertex configurations the jth Keldysh configuration

of the diagram has. For the considered diagram, this leads to

ND0 = 2 · 4 · 4 · 4 · 4 · 2 = 210 = 1024, (D.5)

di↵erent combinations which makes A in eq. (D.4) a matrix of dimension ND0 ⇥ Nv =
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1024 ⇥ 6. For each of the ND0 combinations (each represented by a row in A), we then

construct the sparse complex incidence matrix Di, which represents the ith configuration

of the diagram. The ith row of A generates Di by elementwise multiplication of the non-

zero values in Ij with Vc,j,nj . This works because the number of non-zero values in Ij is

equivalent to the number of links in the vertex vj. The direction is contained in the sign

of Ij, and the type of field is contained by the configuration Vc,j,nj which picks the nj

configuration of the jth vertex. One now has ND0 di↵erent complex incidence matrices,

which can be e�ciently sorted.

The first step in sorting the diagrams is that any configuration that contains a quantum-

quantum propagator vanishes. In our matrix representation, these propagators are iden-

tified by both input and output legs being imaginary. Therefore, a diagram Dj containing

a q-q propagator can be identified by having at least one value of 2 in jth row of the

matrix defined by

Fqq,j;m =
X

n

|ImDj|n,m, (D.6)

where Im is the imaginary value and |�| is the absolute value. Discarding all these diagrams

drastically decreases the number of potentially relevant diagrams. For the considered

example, the number of diagrams decreases from 1024 to 84.

After removing all q-q propagators, we consider the vacuum contribution in the Keldysh

propagators. This vacuum contribution can cancel against other diagrams. Separating

the vacuum is also useful because replacing GK with �GK generally makes the physical

interpretation of the diagram significantly simpler and gives a good basis for further ap-

proximations. Analogous to the q-q case, a diagram that contains one or more Keldysh

propagators will have two classical legs. They can therefore be identified by having at

least one entry with value 2 in the jth row of

Fcc,j;m =
X

n

|ReDj|n,m. (D.7)

Consequently, the diagrams can be split into two types: those containing a Keldysh

propagator, which we define as DK,j, and the remaining ones Dj.

For all the DK,j diagrams, one can now substitute each Keldysh propagator according

to eq. (2.82). Notice that by inspecting each diagram, one will see that, e↵ectively, new

vertex configurations have emerged due to the separation of the vacuum contribution. To

do the substitution successfully, one has to include one new degree of freedom to account

for the fact that the diagrams now can acquire an overall negative sign. As the sign is

already used to define direction, we introduce a variable called minus.

The separation of GK ’s can be done iteratively for diagrams with several Keldysh
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propagators, and all the diagrams can then be sorted into two groups: D+
j

which contain

all diagrams (also those in Dj) where one can extract a prefactor of minus2n, with n 2
{0, 1, 2, ..}, and D�

j
where one can extract a prefactor of an odd power of minus. Any

diagram that both appear in D+ and D� then cancels. For the specific example in

section 2.7, writing out the vacuums has increased the total number of non-zero diagrams

from 84 to 236 with a positive prefactor and 152 diagrams with a negative prefactor.

One last generic feature that can lead to diagrams vanishing is the causal struc-

ture of the propagators, which means that combinations like GR(t, t0)GA(t, t0) vanishes.

These cancellations only rely on the Heaviside dependence of GR and GA on relative time

(⌧ = t� t0). To identify these cancellations for complicated diagrams, one has to consider

the internal propagators’ relative time arguments. The diagrams are usually written in

the absolute energy ! domain (Fourier transform of relative time) as done in eq. (2.62). It

is, therefore, necessary to transform back to relative times to identify the causality cancel-

lations. For diagrams with vertex strengths constant in relative time, we get conservation

of the absolute energy at each vertex. To explain how this allows us to implement the

causality, we consider the specific example in fig. D.1. Here the Fourier transform back to

relative time leads to three �-functions because of the three closed loops. The �-functions

can be used to constrain the relative time argument of three of the propagators, and we

are left with Nfree = 5 free relative time variables. For the considered example we let

the D and W (wavy) propagators in the diagram have free relative time variables such

that pif (⌧if ) for if 2 {1, .., 5}. The relative time dependence of the three S (straight)

propagators can then be written in the form pic(
P

if
Bic,if

⌧if ), where ic only runs over

propagators with constrained relative time index

p6(⌧1 + ⌧2 + ⌧3), p7(�⌧2 � ⌧3 � ⌧4), p8(⌧3 + ⌧4 + ⌧5). (D.8)

From which the elements of B can be directly read o↵. For a diagram to vanish due to

causality, it is then necessary to combine the first five propagators so that the product of at

least one of the three S propagators vanishes. To make these constraints computationally

e�cient, we define the vector ⌧free which has the indices of the propagators that have free

variables as their relative time index, which for the considered example gives

⌧free = (1, 2, 3, 4, 5)T . (D.9)

Together with the array B, ⌧free fully defines our constraints. To do this, we investigate

each diagram in both D+ and D� independently. For a specific diagram in D+ or D� we

know that a retarded (advanced) propagator is only non-zero if its relative time index is

> 0 (< 0). So we first consider all the constrained propagators, which are directly given
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the similar label columns of the complex matrix D±
j
. The jth component of

Fcp,j;ic =
X

m

�
ReD±

j

�
m,ic

, (D.10)

will then have a +1 when the propagator is retarded, a -1 for an advanced propagator,

and for a Keldysh propagator, it will be zero. This means that if Fcp,j;ic = +/ � 1 then

the icth propagator in jth diagram is a retarded/advanced propagator. It is only non-zero

when its relative time argument ⌧ic =
P

if
Bic,if

⌧if > / < 0. If Fcp,j;ic = 0 then the icth

propagator in jth diagram is a �GK propagator which can be non-zero for all values of

⌧ic . We then do the same for the unconstrained propagators but also contract this with

the signs of our constrained coe�cients

FB,j;ic =
X

m,if

sign
�
Bic,if

� �
ReD±

j

�
m,if

. (D.11)

FB,j;ic is then equivalent to the ⌧ic with the ⌧if being multiplied by +1,�1 or 0 depending

on if the propagator pic is retarded, advanced or Keldysh. For ⌧ic to give rise to a vanishing

diagram, it has to have a definite sign. This means that the only constrained times we

can use are those where all ⌧if ’s in the superposition belong to retarded or advanced

propagators in such a way that when combined with the superposition coe�cient, B, the

sum is always zero for either positive or negative times. This information is contained in

FB,j;ic through its magnitude because for those definite constrained times the magnitude of

FB,j;ic must equal the magnitude of
P

if
|Bic,if

|. We can therefore set all elements in FBj;,ic

to zero that does not satisfy this equality and set the remaining components equal to just

the sign of the element. After this procedure FB,j;ic = +/� 1 means that ⌧ic > / < 0 for

the icth propagator in the jth diagram. The condition for the jth diagram to vanish due

to causality is that the condition

Fcp,j;icFB,j;ic > 0, (D.12)

is satisfied for at least one of the propagators (a specific value of ic). For the considered

diagram, this takes us from 256 (152) to 134 (68) positive (negative) diagrams. This

means that after removing all diagrams vanishing due to causality, D has 220 entries

left, each describing a contour variation of the diagram in fig. D.1. These all have to be

calculated for a generic situation, but if certain parts of the system are not occupied, we

can directly implement such an approximation by setting all �GK propagators for this

type equal to zero. Note that this is only possible because the vacuum contributions have

been separated out. In the considered case, a physically realistic scenario is that the S
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propagator represents a large medium that interacts with the impurity described by the

W propagators. These attractive interactions can form a composite state described by

the D propagator. If the system is in the impurity limit, the �GK is zero for both the W

and the D propagators. Using the same method as in eq. (D.7) to remove the diagrams

with a Keldysh propagator for the D and W propagators, we are left with nine diagrams.

Our discussion has exemplified that diagrams with many internal propagators generally

leads to an intractable amount of diagrams with di↵erent internal Keldysh configuration.

However, many cancel due to the di↵erent aspects of the causal structure. To simplify this

process, we have described an algorithm that does all the combinatorics when supplied

with the boundary conditions. The boundary conditions consist of the incidence matrix

for the diagram topology, the Vc array, and B. Furthermore, we have seen that impurity

limits are easy to implement in the algorithm and can significantly reduce the number of

diagrams one needs to consider.



Appendix E

Stuart-Landau components

In this appendix, we will derive the three tensors needed for the Stuart-Landau equations

in eq. (4.84). The equations of motion are the atom-number conserving equations on the

center manifold in eq. (4.63). These are expanded and evaluated at the NP fixed point

X0 = 0. The elimination of the homogeneous atom state means that factors
p

2n0 appear

through eq. (4.62). To useful derivatives will therefore be

@

@Xa

p
2n0 = � Xap

2n0
, (E.1)

and
@

@Xa

1p
2n0

=
Xaq

(2n0)
3/2

. (E.2)

The derivatives with respect to Pa are equivalent with the replacement Xa ! Pa. The

first term is the Jacobian which is the linear term rF (x). The derivatives of the Xa

component of F is

@FXa

@Xa

= �a �
Pap
2n0

X

i

⌘iXi �
X2

a
Pa

(2n0)
3/2

X

i

⌘iXi,

@FXa

@Pa

= ER �
Xap
2n0

X

i

⌘iXi �
XaP 2

a

(2n0)
3/2

X

i

⌘iXi,

@FXa

@Xi

= �XaPa⌘ip
2n0

,
@FXa

@Pi

= 0.

(E.3)
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For the Pa component of F , the elements are

@FPa

@Xa

= �ER +
3Xap
2n0

X

i

⌘iXi +
X3

a

(2n0)
3/2

X

i

⌘iXi,

@FPa

@Pa

= �a +
Pap
2n0

X

i

⌘iXi �
X2

a
Pa

(2n0)
3/2

X

i

⌘iXi,

@FPa

@Xi

=
X2

a
⌘ip

2n0
� ⌘i
p

2n0,
@FPa

@Pi

= 0.

(E.4)

The cavity Xi component has the derivatives

@FXi

@Xa

=
@FXi

@Pa

= 0,
@FXi

@Xj

= ��i,ji,
@FXi

@Pj

= �i,j�i. (E.5)

Lastly, the cavity P -quadrature components of gradient of F is

@FPi

@Xa

= �⌘i
p

2n0 +
X2

ap
2n0

,

@FPi

@Pa

= ⌘i
XAPap

2n0
,

@FPi

@Xj

= ��i,j�i,
@FPi

@Pj

= ��i,ji.

(E.6)

At the NP fixed point n0 = 1 and Pi = Xi = Xa = Pa = 0. The matrix form of the

Jacobian, when only including the jth cavity block, is

0

BBBB@

�j �j 0 0

��j �j �⌘j
p

2 0

0 0 �a ER

�⌘j
p

2 0 �ER �a

1

CCCCA
, (E.7)

which is connected by the unitary transformation

U =
1p
2

0

BBBB@

1 i 0 0

1 �i 0 0

0 0 1 i

0 0 1 �i

1

CCCCA
(E.8)

to the Jacobian in eq. (4.20). The Jacobian here generalizes to several modes in exactly

the same way as eq. (4.20).
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Next, we consider the quadratic non-linearity

M i

n,m
=

1

2

@2Fi

@Xn@Xm

=
@ (rF )

i,n

@Xm

. (E.9)

As the derivatives can be exchanged M i

n,m
= M i

m,n
. Here we need the additional derivative

@

@X

1

(2n0)
3/2

= 3
X

(2n0)
5/2

. (E.10)

First, we consider Mxa
n,m

, and to keep the indices more compact, we will use small x and

p for the quadrature field indices.

Mxa
xa,xa

= � 3PaXa

(2n0)
3/2

✓
1 +

X2
a

2n0

◆X

i

⌘iXi,

Mxa
xa,pa

= � 1p
2n0

✓
1 +

P 2
a

2n0

◆X

i

⌘iXi �
X2

a

(2n0)
3/2

✓
1 + 3

P 2
a

2n0

◆X

i

⌘iXi,

Mxa
xa,xi

= � ⌘iPap
2n0

✓
1 +

X2
a

2n0

◆
,

Mxa
pa,pa

= � PaXa

(2n0)
3/2

✓
2 + 3

P 2
a

2n0

◆X

i

⌘iXi,

Mxa
xi,pa

= � ⌘iXap
2n0

✓
1 +

P 2
a

2n0

◆
,

Mxa
xa,pi

= Mxa
pa,pi

= Mxa
xi,xj

= Mxa
pi,xj

= Mxa
pi,pj

= 0.

(E.11)

All the elements are at least linear in a field from the center manifold, and all elements

of Mxa
n,m

, therefore, vanish when evaluated at the NP fixed point. Next we consider Mpa
n,m

Mpa
xa,xa

=
1p
2n0

✓
3 + 4

X2
a

2n0
+ 3

X4
a

(2n0)
2

◆X

i

⌘iXi,

Mpa
xa,pa

= 3
PaXa

(2n0)
3/2

✓
1 +

X2
a

2n0

◆X

i

⌘iXi,

Mpa
xa,xi

=
⌘iXap

2n0

✓
3 +

X2
a

2n0

◆
,

Mpa
pa,pa

=
1p
2n0

✓
X2

a

2n0
+ 3

X2
a
P 2
a

(2n0)
2 + 1 +

P 2
a

2n0

◆X

i

⌘iXi,

Mpa
xi,pa

=
⌘iPap
2n0

✓
1 +

X2
a

2n0

◆
,

Mpa
xa,pi

= Mpa
pa,pi

= Mpa
xi,xj

= Mpa
pi,xj

= Mpa
pi,pj

= 0.

(E.12)

Evaluated at the NP fixed point, all these elements again vanish. As (rF )
xi,m

are all
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constants Mxi
n,m

= 0 for all values of n, m. The only remaining elements are Mpi
n,m

, which

are given by

Mpi
xa,xa

=
3⌘iXap

2n0

✓
1 +

X2
a

2n0

◆
,

Mpi
xa,pa

=
⌘iPap
2n0

✓
1 +

X2
a

2n0

◆
,

Mpi
pa,pa

=
⌘iXap

2n0

✓
1 +

P 2
a

2n0

◆
,

Mpi
xa,pj

= Mpi
pa,pj

= Mpi
xk,xj

= Mpi
pk,xj

= Mpi
pk,pj

= Mpi
xa,xj

= Mpi
pa,xj

= 0.

(E.13)

Again all terms are at least linear in the center manifold fields, and all elements in M i

n,m
,

therefore, vanish at the NP fixed point as expected from the reflection symmetry. The

final tensor elements we have to contribute are the once in

N i

n,k,q
=

1

6!

@3Fi

@Xn@Xk@Xq

=
1

3

@M i

n,k

@Xq

, (E.14)

such that N i

n,k,q
is fully symmetric in subscripts. To have anything non-zero at the NP

fixed point, the element of N i

n,k,q
can only depend on the center manifold fields through

n0. It is, therefore, su�cient to consider the terms of M i

n,m
that are linear in one of the

fields (ignoring n0). These elements are

Mxa
xj ,pa

= � Xa⌘j
2
p

2n0
, Mxa

xj ,xa
= � Pa⌘j

2
p

2n0
, Mxa

xa,pa
= �

P
j
Xj⌘j

2
p

2n0
,

Mpa
xj ,xa

= 3
Xa⌘j

2
p

2n0
, Mpa

xa,xa
= 3

P
j
Xj⌘j

2
p

2n0
, Mpa

pa,pa
=

P
j
Xj⌘j

2
p

2n0
, Mpa

xj ,pa
=

Pa⌘j
2
p

2n0
,

Mpj
xa,xa

= 3
Xa⌘j

2
p

2n0
, Mpj

pa,xa
=

Xa⌘j
2
p

2n0
, Mpj

xa,pa
=

Pa⌘j
2
p

2n0
.

(E.15)

Because of the symmetry, we only need to compute five elements of N i

n,k,q
as all others

will either vanish at the NP fixed point or be a permutation of the subscripts. These five

non-zero elements at the NP fixed point are

Nxa
xa,pa,xj

= � ⌘j
6
p

2
, Npa

xa,xa,xj
=

⌘j
2
p

2
, Npa

pa,pa,xj
=

⌘j
6
p

2
,

Npj
xa,xa,xa

=
⌘j

2
p

2
, Npj

xa,pa,pa
=

⌘j
6
p

2
.

(E.16)



Appendix F

Spline interpolation

In this appendix, we derive the matrix form of the cubic and quintic spline interpolations.

F.1 Cubic spline

The cubic spline is built of piecewise polynomials, with the highest order being a third-

degree polynomial. Using the continuity conditions eq. (5.58) with k = 0 directly gives

an equation for the first order coe�cients

a1
j

=
�a0

j

�⌫j
� g1,j, (F.1)

where g1,j is defined as g1,j = a2
j
�⌫j +

�a
2
j

3 �⌫j. This function is defined such that it only

contains the second highest order coe�cients and di↵erent node spacings. To eliminate

a1
j

from the system we consider the continuity equation for k = 1

�a1
j

= 2a2
j
�⌫j + �a2

j
�⌫j. (F.2)

By applying the di↵erence operator to eq. (F.1) we can equate it with eq. (F.2) and

thereby arrive at a linear set of equations for a2
j

2a2
j
�⌫j + �a2

j
�⌫j + �g1,j = �


�a0

j

�j

�
. (F.3)

As the third term on the left has a contribution where � is applied twice, this leads to the

j’th coe�cient coupling to j +2. As the system is linear, it can be written using matrices

A~a2 = B~a0, (F.4)
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where bold letters indicate matrices and the vectors of coe�cients are indicated by the

arrows. The continuity condition has therefore given rise to N�3 equations for the N�1

a2
j

coe�cients. This is a general feature of the spline interpolation, such that the equation

system for the second highest coe�cient always needs to be supplemented with M � 1

boundary conditions. Which boundary to choose depends on the nature of the functions

one is interpolating, but for our calculations, we are always attempting to choose grids

where the function values are negligible at the grid boundaries. This makes the results

independent of the specific choice of boundary conditions, and we, therefore, chose the

most convenient boundary conditions. Currently our equations couple the jth to the

j +M �1 component. One can instead write the equations for j +1th coe�cient, and the

system of equations is then symmetric around n = j + 1. One can then use the boundary

conditions to determine the undefined coe�cients at both ends of the interval. Rewriting

the equation system in eq. (F.3) for n = j + 1 is unnecessary as it is very simple to

implement the shift and boundary conditions on the matrix structure of the linear system.

For convenience it is advantageous to use the continuity condition, eq. (5.59), to define the

a2
N

coe�cient. This allows one to work with quadratic matrices instead rectangular ones

and also ensures the highest order coe�cients are fully defined. Generating the internal

part of the A and B matrices only requires the definition of one matrix, one vector,

and a few standard numerical operations. As a starting point, one defines the (N, N)

matrix representation of �, which is a matrix (�) with �1 in the diagonal and +1 in the

band above the diagonal. The necessary vector is ~h = �~⌫. This is nothing more than

the vector ~�⌫ padded with one additional arbitrary element. The first operation one

has to define is the cutting operation for matrices and vectors, which we here define as

M[nr; ;�mr, nc; ;�mc]. This is to be read as the matrix M with the first nr (nc) and the

last mr (mc) rows (columns) removed such that the dimension of M[nr; ;�mr, nc; ;�mc]

is N � nr �mr, N � nc�mc). The next operation is a dimension independent version of

the di↵erence operator defined as � [M] = M[; ;�1]�M[1; ; ]. Notice that this operation

only acts on the rows of a matrix and, therefore, also is well defined for a vector. Lastly,

one also needs the row-wise multiplication defined through

(~v �M)i,j = viMi,j, (F.5)

which generalizes to an element-wise multiplication for two matrices

(M1 �M2)i,j = (M1)i,j(M2)i,j. (F.6)
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With these definitions the g1 matrix is given from eq. (F.3) as

g1 = ~h � 1+
~h

3
��, (F.7)

where the 1 is just the (N, N) identity matrix. using this one can directly write o↵ the

internal part of A from eq. (F.3) as

A[1; ;�1] = 2
⇣
~h � 1

⌘
[; ;�1] + (~h ��)[; ;�1] + � [g1] , (F.8)

and similarly for the internal part of B

B[1; ;�1] = �


1
~h
��

�
. (F.9)

The boundary conditions set the last (M � 1)/2 coe�cients at each end of the grid. Here

we choose the be a2
N

= a2
1 = 0. One can then solve the linear system of equations in

eq. (F.4) which gives rise to a matrix A2 that gives the a2
j

coe�cients for any function

evaluated on the same grid

A2[; ;�1]~a0 = ~a2. (F.10)

We are dealing with two-dimensional functions (momentum and frequency), so to find

all the a2
j

coe�cients in frequency for all momentum states, one has to do a matrix

multiplication from the appropriate side.

Lastly, if one needs the remaining coe�cients, they are easily found from the derived

equations using the same ”vectorization” method as the one used to find the internal

parts of the linear system in eq. (F.4) and apply it to eq. (F.1). This gives the remaining

three coe�cients

~a1 =

✓
1
~h
��� g1.A2

◆
[; ;�1]~a0,

~a3 =

✓
1

3~h
�� [A2]

◆
~a0.

(F.11)

Which again can be found by doing the matrix-vector product with the data points.

F.2 Quintic spline

For the quintic spline, we use the same notation for the coe�cients, as the two di↵erent

splines do not appear together apart from a few cases. In those cases, we will di↵erentiate

them explicitly.

Like the cubic spline, the approach is to rewrite the continuity equations to a linear

system for the second highest coe�cient (a4
j
). The continuity equation is the same as for
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the cubic spline, namely eq. (5.58). The highest order coe�cient is given by eq. (5.59)

while the lowest order (a0
j
) is just directly set by the data points. For the quintic spline,

it makes the equations and manipulations slightly more compact if one already here

introduces the first g-function

a5
j

=
g0
j

�⌫j
, with g0

j
=

�a4
j

5
. (F.12)

From the k = 0 continuity equation the a1
j

equation is written as

a1
j

=
�a0

j

�⌫j
��⌫ja

2
j
��⌫2

j
a3
j
��⌫3

j
g1
j
, (F.13)

with g1
j

= g0
j

+ a4
j
. Applying the di↵erence operator to this equation makes it possible

to eliminate the a1
j

coe�cients by equating it to the k = 1 continuity equation, which is

given as

�a1
j

= 2�⌫ja
2
j
+ 3�⌫2

j
a3
j
+ 4�⌫3

j
a4
j
+ 5�⌫3

j
g0
j
. (F.14)

This leads to an equation containing a2
j

and a2
j+1. To isolate the a2

j
coe�cient we use the

k = 2 continuity equation

�a2
j

= 3�⌫ja
3
j
+ 6�⌫2

j
a4
j
+ 10�⌫2

j
g0
j
. (F.15)

The result is the equation for a2
j

a2
j

=
�
h
�a

0
j

�⌫j

i

�⌫j+1 + �⌫j
� 3�⌫ja

3
j
�

�
⇥
�⌫2

j
a3
j

⇤

�⌫j+1 + �⌫j
�

g2
j

�⌫j+1 + �⌫j
, (F.16)

with

g2
j

= 2�⌫2
j
(3�⌫j+1 + 2�⌫j) a4

j
+ 5�⌫2

j
(2�⌫j+1 + �⌫j) g0

j
+ �

⇥
g1
j
�⌫3

j

⇤
. (F.17)

The last remaining coe�cient that has to be eliminated is a3
j
, and this is again done by

applying the di↵erence operator to the above-derived equation for the previous coe�cient

and then equating this to the k = 2 continuity equation in eq. (F.15). This leads to an

equation for a3
j

that contains a3
j
, a3

j+1 and a3
j+2. Like the previous coe�cient, we need the

higher order continuity equation to construct an equation for a3
j
. The k = 3 continuity

equation is

�a3
j

= 4�⌫ja
4
j
+ 10�⌫jg

0
j
. (F.18)
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After having used this once for the a3
j+1 terms and twice for the a3

j+2 terms, we arrive at

a3
j

=

�

2

64
�

"
�a0j
�⌫j

#

�⌫j+1+�⌫j

3

75

�⌫j+2 + �⌫j+1 + �⌫j
�

g3
j

�⌫j+2 + �⌫j+1 + �⌫j
, (F.19)

with the last of the g-functions being defined as

g3
j

=2�⌫j (2�⌫j+2 + 4�⌫j+1 + 3�⌫j) a4
j

+ 10�⌫j (�⌫j+2 + 2�⌫j+1 + �⌫j) g0
j

+ �

"
�⌫2

j+1

�
4�⌫ja4

j
+ 10�⌫jg0

j

�
+ g2

j

�⌫j+1 + �⌫j

#
.

(F.20)

Lastly we can eliminate the a3
j

coe�cient by applying the di↵erence operator to eq. (F.19)

and equating it to the k = 3 continuity equation in eq. (F.18). This gives the linear system

where each coe�cient is determined by the equation

4�⌫ja
4
j
+ 10�⌫jg

0
j

+ �


g3
j

�⌫j+2 + ⌫j+1 + ⌫j

�
= �

2

666666664

�

2

64
�

"
�a0j
�⌫j

#

�⌫j+1+�⌫j

3

75

�⌫j+2 + �⌫j+1 + �⌫j

3

777777775

. (F.21)

This gives N�5 equations for the N�1 coe�cients, and one, therefore, has to supplement

the quintic spline with four boundary conditions as discussed in appendix F.1. We can

apply the same method developed there to write the linear system with matrices. We use

similar boundary conditions as for the cubic case which translates into a4
1 = a4

2 = a4
N�1 =

a4
N

= 0. One can then solve the linear system and compute the remaining coe�cients

from eqs. (F.12), (F.13), (F.16) and (F.19). Unlike the cubic case, these equations are

not enough to determine all conditions. For the a3
j

coe�cients eq. (F.19) only gives N �3

equations. This problem occurs because the boundary conditions are not included directly

on the level of this equation; however, this is easily dealt with by using the continuity

equation for a3
j
in eq. (F.18) to generate the two missing equations. This then incorporates

the e↵ect of the chosen boundary conditions into the a3
j

coe�cients. For the a2
j

coe�cients

in eq. (F.16), one is, for the same reason, missing an equation that can be recovered by

using eq. (F.15).



Appendix G

Hankel transform

In this appendix, we will construct the two arrays used in eq. (5.87).

G.1 Hermite Interpolation of the Bessel function

The first element necessary is the Hermite interpolation of J0(s) = h(s). To find this

interpolation, we are following the approach described in [240] but specified to our specific

case of a two-point interpolation. To this extent we consider the two nodes ~x = (x0, x1)T .

At each node, the values of the Bessel functions and P � 1 derivatives are known. For

this case, the two-point Hermite interpolation can be written

h(s) =
2PX

p=1

f[~x.~tp]w
(tp�1)(s), (G.1)

where f[~x.~tp] are the general divided di↵erences (GDDs). ~tp is a vector of length 2 that

contains the combinations of powers at the di↵erent nodes and w(tp)(s) = (s� x0)tp,0(s�
x1)tp,1 gives the actual powers. To make this more concrete, consider the case with P = 3.

In that case 0

BBBBBBBBBBB@

~t0
~t1
~t2
~t3
~t4
~t5
~t6

1

CCCCCCCCCCCA

=

0

BBBBBBBBBBB@

0 0

1 0

2 0

3 0

3 1

3 2

3 3

1

CCCCCCCCCCCA

. (G.2)
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The corresponding powers are

w
~t0(s) = 1,

w
~t1(s) = s� x0,

w
~t2(s) = (s� x0)

2,

w
~t3(s) = (s� x0)

3,

w
~t4(s) = (s� x0)

3(s� x1),

w
~t5(s) = (s� x0)

3(s� x1)
2,

w
~t6(s) = (s� x0)

3(s� x1)
3.

(G.3)

To complete the example the term for polynomial that is proportional to w~t4(s) is

f[x0,x0,x0,x1](s� x0)
3(s� x1). (G.4)

A key feature of the GDDs is that they can be written as a linear transformation

~� = G~�, (G.5)

where ~� = (f[~x.~t1], .., f[~x.~t2P ])
T is a vector of the GDD’s and

~� = (J0(xn), .., J
(P�1)
0 (xn), J0(xn+1), .., J

(P�1)
0 (xn+1))

T (G.6)

are all the known function values at the nodes. The matrix G takes the form of a lower

triangular block matrix

G =

 
L00 0

L10 L11

!
, (G.7)

with each Lnm being a block of size P ⇥ P . L00 is nothing but the block describing a

Taylor expansion to order P around x0

L00 =

0

BBBBB@

1 0 · ·
0 1

1! · ·

· · . . . ·
· · · 1

(P�1)!

1

CCCCCA
. (G.8)

To write the two other blocks, we define

w(~tp)
q

=
w(~tp)

(s� xq)tpq
, (G.9)
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and

↵(~tp)(r; q) =
dr

dsr
1

w(~tp)
q (s)

�����
s=xq

. (G.10)

The second block in the diagonal is lower triangular

(L1,1)ij =

8
<

:

↵
(~tP+i)(j�1,1)

j!i! if j  i

0 otherwise
. (G.11)

The o↵-diagonal block is dense with each element given by

(L1,0)ij =
↵(~tP+i)(P � j, 0)

(P � j)!i!
. (G.12)

Considering again the example of P = 3, the second diagonal block takes the form

L11 =

0

BBBBBBBBBBBBB@

↵(~t4)(0, 1)

0!0!
0 0

↵(~t5)(1, 1)

1!0!

↵(~t5)(0, 1)

0!1!
0

↵(~t6)(2, 1)

2!0!

↵(~t6)(1, 1)

1!1!

↵(~t6)(0, 1)

0!2!

1

CCCCCCCCCCCCCA

, (G.13)

while the o↵-diagonal block is

L10 =

0

BBBBBBBBBBBBB@

↵(~t4)(2, 0)

2!0!

↵(~t4)(1, 0)

1!1!

↵(~t4)(0, 0)

0!2!

↵(~t5)(2, 0)

2!0!

↵(~t5)(1, 0)

1!1!

↵(~t5)(0, x)

0!2!

↵(~t6)(2, 0)

2!0!

↵(~t6)(1, 0)

1!1!

↵(~t6(0, 0)

0!2!

1

CCCCCCCCCCCCCA

. (G.14)

Using these blocks to construct the full matrix G, one can find the Hermite interpolation

of function when the P � 1 derivatives are known. This same procedure can, therefore,

also be used for doing translationally invariant Fourier transforms in 3D.
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G.2 Oscillating integrals

The other array that has to be precomputed for our Hankel transform is the fast oscillating

integrals in eq. (5.85). An element in this tensor is given by

Ip

nj
=

p
i⇡

8↵j

ei↵jk
2
n
@p

@⌘p
Gj(⌘)En,j(⌘)

����
⌘=2i↵jkn

, (G.15)

with

Ejn = erf

 s
i

↵j

⌘

2

!
� erf

 s
i

↵j

2i↵j�kn + ⌘

2

!
(G.16)

and

Gj = ei⌘
2
/(4↵j). (G.17)

The derivative of the product leads to binomial coe�cients

Ip

jn
=

p
i⇡

8↵j

ei↵jk
2
n

pX

q=0

 
p

q

! ✓
@p�qGj(⌘)

@⌘p�q

◆✓
@qEjn(⌘)

@⌘q

◆����
⌘=2i↵jkn

. (G.18)

The derivatives of Gj can be expressed through Hermite polynomials Hp(x)

Gjnp =
@pGj(⌘)

@⌘p

����
⌘=i2↵jkn

= (�1)pHp

⇣p
i↵jkn

⌘
e�i↵jk

2
n (i4↵j)

�p/2 , (G.19)

The derivatives of E are less compact but can also be expressed through Hermite poly-

nomials

Ejnp =
2(�1)P�1

⇡
(�i4↵j)

�p/2 ei↵jk
2
n

✓
Hp�1(i

p
i↵jkn)

�Hp�1(i
p

i↵j(kn+1 � 2kn))e
i↵j(kn+kn+1)

◆
,

(G.20)

I can then be written as

Ip

nj
=

p
i⇡

8↵j

ei↵jk
2
n

 
GjnpEjn +

pX

q=1

 
p

q

!
Gjn(p�1)Ejnq

!
. (G.21)

One can significantly decrease the computation time by taking advantage of the fact that

the same Hermite polynomials occur in both E and G.
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Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch, and A. Cavalleri. Possible

225



226 Bibliography

light-induced superconductivity in K3 C60 at high temperature. Nature, 530:461–

464, 2016.

[12] Jacqueline Bloch, Andrea Cavalleri, Victor Galitski, Mohammad Hafezi, and Angel

Rubio. Strongly correlated electron–photon systems. Nature, 606:41–48, 2022.

[13] Farokh Mivehvar, Francesco Piazza, Tobias Donner, and Helmut Ritsch. Cavity

QED with Quantum Gases: New Paradigms in Many-Body Physics. Advances in

Physics, 70(1), 2021.

[14] F. Schlawin, D. M. Kennes, and M. A. Sentef. Cavity quantum materials. Applied

Physics Reviews, 9(1), 2022.

[15] Kevin Roux, Hideki Konishi, Victor Helson, and Jean Philippe Brantut. Strongly

correlated Fermions strongly coupled to light. Nature Communications, 11(2974),

2020.

[16] Serge Haroche and Daniel Kleppner. Cavity quantum electrodynamics. Physics

Today, 42(1), 1989.

[17] E. T. Jaynes and F. W. Cummings. Comparison of Quantum and Semiclassical

Radiation Theories with Application to the Beam Maser. Proceedings of the IEEE,

51:89–109, 1963.

[18] Gerhard Rempe, Herbert Walther, and Norbert Klein. Observation of quantum

collapse and revival in a one-atom maser. Physical Review Letters, 58(4), 1987.

[19] Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche. Observation of

self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity:

The ringing regime of superradiance. Physical Review Letters, 51(13), 1983.

[20] D. Meschede, H. Walther, and G. Muller. One-atom maser. Physical Review Letters,

54(6), 1985.

[21] R.J. Thompson, G. Rempe, and H. J. Kimble. Observation of normal-mode splitting

for an atom in an optical cavity. Physical Review Letters, 68(8), 1992.

[22] T. Yoshle, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell,

O. B. Shchekin, and D. G. Deppe. Vacuum Rabi splitting with a single quantum

dot in a photonic crystal nanocavity. Nature, 432:200–203, 2004.

[23] S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Ho↵, S. Deléglise, S. Osnaghi,
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Polaritons. Physical Review X, 10(021011), 2020.

[100] Logan W. Clark, Ningyuan Jia, Nathan Schine, Claire Baum, Alexandros Geor-

gakopoulos, and Jonathan Simon. Interacting Floquet polaritons. Nature Research

Letter, 571:532–536, 2019.

[101] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and

M. Sa↵man. Observation of Rydberg blockade between two atoms. Nature Physics,

5:110–114, 2009.

[102] Peter Domokos and Helmut Ritsch. Collective Cooling and Self-Organization of

Atoms in a Cavity. Physical Review Letters, 89(25), 2002.

[103] Adam T. Black, Hilton W. Chan, and Vladan Vuletic. Observation of collective

friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg

scattering. Physical Review Letters, 91(20), 2003.



Bibliography 233

[104] Kristian Baumann, Christine Guerlin, Ferdinand Brennecke, and Tilman Esslinger.

Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature,

464(7293):1301–1306, 2010.
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