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Abstract

The ongoing development of more powerful and controllable laser sources in
the IR regime, together with the steadily increasing precision of photoelectron
detection methods, has led to several unexpected findings in strong-field ioniza-
tion experiments over the last decades. While a lot of attention has been paid
to high energy photoelectrons resulting from interaction of a strong laser field
with an atom or a molecule, there are also unresolved questions regarding the
spectrum of low energy photoelectrons. We address two such spectral features,
the Low Energy Structure (LES) with an energy of a few eV, and the Zero
Energy Structure (ZES) with an energy in the meV range. Our treatment of
the laser-driven electron dynamics is completely classical. By introducing sim-
plifying assumptions, analytical models are obtained that reproduce the essence
of the experimental features; numerical simulations, propagating the classical
equations of motion, are used to support the arguments and bridge the gap
between our analytical solutions and available experimental results.

Using only a well-known strong-field trajectory model, which we modify to
describe motion in few-cycle laser pulses, we arrive at simple analytical estimates
for the LES peak energies in short pulses. The scaling formula agrees well with
numerical simulations. For comparison with experimental results additional
considerations have to be made, taking the di↵erent laser intensities within the
laser focus into account; this can be included in a compact way. In the end,
an agreement well within the experimental accuracy is reached, so that our
formula may be used for predictions in future experiments with di↵erent laser
parameters or ionization targets.

Predicting the LES energies is one issue; explaining how they are formed is
another. We approach the problem from a classical nonlinear dynamics view-
point, introducing a model which allows a fully analytical treatment and agrees
well with simulations. An intuitive picture emerges, where the LES results from
electrons being driven back by the laser into the vicinity of the ion, and per-
forming low energy ”soft” recollisions some 20 au away from it. The recollisions
cause a caustic structure in the final momentum spectrum. Carefully separating
the discussion of di↵erent aspects of this feature, which are sometimes confused
in the literature, gives a unified classical view of all LES features.

The ZES caused significant interest when it was experimentally discovered a
few years ago, lacking a theoretical explanation. Our treatment shows that the
ZES is caused by a secondary field ionization process after the strong-field laser
pulse is over; it is an e↵ect of the weak electric field applied in the detector in
order to measure the momentum of outgoing charged products. It is thus not
a signature of an unknown interaction process between the driven electron and
the ionic core, but of excited atomic states being populated by the laser driving.
Our analytically derived scaling of the ZES momentum with the detector field
is found to agree well with experimental results, supporting our understand-
ing. The fact that it rises so strongly above the spectral background can be
understood from classical dynamics - the situation is that of the Stark problem,
which allows a thorough analytical treatment. Somewhat surprisingly a rele-
vant aspect of Stark dynamics - the distribution of delay times in an ensemble
of escaping trajectories - was not analyzed before, but nevertheless allow a fully
analytical treatment, and in the experimental detection method gives rise to a
peculiar structure that is identified as the ZES.
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Chapter 1

Introduction

One could conceivably put the birth of atomic physics to the year 1814, when
Fraunhofer discovered the presence of absorption lines in the spectrum of sun-
light [1], the full explanation of which was then worked out by Kirchho↵ and
Bunsen in 1859 [2]. The atom - hitherto only an assumed entity used for ex-
plaining chemical reactions - thus revealed its own internal properties, and while
the internal structure (or even existence of such) was only clarified at the turn
of the 20th century, the fact that each atom had its own characteristic optical
properties led the way to studying atoms as such.

The interaction between light and matter was thus, from the earliest mo-
ment, both the central tool for studying atoms, and a physical process whose
properties needed to be understood. While the work of Maxwell clarified the
nature of light as an electromagnetic wave and described its relation to material
(electric and magnetic) processes, the exact nature of the interaction was not
clear. The arrival of quantum mechanics in early 20th century finally provided
a full theoretical basis for atomic physics. A key ingredient was the description
of the photoelectric e↵ect, pointing to the quantum theory of light.

Mid-20th century atomic physics had reached a high degree of refinement in
measuring atomic spectra, and theoretical explanations of all the observed levels
and shifts were available, but one was still confined to bulk experiments on a
large number of atoms, and a wide range of frequencies involved. The idea of
coherent light, stemming from a single atomic transition, came from theoretical
formulations; in particular Einstein’s prediction of stimulated emission [3] gave
hopes of a powerful source of monochromatic light with a well-defined over-
all phase. While simple in theory, the technical challenges in reaching a higher
occupation probability in higher energy levels than lower - the population inver-
sion necessary for amplified stimulated emission - were enormous. In 1960 the
device was succesfully built and could amplify incoming light at a specific wave-
length by many orders of magnitude, obtaining l ight amlification by stimulated
emission of radiation - the laser.

While in itself a remarkable application of fundamental atomic physics, the
importance of the laser as a tool for investgation of atoms was immediately
clear, due to the unprecedented intensity, narrow frequency bandwidth, and co-
herence of the emitted light. The high intensities reached already by early lasers
- around 1015 W/cm2 within a few years of the first laser - suddenly made it
possible to investigate processes that had previously only been Gedankenexper-
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1 Introduction

imente. It was suggested by Göppert-Mayer in 1931 that, at su�cient intensity,
a system can absorb several photons at once [4], violating the simple energy
conservation law for photoelectric transitions �E = h⌫. Instead absorption of
n photons gives �E = nh⌫. Experimental realization of such multiphoton pro-
cesses became possible with the advent of the laser. This in turn spurred the
development of theoretical models for such processes. In particular multipho-
ton ioinzation was investigated; ionization of atoms was now possible using even
visible or infrared light, due to a large number of photons being involved. Early
studies were concerned with the ionization probability only, however with time,
ionizing atoms and then measuring the momentum spectrum of the outgoing
electrons and/or ions was possible, giving more information about the physical
process.

While laser intensities have increased steadily the last 30 years, the available
laser pulses have become shorter and shorter - femtosecond pulses are now rou-
tine, and as a secondary process pulses of attosecond timescale can be produced.
Femtophysics has revealed a lot about chemical reactions and motion of atomic
nuclei in molecules - attophysics, still in its cradle, promises to do similar for
the motion of electrons in atoms and molecules.

Even though the theory behind multiphoton ionization is highly developed,
numerous approximations are always necessary. The process is typically in a
parameter regime at the border between several di↵erent theories - partly clas-
sical mechanics, partly quantum mechanics, sometimes relativistic... The large
energy ranges available make the treatment more challenging. Hence theoretical
development has often been pushed by new experimental discoveries, and the
attention of theorists has been called on by a sequence of suprising results.

This thesis concerns two such unexpected experimental results. The low en-
ergy structure (LES) was discovered in 2009 [5] under experimental conditions
where common theories were thought to be valid. Its explanation as a rescat-
tering e↵ect was soon put forward. Several di↵erent explanations have been
suggested, so that a clear consensus has not been reached on its exact origin.
Meanwhile its properties under di↵erent laser pulses is only partly known, ex-
perimentally and theoretically. This thesis aims to contribute to two aspects
of the low energy structure: its properties in very short laser pulses, and the
detailed mechanism of its formation.

Another unexpected feature was measured in 2013 [6] and named the zero
energy structure (ZES). In this thesis a rather complete explanation is put
forward, where it results as an e↵ect of the measurement apparatus on the
system, and not some kind of unknown scattering process, as was speculated
originally. While less spectacular, it still provides information about the system
and merits consideration in future experiments. From a theoretical point of
view, it can be studied analytically to a high level of detail, and this study even
reveals some new aspects of the more than 100 years old Stark problem.

Overview of this thesis

In Chapter 2 the theoretical background for the remaining thesis is outlined,
describing the interaction of intense laser light with atoms, the description of
the laser light itself, and the di↵erent parameter regimes of strong field ioniza-
tion. Tunneling ionization is taken as a basis for the following discussion, where
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the breakdowns of the simple models are described: above threshold ionization
(ATI), high harmonic generation (HHG), frustrated tunneling ionization (FTI)
and finally the low energy structure (LES). A short survey of the LES literature
is included, forming the motivation for subsequent chapters.

In Chapter 3 a classical trajectory model for the LES is introduced and its
properties discussed. Emphasis is on the scaling of LES energies with the pulse
length of short laser pulses, where an experimental collaboration led to the work
of [7]. The model is presented along with simulations, successively introducing
more realistic circumstances until a comparison with the experiment is done,
showing very good agreement.

Chapter 4 and Chapter 5 are concerned with the mechanism behind the LES
peaks. Extending exisiting models, an analytical diagonalizable model is used
to reproduce qualitatively the LES features. By binding these results together
with the classical trajectory model of Chapter 3, a complete analytical theory
is obtained and shown to agree well with simulations. In Chapter 5 a numerical
treatment of the system is used to translate the insights of the analytical model
to the fully realistic situation and show how experimentally reported features
are related to those of the model.

Leaving the LES, Chapter 6 discusses the zero energy structure (ZES). After
presenting the hyptohesis of ZES being created by the influence of the electric
field of the measurement apparatus on the experimental system, a model is
proposed which leads to simple scaling properties of the structure, and reduces
the situation to the Stark problem. Extending the simulation method to include
this process reproduces the feature in excellent agreement with the experimental
results. In a collaborative work [8], the theoretical scaling was confirmed by
experimental measurements. The details of the involved Stark dynamics, which
can be treated fully analytically, are worked out in Chapter 7. It is seen that
the ZES is a generic feature of the Stark problem, which has only now been
noticed due to the novel measurement techniques.
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Chapter 2

High intensity laser-atom
interaction

This chapter gives a short introduction to the theoretical models used in subse-
quent chapters for the treatment of strong field processes.

The interaction of a laser field with an atom is introduced in Section 2.1,
together with the numerous assumptions and simplifications necessary in order
to reduce the complexity of the real process and make the study of strong
field processes feasible. Since our interest is in interaction with atoms, the
simplifications are relatively easy to justify and the complicated behavior that
arises in strong field processes in composite systems, like molecules or clusters,
is avoided.

In Section 2.2 the properties of a laser pulse is discussed, and the spatial
shape of a laser focus is treated.

The basic strong field approximation (SFA) is discussed in Section 2.3 with
the two dominant ionization processes - multiphoton and tunneling - and their
respective parameter regimes. The treatment is kept short since the main topic
of this thesis is the dynamics after initial ionization, so that details of the -
highly complex - initial ionization mechanism are not crucial. Thereafter a few
of the observed breakdowns of the simple SFA is introduced: high energy above-
threshold ionization (ATI), high harmonic generation (HHG) and frustrated
tunneling ionization (FTI). These will be related to in subsequent chapters.
The focus of Chapters 3-5 of this thesis is the low energy structure (LES). A
short summary of the currently available results is given in Section 2.6, forming
the motivation for the detailed treatment in the following chapters.

2.1 Interaction of strong fields with atoms

The interaction of an atom with an electromagnetic field is in general a complex
problem, with a wealth of phenomena resulting such as photoabsorption, AC
Stark splitting of atomic levels, Lamb shift and more [9, 10]. Drastic approxi-
mations are necessary in order to isolate a single e↵ect.
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2 High intensity laser-atom interaction

2.1.1 Single-active-electron approximation

In the situation of a high intensity laser field, the external field is so strong that
it dominates the internal structure of the atom. The interest is not in resolving
single energy levels, so that treating the whole atom in the simplest possible
way is often feasible. This thesis discusses exclusively the single-active-electron
approximation, where the motion of an electron is governed by the hydrogenic
Hamiltonian, in atomic units:

H
SAE

=
(p+A(r, t))2

2
� 1

|r| .

The dynamics of other electrons in the atom is neglected; they serve only to
screen the nuclear charge, so that the active electron moves in the Coulomb
field of a singly charged ion. The nucleus is treated as fixed (at the origin) due
to its high mass. A is the vector potential of the laser field; the coupling with
the electromagnetic field is introduced via the minimal coupling prescription
p ! p+A [11].

2.1.2 Dipole approximation

When dealing with light-driven processes that take place in a small region in
space, use can be made of the dipole approximation

A(r, t) ⇡ A(0, t)

which brings with itself two e↵ects:

1. The electric field E = �dA/dt has no spatial dependence, E = E(t).

2. The Lorentz force, which a↵ects the electronic motion over the magnetic
field B = rotA, is neglected.

The first point is a good approximation if the actual field is roughly constant in
the interesting region. This is often written as

k · r ⌧ 1

where k is the wave vector of the incoming light and r the position vector of the
system under study. For our systems we have |k| ⇠ µm while typically |r| ⇠
nm, so the condition is well fulfilled.

The theoretical condition for the Lorentz force to be small is that the electron
velocity is much smaller than the speed of light, v ⌧ c. For long wavelength
high intensity lasers this is not always fulfilled. An experimentally verified
breakdown was reported in [12], at the extreme end of the laser parameters
used in this thesis (intensity I = 6 · 1013 W/cm2, wavelength � = 3.4 µm).
Still, the error even at these parameters was found small, and we mainly use
wavelengths at or shorter than 2 µm where indeed v ⌧ c. Therefore we use the
dipole approximation.
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2.2 Description of the laser field

2.1.3 Length gauge

Within the dipole approximation one can perform a gauge transformation [13]
of the Hamiltonian by setting

� ⌘� r ·A(t)

Ai(t) !Ai(t) +
@�

@xi
= 0 .

While the vector potential vanishes in the new gauge, a scalar potential is in-
troduced

V ! �@�

@t
= �r ·E(t)

which multiplied with the electron charge �1 (atomic units) enters into the
length gauge Hamiltonian

H
SAE

=
p2

2
� 1

|r| +E(t) · r . (2.1)

This makes the propagating wave of the laser appear as a time-dependent electric
field. In this picture the ionization process may be seen as tunneling through a
potential barrier, see Fig. 2.3. This not just gives an intuitive physical picture,
but is particularly suited as a starting point for numerical simulations.

2.2 Description of the laser field

A laser pulse is an electromagnetic field. Thus it has to obey Maxwell’s equa-
tions, from which wave equations for the electric and magnetic fields can be
derived [14]. Only the electric field is of interest to us, cf. Section 2.1.2. It
satisfies

r2E(x, t)� 1

c2
@2E(x, t)

@t2
= 0

In this thesis we discuss linearly polarized fields only, with the polarization
direction typically taken as z. The simplest solutions are then plane waves,
E = F cos(k ·r�!t)ez, corresopnding to a continuous wave (cw) laser field with
an infinite spatial extension.

2.2.1 The laser pulse

Laser pulses are obtained by superposition of plane waves. In a physical laser
system this is achieved by mode-locking of a large range of frequencies, giving
pulses down to a length of a few fs [15]. For not too short pulses one typically
writes, within the dipole approximation (i.e. E(t) = E(0, t)),

E(t) = F
0

g(t) cos(!t+ '
CEP

)ez (2.2)

with g(t) the pulse envelope, ! the central frequency, '
CEP

the carrier envelope
phase and F

0

the peak field strength. The exact shape of the pulse envelope of a
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2 High intensity laser-atom interaction
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Figure 2.1: Comparison of the two pulse definitions for a one and two cycle
pulse (FWHM). T = 2⇡/! is the laser period.

femtosecond laser pulse depends on the system; for theoretical treatment a few
idealized g(t) are in common use.

The pulse can also be defined via the vector potential:

A(t) = �F
0

!
f(t) sin(!t+ '

CEP

)ez (2.3)

from which the electric field is found as

E(t) = �dA

dt
. (2.4)

For pulses longer than a few cycles f(t) ⇡ g(t).
Whatever theoretical model is used, it is necessary that

Z 1

�1
E(t)dt = 0 .

This corresponds to a vanishing first Fourier coe�cient, i.e. the field contains
no DC component. If one builds up the pulse in the frequency representation,
as is done in real laser pulses by combining frequencies, this is automatically
enforced since a constant field is not a solution of the Maxwell equations, but
for theoretical pulses constructed from Eq. (2.2) care is necessary.

We wil consider two specific pulse shapes:

Gaussian

The Gaussian pulse is defined as

A(t) = �F
0

!
exp

(
�2 ln 2

✓
t

⌧

◆
2

)
sin(!t� '

CEP

) (2.5)

⌧ is the full width at half maximum (FWHM), i.e. the duration when the
intensity I = cF 2 is larger than half its peak value.
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2.2 Description of the laser field

Derivative Gaussian pulse

An alternative, related, pulse definition, which we name here a ”derivative Gaus-
sian”, is given by [16]

A(t) =
F
0

!2

d

dt

"
exp

(
�2 ln 2

✓
t

⌧

◆
2

)
cos(!t� '

CEP

)

#
. (2.6)

By defining the vector potential as the derivative of a Gaussian function, trajec-
tory models (see Section 3.4) lead to very compact expressions. The di↵erence
between Eq. (2.5) and Eq. (2.6) is visible for a FWHM of ⌧ = 1T but hardly
noticeable for ⌧ = 2T ; cf. Fig. 2.1. For longer pulses it is negligible.

2.2.2 Spatial shape of the laser focus

In vacuum the spatial and temporal variation of the field envelope can be sep-
arated. The presence of a propagation medium may destroy the separation by
dispersion and the optical Kerr e↵ect, leading to self-focusing and other non-
linearities [17]. Strong-field experments take place at low densities where the
separation is an excellent approximation.

In order to reach the necessary intensities the laser beam is focused down to
a small fraction of its initial area. It is important in all considerations of exper-
iments that the target (in our case, a cloud of atoms) is typically much larger
than the focal spot size, so that di↵erent parts are hit by di↵erent intensities.
The experimental measurement will not take place at a definite intensity, but is
the result of an average of measurements at the di↵erent intensities present in
the focus.

Theoretically the spatial shape of a focused beam is described by a specific
solution of Maxwell’s equations, the TEM

00

Gaussian beam (not to be confused
with the Gaussian temporal shape discussed in Section 2.2.1). Its intensity
distribution close to the focus is, in the paraxial approximation, [17]

I =
I
0

1 + (z/zR)2
exp

✓
� 2⇢2

w2

o[1 + (z/zR)2]

◆
(2.7)

where the focal spot is at the origin and zR is the Rayleigh length defined by

zR = ⇡w2

0

/�

with w
0

the beam waist and � the wavelength. zR gives the distance along the
z-axis where the intensity has reduced to half its maximum value I

0

; w
0

is the
width of the radial Gaussian distribution at z = 0. See Fig. 2.2

For each intensity I
1

the focal volume with intensity higher than I
1

is given
by

V (I > I
1

) =

Z
⇡⇢2(z)dz

with ⇢(z) given implicitly by Eq. (2.7) for I = I
1

and integration limits

z = ±zR
p
I
0

/I
1

� 1

which gives [18, 19]
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2 High intensity laser-atom interaction
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Figure 2.2: Intensity distribution within the focus according to Eq. (2.7), with
contour lines at I/I

0

= 0.9, 0.8, . . . , 0.1. The axes have been scaled by the
Rayleigh length and beam waist, respectively.

V (I > I
1

) = ⇡w2

0

zR

✓
4

3
� +

2

9
�3 � 4

3
arctan�

◆

where � =
p
(I

0

� I
1

)/I
1

. This is a steeply dropping function, meaning that
the volume where the highest intensities are reached is relatively small.

The di↵erential relative volume of each isointensity shell is given by

dV =
⇡

3
w2

0

zR(2I + I
0

)(I
0

� I)1/2I�5/2dI (2.8)

which is 0 at I
0

and rapidly increases as I decreases.
For a process giving a measurement outcome x with some intensity depen-

dent probability w(x, I), the measured probability for x from the whole focus
will be:

w(x) =

Z
w(x, I)

dV

dI
dI (2.9)

Even for a process strongly dependent on intensity, like tunneling, the focal vol-
ume of somewhat lower intensities is typically so large that they also contribute
significantly to the observed process. Averaging over the intensities in the focus,
by Eq. (2.9), is then necessary in comparing theory with experimental results.

2.3 Strong field physics

In this thesis we are mainly interested in mid-infrared laser fields interacting
with single atoms. Experimentally the recent drive has been towards shorter
and more precisely controlled pulses [20–22], and more refined measurement
techniques [23]. The theoretical treatment of ionization of an atom by high
intensity radiation is a rich field, still under development [24–26]; due to the large
energy ranges and time scales involved, approximations are necessary that may
be valid only in certain parameter ranges or for a part of the whole dynamics.
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2.3 Strong field physics

2.3.1 General overview

The first step is often to treat a zero-range potential, so that the e↵ect of
the Coulomb potential is neglected outside the origin, where the initial state
is located. This was done alread by Keldysh [27] and subsequently refined by
Faisal [28] and Reiss [29,30], together giving name to the KFR method. Keldysh
identified the adiabaticity parameter that bears his name

� ⌘

s
Ip
2Up

= !t
barrier

where Ip is the ionization potential (negative bound state energy) and Up is the
ponderomotive energy; for linear polarization

Up = F 2/4!2 .

t
barrier

was defined by Keldysh as the time a classical particle would spend in
the barrier region [27]. The two equivalent definitions of � thus have di↵erent
physical meaning: one compares the energy scale of the laser driven motion to
that of the bound state, the other the typical time scale of ionization to the
time scale of the oscillating laser field, leading to the interpretation of � as a
measure of the adiabaticity of the process. � is used to distinguish between two
parameter regimes, each with its own physical interpretation [24,31,32]:

� � 1: Multiphoton

A large value � � 1 means that the laser field strength is changing rapidly
compared to the typical timescale of the ionization process, so that ionization
takes place through ”shake-up” of the electron energy. The laser field acts as
a periodic driving force, successively giving energy to the system. The photon
energy is rather high, meaning that a few photons are enough to ionize the atom.
More photons than necessary can be absorbed; this is known as above-threshold
ionization (ATI). The momentum spectrum typically consists of rings (”ATI
rings”) at constant energy, each corresponding to a definite photon number.

� ⌧ 1: Tunneling

A di↵erent physical picture is valid when � is small, � ⌧ 1. The laser is then
slowly varying with respect to the bound state dynamics, so that the bound
state can follow the change of the laser field adiabatically. Ionization proceeds
either by tunneling through the barrier (Fig. 2.3) or, for even stronger fields, by
classical over-the-barrier motion [33].

Multiphoton Tunneling
High ! Low !
Periodic driving F (t) ⇠ cos!t Adiabatic ionization F (t) ⇠ F

0

� � 1 � ⌧ 1
Discrete peaks in energy spectrum Continuous energy spectrum

Table 2.1: Comparison of the two extreme cases of pure multiphoton vs. pure
tunneling ionization.
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2 High intensity laser-atom interaction

V
(z

)

z

-Ip

0

t=0
t=π/2ω

t=π/ω

Figure 2.3: Illustration of the tunneling process. Ip is the ionization energy of
the atom. As the Coulomb tails are ”bent down” by the laser field, an electron
can tunnel out. Half a cycle later, tunneling occurs in the opposite direction.

Much of the experimental work is done in a regime where � ⇡ 1 and none
of the pictures is entirely valid. While the KFR formulation can deal with
any ! and give reasonable results, e↵orts to improve the result by including the
e↵ect of the Coulomb force of the ion on the escaping electron have not been very
sucesful [34]. The tunneling picture can be used as a starting point for numerical
simulations, classical or semiclassical, since the tunneling process gives a well
defined exit point and exit time, which can be used as initial conditions in a
simulation. In this thesis we use the tunneling picture in this way, while keeping
in mind that the momentum distribution of a real system contains features
depending on the number of photons involved, which are not reproduced by the
model and hence do not show up in the simulation. This is especially true for
wavelengths below 1 µm. The rather continuous transition from a tunneling to
multiphoton regime, that can be seen in theory [31,35,36] and experiments [37],
shows that the discrete features evolve gradually as an additional structure on
top of a background which is largely determined by the tunneling result.

2.3.2 Tunneling ionization

A small � means that the field changes slowly on an atomic time scale. Hence
one can assume that the atom follows this change adiabatically, and that there
is no transfer of energy from the field to the atom prior to tunneling.

The tunneling rate for a hydrogenic atom with a ground state energy E =
�Ip in a constant field is well known [38]

w(F) =
4

F exp

✓
� 2

3F

◆
. (2.10)

where the reduced field strength is defined as

F ⌘ F/(2Ip)
3/2 .

The typical tunneling behaviour of all systems is contained already in Eq. (2.10).
The dominating influence comes from the exponential dependence on 1/F , giv-
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2.3 Strong field physics
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Figure 2.4: Photoelectron momentum spectrum from PPT theory, on a loga-
rithmic color scale, for a laser intensity of I = 1014 W/cm2 and wavelength of
� = 2 µm.

ing a sharply peaked ionization probability at the maximum field strength of a
laser pulse.

The tunneling in an alternating field, like that of a laser, was the subject
of Keldysh’s original paper [27]. The theory for realistic atoms and di↵erent
ranges of � was soon afterwards developed, with a highly accurate tunneling
rate given in the influential PPT papers [39, 40]

wlm = (2Ip)
3

r
3

⇡
(2l + 1)

(l +m)!

2mm!(l �m)!
C2

l2
2n⇤�m

·Fm+1.5�2n⇤
exp

⇢
� 2

3F

✓
1� 1

10
�2

◆�
(2.11)

which with minor adjusments is also known as the ADK tunneling rate [31,
41]. n⇤ is the e↵ective principal quantum number, l and m the azimuthal and
magnetic quantum numbers, respectively, and Cl the asymptotic coe�cient
of the atom wave function [42]. This gives the cycle-averaged tunneling rate;
instantaneous rates are given in e.g. [43]. Note that the relative weight of
di↵erent field strengths is contained in the second row of Eq. (2.11), while the
first only gives a state-dependent prefactor.

The final momentum of the tunneling electron parallel to the polarization
axis is, for a zero-range potential, given directly by the vector potential at
the tunneling instant pz = �A(t0) (see further Section 3.2). The probability
distribution for the momentum perpendicular to the polarization axis can also
be found from tunneling theory, so that the final photoelectron momentum
spectrum is obtained. For Eq. (2.11) as � ! 0 it takes the form [41]

w(p) = w(0) exp

⇢
�
✓
!2(2Ip)3/2

3F 3

p2k +
(2Ip)1/2

F
p2?

◆�

where

w(0) = C2



!2

⇡2F

✓
F
2

◆�2n⇤

exp

✓
� 2

3F

◆
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2 High intensity laser-atom interaction

Due to cylindrical symmetry around the polarization axis, which we choose as z,
we can integrate over all azimuthal angles and get the distribution in cylindrical
coordinates (p⇢, pz). This momentum spectrum is plotted in Fig. 2.4.

The remainder of this thesis is concerned with dynamics after the tunneling
event, manifesting themselves in the final momentum spectrum as modifications
of the basic picture of Fig. 2.4.

2.4 High energy rescattering e↵ects

While the tunneling and multiphoton pictures give a good first description of
the overall shape of the momentum spectrum of measured photoelectrons, com-
pletely neglecting the Coulomb potential after initial escape from the atom is
insu�cient for explaining several observed phenomena.

The first serious breakdown was measured in 1979 [44,45], where photoelec-
trons with energies up to around 10Up were measured after tunnel ionization
in a linear polarized laser field. From the strong field approximation alone, a
maximum energy of around 2Up is expected. The explanation was possible in
a classical electron trajectory picture [24, 46]. After tunneling, the electron is
moving freely driven by the electric field of the laser. It follows directly from
Newton’s 2nd law that

E(t) ⇠ cos!t =) z(t) ⇠ cos!t+ vdt

since z̈(t) = �E(t). This model is discussed in detail in Section 3.2. The
electron performs harmonic oscillations but can, due to the linear term coming
from the constant drift velocity vd, recollide with the ion at any time during the
cycle. From the model results the maximum energy at recollision [47]:

E = 3.17Up .

In a theoretical head-on collision, the momentum of the electron is reversed. It
then continues the oscillating motion but with a new vd. The maximum possible
final energy turns out to be [46]

E
max

= 10.007Up .

Lower energies are about equally probable, so that a plateau is formed in the
energy spectrum; the so-called ATI plateau [48]. The cross section for the
recollision is very small, so that the plateau is only visible on a logarithmic
scale spectrum; above 2Up, where there are almost no direct electrons, it is
however the dominant spectral feature.

If there is recollision, there is also the possibility of recombination, where the
electron recombines with the ion to form a neutral atom. The excess energy is
released by emission of a single photon. Since the photon frequency is a multiple
of the frequency of the incoming laser, corresponding to a certain number of
photons absorbed by the system during the driven motion [49], the process is
called high harmonic generation (HHG). It can be described by the so-called
three-step model (1: tunneling, 2: driven motion, 3: recombination). The
photon energy is limited by 3.17Up [47,50]. Since Up can reach up to hundreds
of eV, the photon is typically in the XUV or X-ray range. This novel method
of obtaining highly energetic photons from a table top laser system was first
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2.5 Frustrated tunneling ionization (FTI)

realised in 1981 in plasmas [51] and 1987 in atoms [52], and has since become
a standard method. It is the method used in obtaining attosecond XUV pulses
[53].

2.5 Frustrated tunneling ionization (FTI)

After tunneling out of the atom, the electron performs driven oscillatory motion
in the laser field. If its drift momentum vd is high it escapes quickly from the
vicinity of the ion, but if it is small, it returns close to the ion several times
during the oscillations, so that the Coulomb field can have a strong influence on
the motion. If the laser pulse is short, the electron may not gain enough energy
ever to leave the ion, and is instead trapped in a, typically highly excited, bound
orbit. The result of the tunneling process is not ionization, but excitation of
the atom to an excited state.

The experimental evidence for this process was first obtained in 2008 [54],
where it was named frustrated tunneling ionization (FTI). Performing an ex-
periment where tunnel ionization occured, the yield of neutral highly excited
atoms was measured after the laser pulse was over. It was seen that there were
indeed excited atoms present. Numerical simulations showed that the spectrum
had a sharp increase at n = 6, and the distribution p(n) then rapidly dropped
to 0 for smaller n. The threshold value n = 6 could be explained by considering
that oscillations occur with amplitude F/!2 (see further Section 3.3), so that
an electron with vanishing drift momentum ends up at this distance from the
ion, giving the minimum possible energy �!2/F due to the Coulomb potential.
The high Rydberg states are stable after excitation, due to the period of the
orbits being much longer than the laser period [55,56]; this is reminiscent of the
stabilization phenomenon observed at XUV wavelengths [57]. The transition
between FTI excitation and ATI is illustrated in [58].

The recapture of electrons was subsequently used to explain the ”double-
hump” structure of longitudinal momentum spectra [59–61]. In contrast to
the tunneling expectation, where there is a maximum in the spectrum in the
polarization direction at zero longitudinal momentum given by Eq. (2.11) and
visible in Fig. 2.4, there is a dip for the smallest momentum. This is caused
by electrons with small drift momentum during the laser pulse being captured
after it, so they never escape [56]. While other electrons lose momentum on the
way out and partly fill up this range of the momentum spectrum, there is still
a net loss in probability, giving the local minimum around pz = 0.

2.6 The low energy structure (LES)

In 2009, another breakdown of the SFA was reported, called the low energy
structure [5].

The authors performed strong field ionization experiments with several dif-
ferent targets (noble gas atoms and diatomic molecules). The photoelectron
spectrum was measured in the forward direction, i.e. along the laser polariza-
tion axis with a small opening angle aorund it. A significant peak was seen at
an energy of a few eV; the ponderomotive energy was Up ⇠ 30 eV. The peak was
present for all di↵erent targets, pointing to a universal mechanism. The peak
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2 High intensity laser-atom interaction

Figure 2.5: Calculated distribution of excited state population after the laser
pulse, from [54].

Figure 2.6: The low energy structure as a peak at a few eV, indicating a promi-
nent breakdown of the KFR prediction. Measurements for argon atoms, nitrogen
and hydrogen molecules. Inset shows the high energy ATI plateau formed by
rescattering electrons. From [5].
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2.6 The low energy structure (LES)

energy was seen to depend on the Keldysh parameter roughly as EH ⇠ ��1.8.
The wavelength was also altered; a wavelength of 0.8 µm did not give a

visible LES. Instead the ATI peaks associated with di↵erent number of partici-
pating photons dominate the spectrum. Hence it seemed necessary to be in the
tunneling regime with � ⌧ 1 for a clear LES to develop.

TDSE calculations were performed and agreed well with the experimental
LES. This strongly indicated that some rescattering was responsible for the
structure, since it is neglected in the SFA but present in the full problem. While
the Coulomb potential could explain the shift of low energy electrons due to the
FTI, it was expected to have a smooth influence and not give a pronounced,
well defined peak at small positive energy.

Soon afterwards the experimental findings were confirmed [62]. In this ex-
periment a possible second peak was obseved close to zero. The experiment
was compared to a semiclassical CTMC simulation similar to that described in
Appendix C, and an agreement was found for wavelengths longer than � ⇡ 1.2
µm. Hence a pure quantum e↵ect was ruled out, so that the LES seemed to be
a classical recollision e↵ect.

A number of theoretical investigations followed. In [63] a classical analysis
was used, drawing the conclusion that the LES is due to a focusing of trans-
verse momenta into the forward direction, so-called Coulomb focusing [64]. The
authors analyzed the di↵erent kind of trajectories that contribute to the LES,
but the actual mechanism behind the focusing was not further clarified.

[65] used a semiclassical approach based on quantum orbits, that extends
the strong-field approximation taking Coulomb e↵ects into account. The idea
behind the model is to use classical trajectories, including the Coulomb field,
and including a quantum phase which is accumulated along the orbit. The
final momentum distribution shows quite good agreement with TDSE results,
with the additional advantage that an intuitive picture of the motion can be
obtained from the classical trajectories used. (In a pure quantum treatment the
trajectory concept loses its meaning.) The authors identified a caustic structure
in the 2D momentum spectrum, identified this with the LES, and identified
the type of trajectories responsible. Like [62] they stressed the importance of
transverse focusing in the caustic formation.

The role of the asymptotic Coulomb potential was investigated in [66], which
serves to complete the picture but does not by itself explain the observed LES
features.

In [67] the LES peak momenta were shown to result directly from the clas-
sical trajectory model. Not just a single peak, but several peaks were predicted
with definite momenta. The scaling with laser wavelength and field strength
was shown to result immediately from the model. Furthermore, a mechanism
behind the actual peak formation was suggested. This is based on so-called
”soft recollisions” at odd number of half-periods, happening around 20 au dis-
tance from the ion, resulting in a ”bunching” of longitudinal momenta. The
mechanism was shown to give a pronounced peak in the longitudinal spectrum.
In contrast to [65] and [63], the longitudinal momentum was identified as the
significant one for LES formation. In [68], the same authors investigated the
short pulse characteristics of the LES, indicating the CEP dependence of the
LES and supporting the proposed recollision model.

[69] stressed the two-dimensional characteristic of the LES, and showed
using CTMC simulations that a caustic-like structure was also visible when not
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2 High intensity laser-atom interaction

measuring final 2D momentum, but instead final energy and angular momentum.
This sheds light on the physical process, but does not immediately translate
to experiments since the angular momentum of the escaping electron is not a
measurable quantity. The model was further elaborated in [70] and compared
to TDSE and Coulomb-corrected SFA calculations.

[71] reported another experiment where the LES was resolved. In particular
the peak at low energies was stressed, given the name VLES (very low energy
structure). Classical simulations reproduced the observed structures. [72] fur-
ther investigated the scaling properties and relation to the ATI peaks, using a
quantum S-matrix treatment with scattering included to the lowest order.

The last years saw an increase in measurement precision, with fully resolved
2D momentum spectra being published [22, 73]. The LES was thus confirmed
as occuring not only on the forward polarization axis, but as an increase in
probability along a range of perpendicular momenta.

2.7 Final remarks

This chapter has given a short overview of strong field ionization of atoms. The
general theory has been outlined, and the specific laser pulse shape and focal
intensity distributions that will be used in this work have been described.

There are still many interesting open questions regarding the tunneling pro-
cess (the question of tunneling time being at the moment the most debated one)
and the transition to the multiphoton regime. The model described here is in
many ways the simplest one possible, but is, together with numerical simula-
tions, very powerful in explaining experimental results.

The focus of this thesis is the classical dynamics after tunneling, in the com-
bined field of the ion and the laser. The details of the ionization probability will
not severly a↵ect the results presented, and therefore the somewhat pedestrian
approach we take to the tunneling event is justified.
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Chapter 3

The LES trajectory model

The appearence of the low energy structure (LES) has often been reproduced
by considering the classical motion of the electron after tunneling [62, 63, 67].
Due to its appearence in classical trajectory simulations, it clearly is a classical
e↵ect, with quantum e↵ects only slightly modifying the final result, at least for
wavelengths � > 1 µm. For shorter wavelengths single photon e↵ects, the ATI
rings, increasingly dominate the spectrum. [62,74,75].

In this chapter the trajectories and the recollision e↵ects are treated in a
simplified way, that has been found a useful approximation for finding the prop-
erties of the LES, and for intuitive understanding of the process. The discussion
concerns what could be called a ”classical strong field approximation”, where
the dynamics is treated completely classically and the Coulomb field is neglected
after tunnel ionization. It is also known as the simple man’s model [76,77]. The
ensuing dynamics is that of the celebrated three-step model for high harmonic
generation (see Section 2.4).

From this model a series of LES peak energies are obtained, giving a first
approximation to where in the spectrum the peaks are formed. The question of
how they are formed is beyond the three-step model. It is discussed in detail in
Chapter 4 and 5.

The model and resulting dynamics is presented in Section 3.1 and Section 3.2.
To introduce the essential parts of the model, Section 3.3 discusses continuous
wave laser fields only. The interesting modifications in pulses - in particular
short ones - is discussed in detail in Section 3.4. A comparison with experiment
is done in Section 3.5 together with a description of additional considerations
that need to be taken into account.

3.1 LES three-step model

The LES can be described as a three-step process:

1. Tunnel ionization close to the field maximum.

2. Driven dynamics in the laser field alone (Coulomb field neglected).

3. Recollision with low energy - interaction gives visible low energy structures
in final electron momentum.
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3 The LES trajectory model

The three-step model starts with a tunneling event, where the electron is
separated from the ion. The central idea is that the e↵ect of the interaction
between the ion and the electron is only taken into account in the first and final
step, which are both instant in time. The time dynamics is contained in the
second part, where neglecting the Coulomb field gives a significant simplification,
to the extent that the motion is given by analytical expressions. The initial
tunneling step is well investigated, cf. Section 2.3.2.

In this chapter, the second step will be treated in detail. In Chapter 4 the
third step is addressed.

The time evolution of trajectories treated here is identical to that used in the
three-step HHG model (cf. Section 2.4). The only di↵erence is the rescattering
condition (3rd step) - while HHG/ATI assumes a high energy recollision, we
look for low energy recollisions.

3.2 Classical strong field dynamics

Simply neglecting the Coulombic term in the full Hamiltonian Eq. (2.1) yields:

H
SFA

=
p2

2
+ r ·E(t) .

The classical trajectory of the electron follows from Newton’s second law F =
mr̈. The only force acting on the electron is the laser field E(t). In atomic units

r̈(t) = �E(t)

ṙ(t) = v
0

�
Z t

t0

dt0E(t0) = v
0

+A(t)�A(t
0

)

r(t) = r
0

+ (t� t
0

)(v
0

�A(t
0

)) +

Z t

t0

dt0A(t0) (3.1)

where v
0

is the initial velocity and r
0

the initial position. A is the vector
potential, cf. Eq. (2.4). The initial conditions must be obtained from the
treatment of the ionization process. In the tunneling case, they are commonly
taken as

r
0

= 0

v
0,k = 0 in the polarization direction

Perpendicular to the polarization direction, v
0,? can take any value. Motion in

this direction is trivial since no force is acting.

The trajectory picture is very simple: perpendicular to polarization, the
electron moves away with constant velocity. Parallel to the polarization, it
performs oscillating motion due to the laser driving, plus a constant drift motion
given by the vector potential at the tunneling instant. This drift momentum
vd = �A(t

0

) is what remains after the laser pulse is over, and what is measured
as an outgoing momentum at the detector. The first question we want to answer
is: for which vd is a low energy rescattering possible?
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3.3 LES trajectories in a continuous wave laser

3.3 LES trajectories in a continuous wave laser

We first study the trajectories under a continuous wave (cw) laser, i.e. g(t) = 1
in Eq. (2.2). This can be thought of as the limiting case of a very long laser
pulse, compared to the period. As will be shown below the results for time-
limited pulses converge to the cw results, and the driven motion by the laser
is very well approximated by the cw description for pulses of more than about
10 cycles length; already for a 4 cycle pulse the quantitative agreement is quite
good.

In a cw laser the vector potential Eq. (2.3) simplifies to

A(t) = �F

!
sin!tez

since the CEP is not defined for a cw laser and can be taken as 0. The trajec-
tories Eq. (3.1) take the form

ż(t) =
F

!
[sin!t

0

� sin!t]

z(t) =
F

!2

[(!t� !t
0

) sin!t
0

+ cos!t� cos!t
0

] . (3.2)

A recollision occurs when, for some t
1

z(t
1

) = 0 .

For the recollision to give a low-energy feature, it is expected that the electron
has low energy at the recollision instant. Although the energy may change
drastically at a recollision very close to the ion, such collisions are almost chaotic,
and give a broad range of final energies, including the ATI plateau (Section 2.4).
They will not contribute significantly to the low energy spectrum. One can
therefore expect that the low energy features stem predominantly from electrons
with low velocity at recollision, i.e.

ż(t
1

) = 0 .

These two conditions inserted into Eq. (3.2) give

0 = sin!t
0

� sin!t
1

=) !t
1

= 2n⇡ + !t
0

(VLES) or
!t

1

= (2n+ 1)⇡ � !t
0

(LES)

0 = (!t
1

� !t
0

) sin!t
0

+ (cos'
1

� cos!t
0

) =) sin!t
0

=
2 cos!t

0

!t
1

� !t
0

.

There are two types of recolliding trajectories, which we call the LES type viz.
the VLES type. See figure Fig. 3.1.

Since ionization takes place close to the field maximum, t
0

is small so we use
sin!t

0

⇡ !t
0

, cos!t
0

⇡ 1, and further set the denominator !t
1

�!t
0

⇡ !t
1

+!t
0

in the LES case. We then get the trajectory conditions [67]

t
0

=
1

(n+ 1/2)⇡
nth order LES trajectory

t
0

= 0 VLES trajectory (3.3)
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Figure 3.1: The motion in the polarization direction of the first three LES
trajectories, and the VLES trajectory, as functions of time . T = 2⇡/! is the
laser period. Arrows indicate the rescattering events given by Eq. (3.4).

The recollision event for these trajectories takes place close to

t
1

= (2n+ 1)
⇡

!
odd number of half cycles

t
1

= 2n
⇡

!
even number of half cycles (3.4)

and their respective drift momenta are [67]

pz =
F

!

1

(n+ 1/2)⇡
nth order LES trajectory

pz = 0 VLES trajectory. (3.5)

The LES trajectories form a series, with the recollision taking place after an
odd numer of half-cycles. As the order of the recollision increases the ionization
takes place closer to the field maximum, giving a smaller drift momentum. This
is seen in Fig. 3.1 where the position z is plotted as function of time t, in
scaled variables. The drift momentum corresponds to the average slope of the
trajectories, which decreases for each higher order.

The VLES condition allows one trajectory only, which recollides after each
full cycle. Its drift momentum is 0. Even though it is thus impossible to detect
directly since it will be captured in the FTI process (Section 2.5), they still play
a role during the laser-driven dynamics, and trajectories close to the VLES one
may participate in the interaction with the core and nevertheless escape.

The energy of the LES peaks of Eq. (3.5) scale with the pondermotive energy
Up. Although initially the experimental scaling E

LES

⇠ ��1.8 was reported
[5], the scaling E

LES

⇠ ��2 ⇠ Up now seems established [71] and is further
supported by the work presented in Section 3.5 and [7].

The final energy, which is recorded experimentally, is always slightly lower
than that predicted by the trajectory model. This is due to the dynamics after
recollision, when the electrons have to escape from the Coulomb field.
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Figure 3.2: Left: Illustration of 1st order VLES and LES trajectories in a Gaus-
sian pulse of di↵erent length. The final slope of the trajectory gives the drift
momentum in units of F/2⇡!. Right: A few 1st order LES trajectories zoomed
out, showing the asymptotic slope.

3.4 LES trajectories in a short pulse

In a short laser pulse the recollision conditions Eq. (3.3) must be modified. The
shorter the pulse gets, the more does the final momenta deviate from those
of Eq. (3.5). The pulse length and CEP dependence of the LES was initially
studied for short pulses in [68], while a full treatment of the scaling properties
for di↵erent pulse lengths and comparison with experiment was done in [7]. Here
we discuss these results.

3.4.1 Recollision trajectories

One can intuitively understand how the drift momentum changes qualitatively
when going from a cw field to a pulsed field, especially for '

CEP

= 0. The ion-
ization will be increasingly centered around the center cycle within the pulse,
since the tunneling rate depends exponentially on the field strength and this
decreases towards the beginning and end of the pulse. For a few-cycle pulse,
considering ionization only from the cycle in the pulse center is a good approx-
imation. A VLES trajectory ionized at ' = 0 no longer returns to the core
after one full cycle - the decreasing field does not drive it all the way back to
the ion. For a return and subsequent low energy rescattering, giving a VLES
structure, it needs a certain non-zero drift momentum. The shorter the pulse,
the faster it needs to move in order to return to the core. For a LES trajectory
the reasoning is similar, but works in the opposite direction: the pulse does not
o↵set the electron as far from z = 0 as a cw laser, meaning that it needs to
move slower than the cw LES electron. See Fig. 3.2.

The total o↵set from z = 0, by motion in the laser alone, at time t
1

is given
by

�z =

Z t1

t0

A(t)dt .

The drift momentum have to compensate this motion exactly for a return to
the origin at t

1

, so that

pz = �
R t1
t0

A(t)dt

t
1

� t
0

. (3.6)
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3 The LES trajectory model

An appealing interpretation of this expression is that the drift momentum must
be exactly equal to the time-averaged momentum of the laser-driven motion,
with opposite sign.

In contrast to the cw case, the VLES is no longer degenerate with the order
of rescattering - returning to the core after N cycles does not give the same
VLES momentum as a return after N + 1. The splitting is however small and
could not be resolved in simulations. Furthermore, ionization at di↵erent peaks
of the laser field now gives di↵erent values for the LES/VLES momenta, where
the center peak is expected to dominate strongly for short pulses due to the
exponential ionization yield. For a long pulse on the other hand, this e↵ect
is weaker as all peaks converge to the cw ones. In an experimental situation
resolving these ”side-peaks” seems di�cult as of now, and the result of this
intermediate-length pulse e↵ect is an overall broadening of the LES peaks.

In the two following sections we will use Eq. (3.6) for the two specific pulse
shapes of Section 2.2.1 and derive the momenta of the LES and VLES. The
Gaussian pulse is chosen for its realism and wide use in simulations, while the
derivative Gaussian pulse is chosen since it gives very simple analytical expres-
sions. The di↵erence is shown to be negligible for pulse lengths exceeding 2
cycles, pointing to the universal nature of the scaling introduced here.

3.4.2 Gaussian pulse

The vector potential is taken to have a Gaussian shape Eq. (2.5) To allow
for an analytical estimate, we assume that recollision takes place according to
Eq. (3.4); for a Gaussian pulse this is a good approximation even when ⌧ ⇡ 1.
The recollision momentum condition is given by inserting Eq. (2.5) into Eq. (3.6)
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F
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where we change the integration variable to ' = !t � '
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. Since tunneling
occurs close to A(t) = 0, the integration limits are approximated as '

0

= 0,
'
1
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1
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3.4.3 Derivative Gaussian pulse

Using the alternative pulse definition Eq. (2.6) one similarly gets
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(3.8)
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3.4 LES trajectories in a short pulse

Experimentally the pulse length ⌧ is typically expressed as a number of cycles
k, i.e. ⌧ = 2⇡k/!. Using this we get a = 2 ln 2/4⇡2k2. For the nth order LES
we have '

1

= (2n+ 1)⇡ so that we can express Eq. (3.8) as

pz = ⇣(k, n,'
CEP

)p1

where

⇣(k, n,'
CEP

) =
1

2

✓
exp

⇢
� ln 2'2

CEP

2(k⇡)2

�
+ exp

⇢
� ln 2(2n+ 1 + '

CEP

/⇡)2

2k2

�◆

p1 =
F
0

!

1

(n+ 1/2)⇡
(3.9)

The e↵ect of the pulse is an overall shift to lower momenta, entering as a factor
⇣ to be multiplied with the asymptotic result p1 of a cw field.

For '
CEP

= 0 Eq. (3.9) takes the simpler form

⇣(k, n, 0) =
1

2

✓
1 + exp

⇢
� ln 2(2n+ 1)2

2k2

�◆
(3.10)

which is applicable also for a randomized CEP, as will be shown.

3.4.4 CEP dependence

The two pulses are compared in Fig. 3.3. The curves are almost indistinguishable
and the di↵erence is much smaller than the experimental accuracy presently
possible. This motivates using the derivative Gaussian pulse for theoretical
work, due to its much simpler structure and yet accurate results, at least down
to pulse lengths of about 1.5 laser cycle.

The curves for '
CEP

± ⇡/2 are also included in Fig. 3.3. Any larger CEP
means that the next or preceding half-cycle has a higher peak field strength and
consequently should be used as 0 when defining the CEP; since we are in this
section only concerned with the energy of the dominant LES peak, regardless
of which direction the electrons are escaping in, this means we can interpret
'
CEP

= ⇡/2 + x as '
CEP

= �⇡/2 + x.
The LES for a fixed non-zero CEP was investigated in [68]. The peak location

is available from the formulae of Sections 3.4.2 and 3.4.3. Since '
CEP

/⇡ < 1/2
a series expansion of the exponentials in Eq. (3.9) converges quickly; already
the quadratic terms have small influence, so that the LES peaks shift almost
linearly with varying CEP

⇣(k, n,'
CEP

) ⇡ 1

2

✓
1 + exp

⇢
� ln 2(2n+ 1)2

2k2

�
1� ln 2(2n+ 1)

2k2⇡
'
CEP

�◆

(3.11)

Many experiments are done without stabilized CEP, so that each successive
pulse in the experiment has its own CEP. The Gouy shift [79] further gives a
distribution of CEP:s within the focus, even for a single pulse. One then has to
average over the theoretical CEP values to get a comparison with experiment.
Within the linear approximation Eq. (3.11) the average over an even distribution
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Figure 3.3: The 1st order LES peak energy in units of Up as function of pulse
length. The two pulse shapes with di↵erent CEP are compared; the CEP aver-
aged peak energy is seen to agree excellently with the zero CEP value.

of CEP values returns trivially the zero CEP result. The higher order terms
introduce a small shift, but as can be seen in Fig. 3.3 this shift is completely
negligible. Thus the LES peak value is quite accurately given by the zero CEP
value, even in a setup with random CEP.

3.4.5 Simulation results

The theoretical results are compared with CTMC simulation results (see Ap-
pendix C for a description of the numerical method) in Fig. 3.4, for a 3.2 µm
laser ionizing argon atoms at I = 1014 W/cm2 and '

CEP

= 0. The peak energies
are obtained from the spectrum of electrons emitted in the forward direction
along the polarization axis, within an opening angle of 5�. See Fig. 3.5. The
agreement is good for the first two LES curves. While it is tempting to identify
the VLES in the simulation result, careful analysis of the spectra reveals that
the first two points close to the VLES curve actually correspond to forming
1st and 2nd order LES, and the other points may be due to higher order LES
forming. The VLES trajectory is not clearly visible in the final result, since it
is mixed with higher order LES. Due to the VLES electrons typically staying
close to the ion when the pulse dies out, the VLES seems to be made invisible
by the FTI recapture process described in Section 2.5.

One powerful aspect of numerical simulation is the ability to look into the
dynamics and present intermediate results that are not available in an experi-
mental setting. In classical simulation in particular the system is represented by
a point in phase space, so that all momenta and positions are sharply defined
at any instant. In our system it is thus possible to visualize the evolution of the
observable structures during the laser pulse.

In doing so we find a particular representation convenient, that is related to
the two-dimensional photoelectron momentum distribution (2dPMD) measured
experimentally.

The cylindrical symmetry around the laser polarization axis means that
the azimuthal emission angle is irrelevant; when studying the dynamics, we
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3.4 LES trajectories in a short pulse
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Figure 3.4: Simulation results (dots) compared to theoretical predictions from
Eq. (3.7). The laser parameters are I = 1014 W/cm2, � = 3.2 µm.
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Figure 3.5: Left: The setup for recording a forward direction spectrum with
an opening angle of 5�. Right: Sketch of trajectories with final transverse
momentum of di↵erent sign. For the red trajectory our defined p⇢ = p · ex > 0,
while for the blue trajectory p⇢ = p · ex < 0.
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3 The LES trajectory model

can assume all electrons exit along, say, the x-axis. With proper weighting
of the initial conditions (see Appendix C) the cylindrical symmetry is taken
into account. Asymptotically in the Coulomb field we always have p · e⇢ � 0.
However if we define the initial emission angle as ' = 0 so that emission is always
along ex, a trajectory turning around once in the perpendicular direction escapes
with p · ex  0. See Fig. 3.5. Keeping this sign information helps the physical
intuition. We choose however to use the designation p⇢ instead of px in our
results since this draws attention to the cylindrical symmetry of the problem,
and the fact that we take all electrons with the proper weighting into account.

Physically it is impossible to distinguish if a specific final momentum is due to
an initial momentum in that direction, or if there was one, or multiple, changes
of sign in p⇢ during the motion. From the simulation results with negative
p⇢, the observable 2dPMD is recovered by simply overlaying the negative and
positive parts, i.e. P

exp

(p⇢) = P
sim

(p⇢) + P
sim

(�p⇢).
Fig. 3.6 illustrates the evolution of this distribution during a six cycle laser

pulse at 2 µm. Ionization is restricted to the central cycle for figure (a) to (c).
Structures are seen to emerge according to the possible recollision times in the
model. The top panels show the distribution of momentum in the polarization
direction - the marginal spectrum in z-direction (cf. Appendix A.2).

Particularly interesting is that the VLES recollision, while giving only a weak
contribution to the final spectrum in (d), is very pronounced during the laser
pulse. In e.g. discussing probability of high energy ATI or HHG, where the
probability distribution during the pulse is important, it may be necessary to
take it into accout.

In the realistic final result with ionization throughout the pulse and including
the asymptotic motion after the laser pulse is over, only the 1st LES is clearly
seen, while higher order LES and a trace of the VLES pile up at a small o↵set
from zero, creating the double hump structure [59] in the longitudinal spectrum.

The details of the structures of Fig. 3.6 will be analyzed in Chapters 4 and
5.

3.5 Comparison with experiment

The scaling of the 1st order LES peak with pulse length was investigated ex-
perimentally, in a collaborative work [7]. The results confirm the overall scaling
properties for a number of di↵erent species and laser parameters, illustrating
the universality of the process. Before discussing the results it is necessary to
make the connection to the experimental setting, where the laser intensity is
not fixed throughout the experimental chamber.

3.5.1 Focal averaging

In comparing theoretical results in the strong-field area with experimental ones,
one must always take into account that the focus of a laser beam does not only
contain one single intensity; see Section 2.2.2. According to previous sections the
energy of the LES peaks scales linearly with the intensity via the ponderomotive
energy: E

LES

⇠ Up ⇠ I. The single-intensity results of previous sections must
be modified before they are compared to actual experimental results.
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Figure 3.6: Development of VLES and LES features during the laser pulse. (a)
After 1 full cycle, the 1st VLES is forming. (b) After 1.5 cycles, the 1st LES
turns up. (c) After 2.5 cycles, an additional VLES (almost on top of the first)
and the 2nd LES has formed. (d) Realistic final result. I = 1014 W/cm2, � = 2
µm.

The laser focus is described by the Gaussian beam of Section 2.2.2. The
volume of each di↵erential isointensity shell wihtin the full focus is given by
Eq. (2.8). It is convenient to rewrite this as a distribution in relative intensity,
setting i = I/I

0

and disregarding prefactors

dV

di
⇠ i�5/2(2i+ 1)

p
1� i . (3.12)

We are interested in predicting the drift momentum of the LES/VLES. As
discussed in Section 3.4 the peak momentum will approximately coincide with
the peak from the center half-cycle, with the other cycles simply broadening the
peak. It therefore su�ces to consider ionization from the center half-cycle to
get the dominant momentum.

We use the quasi-static ionization rate Eq. (2.10). Combining Eq. (3.12) and
Eq. (2.10) gives the ionization rate for each intensity

w(i) ⇠ exp

✓
� 2

3F
0

p
i

◆
i�3(2i+ 1)

p
1� i (3.13)

where

F
0

= F
0

/(2Ip)
3/2

i = I/I
0

= F 2/F 2

0

The shape of Eq. (3.13) depends on the single parameter F
0

, the maximum of
the reduced field strength.
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0

for di↵erent atomic species, as function of central intensity I
0

.

Fig. 3.7 shows plots of Eq. (3.13) (normalized to the peak value) for a few
di↵erent values of F

0

, as well as values of F
0

for a few di↵erent atomic species,
as function of intensity. Consider an idealized recollision process, where only
a single, definite energy value is contributing. The final energy distribution
coming from a single intensity should then be a �-function. The focal averaged
peak then gets the same shape as Eq. (3.13), shown in Fig. 3.7. The peak
location in the result is then the non-averaged result mulitplied by some factor
↵ = ↵(F

0

), which can be gained by extracting the peak from Eq. (3.13).

3.5.2 Approximate model for LES averaging

In order to avoid a numerical treatment for each field strength, we look for a
simplification of the full expression of the average intensity. It turns out to be
easiest to start from the expression in normalized field strength f = F/F

0

:

w(f) / exp

⇢
� 2

3F
0

f

�
2f2 + 1

f5

p
1� f2 .

The average field strength of the LES peak is then given by

f̄ =

R
1

0

dffw(f)
R
1

0

dfw(f)
(3.14)

By defining x ⌘ 2/3F
0

we can rewrite this as

f̄ =

✓
� d

dx
lnQ(x)

◆�1

(3.15)

with

Q(x) ⌘
Z

1

0

dffw(f) .

It is now useful to set f = 1/y thus getting

Q(x) =

Z 1

1

dyy�2y�1e�xy 2y
�2 + 1

y�5

p
1� y�2 =

Z 1
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dye�xy 2 + y2
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p
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Since the parameter x is typically quite large x ⇡ 10, the integrand will quickly
go to 0 as y is increasing. Keeping the exponential factor, we expand the rest
of the integral in

p
y � 1 around y = 1:

(2/y + y)
p
y + 1

p
y � 1 ⇡ 3

p
2
p

y � 1 close to y = 1

so that

Q(x) ⇡ 3
p
2

Z 1

1

dye�xy
p
y � 1 = 3

p
⇡/2e�xx�3/2

where we used the integral identity
Z 1

1

e�xy
p
y � 1 =

p
⇡/2x�3/2 .

We can now get the approximate f̄ by Eq. (3.15)

f̄ = � Q(x)

Q0(x)
=

1

1 + 3/(2x)
=

1

1 + 9F
0

/4
.

For the LES peaks we can write

P (n) = p1(n)/C
av

for the nth peak, where

C
av

= 1 +
9

4
F

0

. (3.16)

Due to the smallness of F
0

, this expression can even be linearised without in-
troducing much further error:

P (n) ⇡ p1(n) ⇡ 1� 9

4
F

0

. (3.17)

The focal averaged LES peak energy is accordingly given by E(n) = E1(n)/C2

av

or E(n) = E1(n)(1� 9F
0

/4)2.
The exact calculation according to Eq. (3.14) is compared with the approx-

imation given by Eq. (3.16) and the linearized version Eq. (3.17) in Fig. 3.8.

We thus have a simple analytical estimate of the change in the LES peak
momentum due to the distribution of intensities within the focal volume. It gives
an overall decrease in the observed peak momentum, as compared to the one at
the fixed maximum intensity, depending only on the reduced field strength at
the focal center. Note that a smaller reduced field strength gives a smaller shift
of the average, in agreement with the narrower distribution in Fig. 3.7.

The shift does not depend on the pulse length, meaning that the scaling
properties described in Section 3.4 remain unchanged.

3.5.3 Experimental result

The experimental results reported in [7] are presented in Fig. 3.9. The theo-
retical curves are shifted to lower energy by 15%, which was attributed to the
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Figure 3.8: Shift of the LES peak momentum as function of F
0

. Numerically
integrated (exact) curve is compared to the approximate expression Eq. (3.16)
and the linearized one Eq. (3.17).

inexact determination of Up in the experiment. The agreement between the an-
alytical curve and the experimental results is very good. This strongly supports
that the model described here is an accurate description of the physical pro-
cess measured in the experiment, showing that classical trajectory arguments
can predict the location of the LES peak to an accuracy which is within the
experimental resolution (cf. error bars of Fig. 3.9).

An additional shift, due to the energy loss in escaping the Coulomb potential
after recollision, was included in Fig. 3.9. The shift was calculated as described
in Section 5.2 using the e↵ect of the Coulomb potential at a saddle point tra-
jectory. While not exact, this gave an additional shift of around 5% and yielded
the very good agreement of Fig. 3.9.

The detector used in [7] had a lower limit of ⇠ 0.7 eV, meaning that the
VLES and higher order LES could not be observed. These are all located below
0.5 eV, as simulation shows. Confirmation of the scaling of those peaks needs
to be done in a future experiment, preferrably at longer wavelength giving more
resolution to the detailed strucutre of the peaks. This may also cast light on
the VLES peak formation and its relation to the VLES trajectory discussed.

3.6 Conclusions

Using a classical trajectory model one can arrive at simple, analytical expres-
sions for the drift momenta of the LES and VLES in a cw field (Section 3.3),
as well as in a short laser pulse (Section 3.4). Comparing the case of a cw field
with a short pulse, the LES/VLES momentum is seen to change and depend
sensitively on the pulse length. The analytical scaling corresponds well to sim-
ulated results, as well as the experimental measurement of [7]. The intensity
distribution in the focus can be included in the model, giving a simple overall
factor. The model needs small modifications to reproduce the absolute mesured
values, however the scaling, which is the the main subject of this chapter, is
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Figure 3.9: The 1st order LES peak energy in units of Up as function of pulse
length. The data is for Krypton Up = 20 eV (green) and Up = 25 eV (blue), and
Argon 31 eV (black) and 55 eV (red). Circles are from experiment, triangles
from CTMC simulation and lines are analytical results. The star is from the
experiment of [5], for Argon at Up = 35.6 eV. Focal averaging is included in
the analytical model by means of Eq. (3.16). All theoretical results are shifted
down by 15%. From [7].

already described by the original formula Eq. (3.10).
It is our hope that this scaling will be further investigated experimentally,

thus confirming or disproving the results presented here. In particular the mech-
anism behind the VLES has not been identified in experiments yet. The VLES
was so far mainly seen as an increase in the spectrum towards threshold. We
have tentatively identified this structure with recollision trajectories of a specific
type, while pointing out that higher order LES also play an important role in
forming the experimental VLES structure. The VLES recollision trajectories
have a large influence at the simulated electron momentum distribution during
the laser pulse. Using short pulses and possibly altering their shape (e.g. by
adding higher harmonics) may make the e↵ect of this recollision measurable. A
systematic study of the possiblities lies beyond the scope of this work.

The validity of the classical model rests on su�ciently long excursion dis-
tances and travelling times, so that quantum interference between trajectories
is negligible. In experiments at intensities around 1014 W/cm2, this typically
holds when � > 1 µm. See e.g. [62]. For shorter distances ATI peaks from a
definitie number of absorbed photons increasingly dominate the spectrum. On
the other hand, for Up/2!c > 1, the dipole approximation starts to break down
appreciably [12]. For our intensities this happens around wavelengths longer
than ⇠ 3 µm and will modify the electron trajectories via the Lorentz force.
Initially this will only slightly change the shape of the recolliding wave packet,
thus not essentially changing the LES process.
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Chapter 4

The low energy recollision

In Chapter 3 we studied in detail the classical trajectories (step 2 in the three-
step model of Section 3.1) that take part in the low energy recollision. We
now proceed to describe the actual rescattering event (step 3). It turns out
that the essential features are reproduced by an approximate, analytical model.
The model explains how the recollision causes a peak in the spectrum at the
corresponding momentum and can also describe the details of the structure, as
visible in classical simulations and, to a certain degree, in experiments.

The recollision event has previously been studied to a much lesser extent
than the participating strong-field trajectories. The final momentum of the
trajectories, and thus the measured result in e.g. [5], can be found just from
assuming some interaction at recollision, avoiding the details.

In [67] a bunching mechanism was proposed, that leads to a visible peak
in the longitudinal momentum spectrum. The model in this chapter is based
on the same assumptions but take into account the full dimensionality of the
problem, making predictions about the joint distribution (cf. Appendix A.2) of
final momenta. From these results, the behaviour of the marginal distributions
in both longitudinal and transverse direction can be deduced, as well as the
conditional distribution in the forward direction, where the original LES was
found. The relations between these observables will also be clarified, referring
to the general discussion of Appendix A.

Another proposed mechanism of LES formation is Coulomb focusing, where
the transverse force is playing the crucial role [63, 65]. The reasoning is that,
upon returning close to the ion, electrons are focused by the interaction, giving
an increased probability of motion in forward direction after recollision. While
the transverse force does play a role, this model in itself cannot account for the
full LES characteristics. We always treat the 2D situation, which is trivially
related - by the cylindrical symmetry around the laser polarization axis - to
the full physical 3D situation. From our treatment, it is seen that transverse
and longitudinal forces both have an important influence on the result, and the
final LES can only be said to depend on both (in particular the 2D features),
although the bunching process that results in forward motion takes place in a
direction that is more longitudinal than transverse, giving that direction some
precedence.

It is characteristic of most proposed explanations for the LES that one di-
rections is considered dominant. In [63, 65, 71] it is the transverse one, while
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4 The low energy recollision

in [67] it is the longitudinal. There is even some confusion about what is actu-
ally meant by the LES: is it a caustic in the 2D spectrum [65,69] or is it a peak
in the forward direction [5, 63, 71]?

Misunderstandings and disagreement in the literature on the nature of the
interaction seems to stem from these di↵erent viewpoints. In particular, several
authors have reproduced the LES in the conditional forward spectrum using sim-
ulations where the longitudinal component of the Coulomb force was neglected
completely. This was taken as an indication for the transverse nature of the
LES. Notwithstanding that the 2D momentum distribution is badly reproduced
by such a model, and that pure longitudinal Coulomb force also gives an LES
(though much weaker), a complete understanding necessarily needs the physical
force included in the model. As we see from our model the spherical symmetry
of the Coulomb field is a basic property of the problem, and destroying that by
artificial means can only give superficial knowledge about the actual process.

We will therefore throughout treat the full dimensionality, and carefully
indicate when conclusions are made regarding the various 1D distributions that
can be obtained from the 2D one.

The treatment in this and the following chapter contains several ideas from
the papers mentioned here. It can be viewed as a generalization of the bunching
mechanism of [67] to the 2D distribution. Thus the fully 2D viewpoint of [69]
is adopted. At the same time, the caustic formation of [65] is clarified and
shown to be qualitatively reproduced by an analytical model. Finally, in the
next chapter all conclusions for the forward direction spectrum, as measured
and discussed in [5, 62, 63,71], are drawn.

First the recollision by itself is discussed in Section 4.1. We use approximate
recollision trajectories to set up a model where the change in drift momentum at
recollision is obtained through the gradient, with respect to the turning point,
of a scalar function. Together with the strong field trajectories we can then
describe the full dynamics in Section 4.2. Recollisions at specific distance from
the ion results in a caustic in the final momentum spectrum, giving the LES
and VLES for the respective trajectories. The VLES (Section 4.3) is directly
described by the simple model, while for describing the shape of the LES caustic,
also motion before recollision is taken into account in Section 4.4. The results
of the model then agree well with simulation results.

The analytical treatment used here reproduces the LES features from single
recollisions very accurately. However the full e↵ect of the Coulomb potential
on the entire electron trajectory is not taken into account. This is done in the
following chapter, where a completely numerical treatment is used. The insights
from the analytical model are used to easily identify the similar features in the
numerical result, contributing to a complete understanding of the phenomenon.

4.1 The recollision model

In Chapter 3 we demanded that low energy recollision trajectories return exactly
to the origin with a momentum of exactly zero. Certainly trajectories coming
very close to the ion will not give distinct features in the low energy spectrum,
since they interact very strongly with the ion and can gain high energies. They
are responsible for the high energy ATI plateau described in Section 2.4 and
can recombine to generate high harmonics. To get low energies the interaction
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4.1 The recollision model

needs to be weak and thus the electron turns around some distance away from
the ion (”soft recollision” [67]). Given the large length scales involved in the laser
driven motion, the approximations of Chapter 3 still give a good first estimate
of the momenta of recolliding trajectories. Here we treat the recollision in more
detail, where the recollision point rC is no longer the origin. Instead its value
determines the shift in the drift momentum p at recollision.

4.1.1 Approximate recollision trajectories

To set up the model we make two assumptions. The interaction process happens
within some time interval (t

0

, t
2

) containing the maximum of a laser cycle at
t
1

. Due to the laser driving, the recolliding trajectories typically only spend a
short time in the vicinity of the ion, before being accelerated away by the laser
field. During this time, the laser field is almost constant. We therefore make
the following assumption

F (t) ⇡ F (t
1

) during recollision; assumption (i)

where t
1

is the recollision time, defined as in Eq. (3.4) as the instant when
pz = 0.

Then we make the approximation that, throughout the scattering process:

|F (t
1

)| � |FC(r(t))| 8t 2 (t
0

, t
2

), assumption (ii)

where FC is the Coulomb force, evaluated at points r the trajectory passes
during the process. This means that the Coulomb force is very weak compared
to that of the laser, so that we can neglect its influence on the trajectory dur-
ing rescattering. The trajectory follows the same path it would follow without
the Coulomb field present, and the field is taken into account by computing
its influence along the trajectory, giving a shift in the asymptotic drift mo-
mentum. This perturbative approach is similar in spirit to the first-order Born
approximation of quantum mechanical scattering theory, where the potential al-
lows scattering between field-free asymptotic states, but does not change these
states themselves [11].

The trajectory itself is then given by the strong-field one Eq. (3.1) expanded
to lowest order in t:

r(t) ⇡ rC +
F (t� t

1

)2

2
ez where F ⌘ F (t

1

) (4.1)

The electron follows a trajectory with fixed ⇢ = ⇢C , and motion in z like that
in a constant field, with turning point given by zC .

This model for the recollision trajectories is widely used, e.g. in [63, 67,80].

4.1.2 The recollision process

Along the trajectory of Eq. (4.1) the influence of the Coulomb potential on the
drift momentum p is calculated by integrating the force over all times (primes
denote initial values):

p = p0 + �p(rC)

�p(rC) =

Z 1

�1
FC(r(t))dt = �

Z 1

�1
grad

rC

�1

|r(t)|dt = � grad
rC

� . (4.2)

37



4 The low energy recollision
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⇢
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Figure 4.1: Illustration of the recollision model. Left: Change of drift mo-
mentum from p0 to p during the recollision. Contours indicate the combined
potential of the ion and the laser. Right: The motion in z-direction is that in a
constant field.

For a given field strength, the value of �p is determined by the point of recollision
rC alone, which itself depends on the initial momentum p0. We have defined

� ⌘
Z 1

�1

�1

|r(t)|dt . (4.3)

The event can be viewed as a kind of potential scattering o↵ the potential
�(rC), which is the integrated Coulomb potential along the Coulomb-free tra-
jectory with turning point at rC . One should however not understand it as a
conventional scattering problem, with time dynamics in a potential � between
in- and out-states, but rather an instantaneous influence of �, giving an in-
stantaneous change in drift momentum (=momentum of outgoing state) of the
strong-field trajectory. � plays the role of a potential, being an object from
which a change in the momentum is obtained by taking the gradient.

The central object of the classical interaction process is the Jacobian de-
terminant between ingoing and outgoing momenta, cf. Appendix A.3. Using
Eq. (4.2) and Eq. (4.3) the full Jacobian can be decomposed into

J =
@(p⇢, pz)

@(p0⇢, p
0
z)

= I +
@(�p⇢, �pz)

@(p0⇢, p
0
z)

= I +
@(�p⇢, �pz)

@(⇢C , zC)

@(⇢C , zC)

@(p0⇢, p
0
z)

= I �H
�

(⇢C , zC)
@(⇢C , zC)

@(p0⇢, p
0
z)

. (4.4)

where H
�

is the Hessian matrix of � w.r.t. rC .
The study of the recollision process itself is thus reduced to the study of the

potential �. The final spectrum is in addition influenced by the motion before
recollision which enters in the last factor of Eq. (4.4).

We now see the point of writing �p in terms of �: the final momentum
spectrum depends on its Hessian matrix. The Hessian of any smooth function
is a symmetric matrix, so that it can be diagonalized in an orthogonal basis.
The structure of the determinant det J is thus greatly simplified.
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Figure 4.2: The function I(') of Eq. (4.5).

4.1.3 Properties of �

It turns out convenient to change to polar coordinates for the rescattering loca-
tion

rC = r(sin'e⇢ + cos'ez) .

Changing the integration variable to ⇠ = t
p
F/2r gives

� = �
Z 1

�1

dt

|rC + Ft2/2ez|
= �1

r

r
2r

F

Z 1

�1

d⇠q
sin2 '+ (cos'+ ⇠2)2

= �
r

2

Fr

Z 1

�1

d⇠p
1 + 2 cos'⇠2 + ⇠4

⌘ �
r

2

Fr
I(') .

� factorizes into one function of the radial recollision distance r, and one func-
tion of the recollision angle '. I(') is an elliptic integral, which can be written
as

I(') = 2(1 + �)F(arctan��1/2|1� �2)

� =
1� sin'/2

1 + sin'/2
(4.5)

where F is the standard elliptic integral of the first kind [78]. This is mainly use-
ful for deriving a few special values, since the analytic expressions of derivatives
of I(') are cumbersome.

Explicit expressions for the elements of the Hessian H
�

are given in Ap-
pendix B. The factor structure of � is preserved in derivation; its final form
is

H
�

= �
r

2

F

1

r5/2
G(') (4.6)

with G(') a symmetric matrix. Diagonalizing H
�

reduces to finding a rotation
angle ✓(') which diagonalizes the matrix G(').
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ep0
⇢
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Figure 4.3: Definition of basis vectors e
1

and e
2

by rotation by ('-dependent)
angle ✓.

4.2 Dynamics

So far we only discussed the recollision process itself, studying the momentum
change as function of recollision position. We now include the initial motion
before recollision, giving a relation between final and initial momentum.

4.2.1 Diagonalization of the full Jacobian

In the real situation, the evolution before the LES recollision is non-trivial, lead-
ing to complexities in the final spectrum which do not result from the recollision
alone. In order to focus on the recollision event, we assume that the collision
point depends linearly on the initial momentum, as in the strong-field dynamics
of the three-step model:

⇢C(p
0
⇢, p

0
z) = ⌧p0⇢ + b

1

zC(p
0
⇢, p

0
z) = ⌧p0z + b

2

(4.7)

with ⌧ the recollision time and b
1,2 arbitrary constants. For e.g. the 1st order

LES, ⌧ = 3⇡/!, cf. Eq. (3.4). From Eq. (4.7) follows

@(⇢C , zC)

@(p0⇢, p
0
z)

= ⌧I

with I the unity matrix. This gives with Eq. (4.4)

J =
@(p⇢, pz)

@(p0⇢, p
0
z)

= I � ⌧H
�

= I +

r
2

F

⌧

r5/2
G(') .

J is diagonalized by the same rotation ✓(') of the basis as that diagonalizing
G('). Note that the matrix G is completely general; laser intensity and wave-
length are contained only in the prefactors. Denoting the eigenvalus of G by
µ
1,2('), we get the following expression for the Jacobian determinant

det J =

 
1 +

r
2

F

⌧

r5/2
µ
1

(')

! 
1 +

r
2

F

⌧

r5/2
µ
2

(')

!
⌘ �

1

�
2

. (4.8)

It is immediately seen that changing the laser parameters and the recollision
radius such that

r
2

F

⌧

r5/2
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4.2 Dynamics

is held constant, the determinant expression at a certain recollision angle '
does not change. We can thus map a change in laser parameters to a change in
recollision distance where a certain spectral value is obtained. If the determinant
vanishes (as turns out to be the case), this is caused by recollision at a specific
('-dependent) r, which when changing the laser parameters scales as

r ⇠ ⌧2/5

F 1/5
⇠ 1

(F!2)1/5
.

⌧ depends here on the period of the laser, as for recollision after a fixed number of
cycles. This weak scaling with respect to the laser parameters signifies that the
model is reliable for a large range of parameters. Changing the laser intensity
or wavelength only adjusts a little the radial distance at which recollision must
occur, in order to give rise to a certain spectral feature. The drift momentum
may change significantly, but the recollision process itself stays very similar.

4.2.2 Formation of the LES

Fig. 4.4a shows the eigenvalues µ
1,2(') of the matrix G('). Since µ

1

> 0 it
follows that always �

1

> 1, so that in the direction e
1

associated with �
1

there
is reduction of spectral weight (”anti-bunching”). Along e

2

however there is
bunching for ' < 163�, since µ

2

< 0 thus �
2

< 1. In particular there is
complete bunching if

�
2

= 0 =) r =

 
�
r

2

F
⌧µ

2

(')

!
2/5

(4.9)

giving rise to a critical line. By Appendix A.5 it results in a caustic in the
final spectrum. The fact that �

2

= 0 means that, moving in the space of initial
coordinates (the (p0⇢, p

0
z)-plane) in the direction of the eigenvector e

2

associated
with �

2

, the final momentum (p⇢, pz) does not change (to first order), causing
the divergent spectrum. We can say that there is complete ”bunching” in the
direction e

2

.
Fig. 4.4b shows the rotation angle ✓ that diagonalizes G(') and J . At

' = 0, i.e. recollision at positive z with ⇢ = 0, it is equal to ✓ = 90�, meaning
the bunching eigenvalue �

2

acts along the original ⇢-coordinate. At ' = 116.5,
it is zero giving bunching purely along z.

Fig. 4.5a shows for illustration the eigenvalues �
1,2(r,') for the parameters

⌧ = 3⇡/! (1st order LES), ! = 0.0228 au (� = 2 µm) and F = 0.0534 au
(I = 1014 W/cm2) at recollision radius r = 20 au. Since µ

2

is almost constant
for a large range of angles ', the condition �

2

= 0 will be fulfilled for almost
the same r for these angles. Fig. 4.5b shows the radius of the recollisions giving
�
2

= 0, given explicitly by the expression Eq. (4.9), for the same parameters.
It is seen to stay within a narrow range of ⇡ 25 au until some 140�, where it
drops o↵ sharply. Since µ

2

(0) = �3⇡/8 (see Appendix B) the 1st order LES
recollisions with ⇢ = 0 gives a vanishing determinant at the recollision distance

r = z =

 r
2

F
⌧
3⇡

8

!
2/5

=

 r
2

F

9⇡2

8!

!
2/5

⇡ 3

(F!2)1/5
. (4.10)

41



4 The low energy recollision

-2

-1

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160

µ
/
a.
u
.

' (degrees)

-20

0

20

40

60

80

0 20 40 60 80 100 120 140 160

✓(
'
)
(d
eg
re
es
)

' (degrees)

µ
1

µ
2

(a) (b)

Figure 4.4: (a) The two eigenvalues of the matrix G(') of Eq. (4.6). (b) The
rotation angle ✓(') diagonalizing G(').
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Figure 4.5: (a) Example of eigenvalues of the full Jacobian J at r = 20, for laser
parameters ⌧ = 3⇡/!, ! = 0.0228 au and F = 0.0534 au. (b) The recollision
radius r(') yielding the critical line, given by Eq. (4.9).

Since the recollision radius r changes little with the recollision angle ', especially
in the first quadrant (cf. Fig. 4.5b), Eq. (4.10) can be used for a first estimate
for the distance of the critical recollision from the ion.

Fig. 4.6 shows the two eigenvalues of the problem as functions of the turning
point rC , using (4.7) with ⌧ = 3⇡/!, ! = 0.0228 au. The critical line, defined
by �

2

= 0, is marked in red.

4.2.3 The deflection function, the critical line and the
caustic

Writing the final momentum as function of the initial ones gives the so-called
deflection functions p⇢(p0⇢, p

0
z) and pz(p0⇢, p

0
z), which give an illuminating picture

of the full dynamics. They are obtained by means of Eq. (4.2) and plotted
simultaneously as contour plots in Fig. 4.7, for the parameters of Fig. 4.6. The
critical line, obtained by the condition Eq. (4.9) together with rC = p0⌧ , is
shown in blue. It indicates the points where grad p⇢ k grad pz and clearly runs
through the visible saddle point in pz, cf. Appendix A.5.

The shape of the caustic is determined by the expression Eq. (4.2), for initial
values p0 belonging to the critical line, i.e. fulfilling Eq. (4.9). Due to the weak
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dependence of Eq. (4.9) with the laser parameters, the shape has universal
features and only slightly change for di↵erent parameters. Fig. 4.7b shows the
shape of the caustic.

4.2.4 Conclusion

The scattering process itself is approximated by using the electron trajectories
Eq. (4.1) and the momentum shift at interaction Eq. (4.2). This leads to a
model of ”instantaneous” potential scattering, which is diagonalizable. Using
simplifying assumptions Eq. (4.7) the whole process, from initial momentum to
final, can be described in an analytical, diagonalizable way. The diagonalization
reveals that one eigenvalue vanishes at a certain line rC of recollision positions,
and the corresponding line in initial momentum. This means that the spectral
determinant is zero there, giving a caustic structure in final 2D joint momentum
spectrum. Within the model, analytical expressions for both the critical line
of initial momentum and the shape of the caustic in final momentum can be
obtained.

4.3 VLES recollision

For the first order VLES recollision, taking place after one full laser cycle,
Eq. (4.7) holds to a high degree of accuracy. The Coulomb potential at the
tunneling exit focuses the momentum distribution in the ⇢-direction; this e↵ect
is very small and neglected here [61]. Including the tunnling exit point which
can be approximated as z

0

⇡ �Ip/F0

, we get the recollision position:

⇢C = p0⇢⌧

zC = p0z⌧ � z
0

which has exactly the structure of Eq. (4.7). Thus the results of previous sections
carry over unchanged. The VLES recollides however when the field in Eq. (4.1) is
negative and the trajectory comes from negative z, so that the previous situation
is mirrored around the z = 0 axis. The shape of the caustic is the mirror image
of that found in Fig. 4.7.

This model is compared to numerical simulations in Fig. 4.10 together with
the LES model.

4.4 LES recollision

The first order LES process is more complicated due to the motion before the
recollision.

We limit the initial discussion to the first order LES trajectory in a cw field,
in order to make the essential features appearent. The recollision event by
itself is similar in higher order collisions, but analytical estimates are increas-
ingly complicated. The aim of the analytical discussion is not to make exact
predictions for all cases, but to give an intuitive understanding of the physical
process.

The actual behaviour of classical recolliding trajectories needs to be treated
first.
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4.4 LES recollision

4.4.1 Transverse momentum change at pass by the core

The 1st order LES trajectory passes by the core exactly once before recolliding,

see Fig. 4.8. The momentum change due to the pass �p(pass)⇢ can be estimated
in the following way.

Since the recollision takes place after three half-periods, the fly-by takes
place after three quarter-periods tp = ⌧/2 = 3⇡/2!. At this instant the laser
field is F = F

0

cos(3⇡/2) = 0, so the situation is that of Rutherford scattering
of a charged particle o↵ an ion. The electron thus follows a hyperbolic Kepler
orbit. For the situation of Fig. 4.8, the following holds [81]

L = d
p
2E

tan
✓

2
=

1

L
p
2E

=
1

2Ed

d is the point of intersection of the asymptotic motion before and after deflection,
✓ the deflection angle, L is the angluar momentum and E the energy. d can
be assumed to lie on the ⇢-axis, which does not introduce a major error since
the electron motion is almost parallel to the z-axis. We write the velocity in
z-direction as vz = p0z +A(tp). We then have

d = p0⇢tp

L = vzd = vzp
0
⇢tp

E =
p02⇢ + v2z

2
� 1

d
⇡ v2z

2

since vz � p0⇢ and d is assumed to be far enough from the ion so that �p(pass)⇢ is
just a small perturbation. Thus

tan
✓

2
=

1

2Ed
=

1

v2zp
0
⇢tp

Since we are looking at small scattering angles ✓ we use tanx ⇡ x to get

✓ =
2

v2zp
0
⇢tp

and, using once more the smallness of ✓, the transverse momentum after scat-
tering is found to be

p0⇢ + �p(pass)⇢ = p0⇢ cos ✓ � vz sin ✓ ⇡ p0⇢ � vz✓ = p0⇢ �
2

vzp0⇢tp

vz is known from Eq. (3.5) to be vz ⇡ A
0

(1 + 2/(3⇡)) with A
0

= F
0

/!.
The higher order LES trajectories pass by the core several times, making

further corrections necessary. Since the times t
(i)
p of the ith passage are given

by the Eq. (3.2) setting z(t(i)p ) = 0, and the momentum pz(t
(i)
p ) is also known,

it is possible to compute the corrections �p(i)⇢ at each pass. We thus can write

p(i+1)

⇢ = p(i)⇢ + �p(i)⇢ = p(i)⇢ � 2

p
(i)
z d(i)

with p(1)⇢ = p0⇢

d(i+1) = d(i) + p(i+1)

⇢ (t(i+1)

p � t(i)p ) with d(0) = 0 and t(0)p = 0 . (4.11)
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Figure 4.8: Two kinds of LES trajectories. The tunnel exit is at z
0

, the trans-
verse momentum change (fly-by) happens at a, and the LES soft recollisions at
b.

4.4.2 Recollision model

We get for the 1st order LES recollision location

⇢C(p
0
⇢, p

0
z) = ⌧p0⇢ + �p(pass)⇢ ⌧/2 = p0⇢⌧ � 2

A
0

(1 + 2/(3⇡))p0⇢
(4.12)

zC(p
0
⇢, p

0
z) = ⌧p0z �

2F

!2

� z
0

= ⌧(p0z � p
LES

)� z
0

(4.13)

where p
LES

is the 1st order LES momentum from Eq. (3.5).
There is a qualitative di↵erence to the VLES model, since the pass by the

core can change the sign of p⇢, so that recollision can happen on either side
of the core; see Fig. 4.8. Thus the caustic will consist of two parts, one from
recollision at positive ⇢C , one at negative. (We adapt here the viewpoint of
Section 3.4.5 and let also the radial position be negative.) The two parts are
almost mirror images of each other since the recollision event itself is symmetric
in ⇢C ; only slight changes due to the di↵erent kind of recollision trajectories
occur. This approximate mirror symmetry is not around p⇢ = 0, but around
that p⇢ which gives ⇢C = 0. Since for ⇢C = 0 no transverse force is acting
during the recollision, for this specific trajectory �p⇢ = 0. The required value of
p0⇢ is easily found from Eq. (4.12):

⇢C = 0 =) p0⇢ =

s
2

A
0

(1 + 2/(3⇡))⌧
= !

s
2

F
0

(3⇡ + 2)
(4.14)

Since �p⇢ = 0 it follows that p⇢ = �p0⇢. Eq. (4.14) thereby predicts the (nega-
tive) final transverse momentum p⇢ of a 1st order LES trajectory recolliding at
⇢C = 0.

The second term in ⇢C in Eq. (4.12) makes the expression for the Jacobian J
cumbersome. It is no longer diagonal. We can still use Eq. (4.12) and Eq. (4.13)
to compute the deflection function, and then use a numerical root finding in
order to find the zeroes of det J . The deflection function and caustic is shown in
Fig. 4.9. In addition to the splitting into two parts, centered around the value
given by Eq. (4.14), there are two additional cusps being formed in the caustic.

46



4.5 Conclusions

 0.35  0.4  0.45  0.5  0.55  0.6

pz’ / a.u.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

p
ρ
’ /

 a
.u

.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

p
z 

/ 
a

.u
.

0.15

0.1

0.05

0

-0.05

 0.35  0.4  0.45  0.5  0.55  0.6

pz’ / a.u.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

p
ρ
’ /

 a
.u

.

0.15

0.1

0.05

0

-0.05

 0.35  0.4  0.45  0.5  0.55  0.6

pz’ / a.u.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

p
ρ
’ /

 a
.u

.

a b

c

ef

d

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.45  0.48

p
ρ
 /

 a
.u

.

pz / a.u.

a

b
c

e

f

d

Figure 4.9: Left: The deflection functions for the analytical LES model of Sec-
tion 4.4, including a pass by the core. Black contour lines and shading: pz, red
contours with labels: p⇢. The critical line is shown in blue. Right: The shape
of the caustic. Letters show the corresponding initial and final values at the
saddle points in pz (a, f), the saddle point in p⇢ (c) and the three cusps (b, d,
e).

For a more general discussion of the relation between features in the deflection
function and the shape of the caustic, see Appendix A.5.

The analytical caustics obtained within this model is compared to full nu-
merical CTMC simulation results in Fig. 4.10. They agree with the numerical
result to a surprising accuracy, given the coarse-looking assumptions underlying
the trajectory model. A few contributing trajectories are shown at the rescat-
tering event in Fig. 4.11, together with the critical rC from the model, which is
clearly an excellent estimate of the numerical turning point position. For com-
parison the symmetrized line from the simple model is shown, which is accurate
enough to give a good estimate of the recollision position.

4.5 Conclusions

The low energy recollision causing the LES has been analyzed in detail. The
trajectory model with the approximations Eq. (4.1) and Eq. (4.2) allows one to
disentangle the contributions to the final spectrum. In particular the recolli-
sion process by itself, described in Section 4.2, is diagonalizable. In the initial
phase space we can study its two eigenvalues, the product of which gives the
final spectral weight of that phase space point. It is seen that one eigenvalue
dominates the process. The fact that this eigenvalue is zero for a line of initial
conditions gives a caustic in the final joint momentum distribution, like in the
general case of Appendix A.5.

The VLES caustic is formed directly by the diagonalizable model. The LES
caustics are more complicated due to the dynamics before recollision. This gives
a caustic with two extending lines, almost symmetric around a certain p⇢-value,
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Figure 4.10: Comparison of numerical result and analytical caustic shape (red),
for (a) � = 2 µm, (b) � = 3.2 µm and (c) � = 1.32 µm; intensity 1014 W/cm2.
The VLES is well reproduced; for the LES the analytic caustic reproduces all
qualitative features and gives a good quantitative estimate.
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Figure 4.11: Numerical recolliding trajectories contributing to the 1st LES caus-
tic in Fig. 4.10b. The dashed line shows the predicted critical recollision points
according to the complete model; the dotted line accordign to the simple model
of Section 4.2, with symmetrization around ⇢ = 0. The complete model gives an
excellent approximation of actual recollision positions, while the simple model
gives a good first estimate.

and three cusps.
Due to the weak scaling of the whole recollision process with laser parameters

(Eq. (4.9)) the model is equally valid for a large range of parameters, as testified
by Fig. 4.10. Therefore it gives reliable results in the whole parameter range
where the trajectory model is valid, cf. Chapter 3.
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Chapter 5

Realistic LES collision

In this chapter the insight gained from the model in Chapter 4 is used to under-
stand photoelectron spectra from full numerical simulations. The assumption
of a quantum mechanical tunneling process followed by classical motion is still
made, but no approximations are made regarding the classical motion, which is
solved numerically (see Appendix C). Details of the tunneling process are not
important, since they only modify the weight of initial conditions of classical
motion. Furthermore, a semiclassical treatment, where a quantum mechani-
cal phase is included, still contains the classical motion as a starting point, so
that the prominent classical features we find should still leave traces in a fully
quantum mechanical treatment.

Like in Chapter 4 we investigate how spectral features develop by studying
the Jacobian, and we will discuss the di↵erent spectra obtained. The joint distri-
bution and the formation of the LES caustic is described in Section 5.1, referring
to the model of Section 4.4. Then the marginal distributions in longitudinal and
transverse directions are treated in Section 5.2.

Particular focus is on the conditional forward spectrum, treated in Sec-
tion 5.3, since this is the measurement where most LES work - experimental
and theoretical - was hitherto focused. We use a numerical diagonalization of
the Jacobian to obtain information about this process. Specifically, the question
of which force direction - longitudinal or transverse - dominates, can be given a
definite meaning. At the same time it is shown to be only of small interest; the
problem is really a 2D one.

One single set of laser parameters is investigated to large detail, in order to
clarify the understanding. In Section 5.4 simulations are included for di↵erent
parameters that show qualitatively similar behaviour. As seen in Section 4.2
the recollision depends little on the laser parameters, so that all cases are quali-
tatively similar. By including focal averaging, numerical spectra are shown that
directly correspond to measured ones, making it clear how the ideal recollision
features show up in a real situation.

5.1 The joint spectrum

The numerical deflection function for a laser wavelength of � = 2 µm, intensity
1014 W/cm2 and pule length of 3 cycles (FWHM) is shown in Fig. 5.1. See

51



5 Realistic LES collision

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

p0z / a.u.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
p
0 ⇢
/
a.
u
.

0 0.2 0.4 0.6 0.8 1 1.2
pz

p⇢ = �0.1

p⇢ = �0.05

p⇢ = 0

p⇢ = 0.05

p⇢ = 0.1

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

p0z / a.u.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
p
0 ⇢
/
a.
u
.

p⇢ = �0.1

p⇢ = �0.05

p⇢ = 0

p⇢ = 0.05

p⇢ = 0.1

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

p0z / a.u.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
p
0 ⇢
/
a.
u
.

p⇢ = �0.1

p⇢ = �0.05

p⇢ = 0

p⇢ = 0.05

p⇢ = 0.1

Figure 5.1: Deflection functions p⇢(p0⇢, p
0
z) (red) and pz(p0⇢, p

0
z) (black). I = 1014

W/cm2, � = 2 µm, 3 cycle pulse, argon target. The critical line is indicated by
the blue line. Details of the areas within yellow rectangles are shown in Fig. 5.2.

Appendix C for a description of the computational method used. There is a large
white area to the left in the figure, where no electrons can escape to the detector;
these are the FTI electrons. The main recollision feature (around p0z = 0.3
au, p0⇢ = 0.05 au) looks rather similar to Fig. 4.9. In the ”hard” recollision
region, where contour lines are very dense, the dynamics is essentially chaotic
[63, 77]. This region gives contributions to the whole spectrum, but is only
visible when the non-chaotic background is very weak, that is, for high energies
(ATI plateau). For the low energy part of the spectrum we can simply disregard
the chaotic contributions. The regular part gives the major contribution to the
LES and will easily drown any weak chaotic features in the spectrum.

The deflection function clearly indicates that there are two saddle points (and
two maxima) in pz, and one saddle point in p⇢, see Fig. 5.2. The critical line
(shown in blue) runs through all these points, as necessary (cf. Section A.5.1).

The final momentum distribution is shown in Fig. 5.3. In accordance with
the general discussion of Appendix A.5 the critical line shows up in the final
2D momentum spectrum as a caustic. Its exact shape depends on the laser
parameters in a nontrivial way. Characteristically it is however mainly visible for
negative p⇢ (see Section 3.4.5 for the interpretation of the sign of p⇢). These are
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Figure 5.2: Details of Fig. 5.1 showing the three saddle points and the critical
line (blue) through them. See the text for discussion of the letters.

coming from recollision at positive ⇢C , while recollisions at negative ⇢C is only
possible after fly-by with large change of transverse momentum, giving a washed
out feature. The higher tunneling probability for higher p0⇢ also contributes to
making the features at negative p⇢ much more pronounced.

There is a long ”tail” extending to large negative p⇢. It is still significant
when p⇢ is so large that the direct electrons are very improbable, thus forming
a visible feature. This corresponds to the fork-like structures described in [82].
The tail is strongest for the VLES recollision since this occurs early on in the
dynamics before the wave packet has spread too much in ⇢, and is hardly visible
beyond the first order LES.

The caustic was observed in [65] where however the transverse force alone
was held responsible for the feature. Here we see that it is formed due to the
critical line in the deflection function, the shape of which follows from the full
interaction which is similar to the diagonalizable model of Section 4.2.

We follow the critical line in Fig. 5.1 in clockwise direction, starting from
the chaotic region, and encounter the following features, corresponding to visible
signs in Fig. 5.4. The letters correspond to Fig. 5.2.

• A maximum in pz at (a), corresponding to the shape pz ⇠ p2⇢ fo the caustic
around p⇢ = �0.3 au.

• A character change, given by the inflection point of the caustic at p⇢ ⇡
�0.2 au.

• A saddle point in pz at (b): corresponds to the point where the caustic
runs parallel to the p⇢-axis at p⇢ ⇡ �0.1 au. This gives a peak in the
marginal distribution in pz since grad pz = 0.

• A cusp. The whole process is distorted by the negative momentum kick
received at pass by the core, as already discussed. Therefore this cusp
does not coincide with a saddle point in p⇢.

• A saddle point (c) in p⇢ at p⇢ ⇡ �0.04, cf. Eq. (4.14):

• Two additional cusps.

• A saddle point (d) in pz at p⇢ ⇡ 0.02 au: corresponds to an additional
peak in the marginal pz spectrum, overshadowed by the first one.

53



5 Realistic LES collision

yi
e
ld

yield
-1 -0.5  0  0.5  1

pz / au

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

p
ρ
 /
 a

u

 0  2  4  6  8
log(yield)

Figure 5.3: Distribution of final momentum. Laser parameters as in Fig. 5.1;
ionization restricted to the central laser cycle. Marginal distributions are shown
of pz (red) and p⇢ (blue), where integration in the second case is restricted to
the interval 0.035 au < pz < 0.045 au indicated in the figure.

• A character change, giving another inflection point, at p⇢ ⇡ 0.1 au.

• A maximum (e) in pz close to p⇢ = 0.2 au; the tunneling probability here
is low so it is hardly visible.

5.2 Marginal distributions

5.2.1 Longitudinal momentum

In the deflection function for pz there are two saddle points, corresponding to
collisions at close to ' = ±117� where bunching is purely longitudinal (e

2

k ep0
z
)

in the idealized model (Fig. 4.4). The recollision point radius is approximately
given by the critical distance at this angle, (Fig. 4.5). We can compute �pz at
this point from Eq. (4.2) to get an estimate for the final longitudinal momen-
tum of the saddle point trajectory. Since the whole LES caustic structure is
concentrated in a small pz-range, this value can be used to estimate the whole
structure. In Fig. 3.9 this was used to take the Coulomb potential at recollision
into account, giving an overall redshift (smaller momentum) of the LES of a few
percent. Fig. 5.5 shows a few trajectories close to the two saddle point, together
with their drift momentum as function of time. At the recollision event, their
initially di↵erent drift momenta are bunched together by the di↵erent influence
of the Coulomb potential along the three trajectories.
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Figure 5.6: Trajectories close to the p⇢ saddle point. Bunching occurs in trans-
verse momentum p⇢.

5.2.2 Transverse momentum

In the deflection function for p⇢ there is one saddle point, corresponding to a
collision close to ' = 0� where bunching is purely transverse (e

2

k ep0
⇢
) in the

idealized model (cf. Fig. 4.4). The recollision distance is approximately given
by the analytical expression Eq. (4.10). Fig. 5.6 shows a few trajectories close to
the saddle point, and their transverse momentum. The bunching event is more
intuitive in this case: the central trajectory stays close to ⇢ = 0 throughout
the recollision so it is hardly influenced, while the other two each get a ”kick”
towards ⇢ = 0 during their motion.

The final p⇢ of the 1st order trajectory recolliding at ⇢ = 0 can be esti-
mated by Eq. (4.14). Since the cusp singularity occurs for initial values close to
this saddle point, Eq. (4.14) is proposed to estimate the transverse momentum
of the cusp; typically the most prominent part of the 2D LES structure. For
higher orders a numerical determination, using the system of di↵erence equa-
tions Eq. (4.11) and looking for a recollision with ⇢ = 0 can be used.

Together with the basic estimate Eq. (3.5) of the LES longitudinal momen-
tum (or Eq. (3.9) for a short pulse), this gives a prediction of the cusp location
in the joint 2D spectrum. It is compared with simulations in Fig. 5.7.

The peak in transverse momentum has not been observed experimentally,
presumably since the data was not evaluated in this way. It is hoped that
the transverse momentum distribution of the LES structure will be measured
experimentally, to allow comparison with Eq. (4.14).

Naturally the longitudinal and transverse directions are not unique in show-
ing a peak in their marginal distribution. In the light of Appendix A.5.2 the
marginal distibution along any direction has a divergence wherever the caustic
is running perpendicular to it.

5.3 Conditional spectrum along p⇢ = 0

The original observation of the LES was done in the forward direction, i.e. col-
lecting outgoing electrons within a small opening angle around the laser polar-
ization direction (cf. Fig. 3.5). Considering the bivariate distribution as we have
done here (cf. Appendix A.2), this means the LES occured in the conditional
distribution for p⇢ = 0. Due to the increasing availability of 2D distributions
in the literature, other observed features have been identified as the LES [65],
without making the relation completely clear. In this thesis we have used the
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Figure 5.7: Details of photoelectron momentum spectrum for (a) � = 3.2 µm,
(b) � = 2 µm and (c) � = 1.32 µm. Crosses show the predicted cusp locations
byt Eq. (3.9) and Eq. (4.14). (d) shows the expected maxima in p⇢ from the
theoretical model. 4 cycle pulse, intensity 1014 W/cm2, tunneling in centre
half-cycle only.
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term ”LES” for the complete 2D structure resulting from a low energetic recol-
lision. The connection to the forward direction conditional LES remains to be
made.

The main objective of this section will be to clarify whether the LES, as
viewed in the conditional spectrum in the forward direction, is a predominantly
longitudinal or transverse e↵ect. By the section Section 4.2 we know that the
directions of the eigenvectors of the Jacobian gives the direction of bunching,
so we are able to give a quantitative answer to this question. As opposed to
the model in Section 4.2 the full Jacobian is however not diagonalizable in an
orthogonal basis.

The exact numerical results will depend on the laser parameters and the
atomic species. For a given situation, only the full numerical treatment gives
the full information. The qualitative features are however very general.

5.3.1 Contributions to the determinant

The conditional spectrum is in general given by the expression Eq. (A.5). The
laser parameters are chosen as in Section 5.1.

The function 1/ det J is plotted in Fig. 5.8. The initial coordinates giving
p⇢ = 0 are shown by the yellow dashed line (disregarding the small contribution
in the forward direction coming from the chaotic region). The function plotted
contains, together with the tunneling probability, the full information about
the spectrum and the shading along the yellow line therefore directly gives the
spectrum in the forward direction.

The matter is simplified since the final momentum pz is growing monotonously
along the line. Therefore we have an invertible mapping

(p0⇢, p
0
z) 7! (p⇢ = 0, pz)

so that we can consider the final pz or the final energy E
final

= p2z/2 as a
parametrization of the line of initial conditions.

We can gain information about the recollision by studying the elements of
the Jacobian independently. Figure Fig. 5.9 shows a plot of the four elements,
as funtion of final energy, in the vicinity of the recollision.

5.3.2 Non-orthogonal diagonalization

The Jacobian is not symmetric, due to the motion before recollision (see Sec-
tion 4.4.1). One sees in Fig. 5.9 that the o↵-diagonal elements are not equal;
they do however follow each other closely. We can still find the eigenvalues �

1

,�
2

and eigenvectors e
1

, e
2

of the Jacobian, but e
1

and e
2

are not orthogonal.
Finding the eigenvalues and plotting them as function of final energy leads to

Fig. 5.11. In the figure also their product is shown, giving the dynamical factor
in the spectrum, together with the total final spectrum, including tunneling
probability.

Fig. 5.11 further illustrates how the weighting of initial conditions due to the
tunneling process shifts the spectral peak a little to lower energy. The recollision
distance r is also shown, giving the illustrative picture that the LES peak occurs
for trajectories that turn around closest to the ion. In the light of Fig. 4.4, where
the angle-dependency of the eigenvalue µ

2

is weak for recollisions in the first
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5.3 Conditional spectrum along p⇢ = 0
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5 Realistic LES collision
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Figure 5.10: Definition of the angles ↵
1

and ↵
2

diagonalizing the Jacobian.

quadrant, this is not surprising; the eigenvalue �
2

of the full J is dominantly
governed by r, cf. Eq. (4.8). See also Fig. 5.12.

In the upper part of Fig. 5.11 the angle ↵
2

of the bunching eigenvalue is
shown, defined by cos↵

2

= e
2

· ep0
z
(cf. Fig. 5.10). It gives the direction along

which the bunching eigenvalue is acting. Fig. 5.11 shows that, at the peak
maximum, bunching takes place at an angle of approximately ↵

2

⇡ 30�, which
is more longitudinal than transverse. 45� is reached at around 2.7 eV, where
the peak is lower, but still noticeable. The maximum angle reached, towards
3.4 eV, is close to 60�.

Since the eigenvectors are not orthogonal, the interpretation of the angle ↵
2

is less straightforward than the angle ✓ of Section 4.2. As shown in Fig. 5.11
the rotation angle ↵

1

defined as cos↵
1

= e
1

· ep0
⇢
is however very close to ↵

2

.
The non-orthogonality is measured by �↵ = ↵

1

� ↵
2

, which stays less than 5�

throughout the LES peak. This angle can be taken as an uncertainty in the
determination of the bunching angle.

A few recolliding trajectories are shown in Fig. 5.12. For forward motion
recollision takes place along a line, which can be mapped directly onto the final
energy. As this line passes nearby the line corresponding to the caustic, the
LES is formed.

In Fig. 5.13 similar figures are shown for � = 3.2 µm. Even though the peak
energy is quite di↵erent, the qualitative shape of the plots are very similar to the
2 µm-case, pointing to the general applicability of the understanding presented
here.

The exact values depend on the laser parameters and the order of the recol-
lision. Still we stress again that the recollision event by itself is always similar
to the model of Section 4.2 - only the motion before recollision, and the laser
field strength at recollision, changes.

5.4 Experimental detection of the discussed fea-
tures

There are several additional considerations when applying the conclusions of
this chapter to the typical strong field experiment. In particular three e↵ects
are important:

• Tunneling takes place at several cycles within the pulse. For a short
pulse this is suppressed due to the exponential dependence of tunneling
probability on field strength (Eq. (2.10)), but for longer pulses one needs to
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5.5 Summary

sum up the slightly di↵erent LES structures resulting from each tunneling
event. This weakens the visibility of the divergence considerably.

• Focal averaging (see Section 2.2.2) similarly weakens the divergence, since
the caustic location has to be averaged over the intensity distribution.

• Quantum mechanical e↵ects tend to smear out classical divergencies due to
the presence of a phase, meaning that measured distributions will typically
be even smoother.

A divergence should not be expected in a real experiment; rather a broad max-
imum is found.

Fig. 5.14 shows the gradual inclusion of the classical e↵ects into the simula-
tion, for a 12 cycle pulse at � = 1.8 µm and I = 1.8·1013 W/cm2 ionizing xenon.
The parameters are chosen to coincide with those of [82]. Panel (a) has ion-
ization artificially limited to the center half-cycle only, giving clear caustics for
the LES. Also the extension of the VLES is visible, corresponding to the main
prong of the fork structure [83]. In (b) ionization takes place in the full pulse,
giving symmetric recollision features and overall broader features. Finally (c)
shows the focal averaged result, giving broad features shifted to lower energy.
according to Section 3.5.1. In (d) the corresponding distribution is shown as
it could be measured, without desymmetrization (cf. Section 3.4.5. While less
sharp the LES structures are still visible; especially the maximum at p⇢ accord-
ing to the model Eq. (4.14), resulting from the cusp singularity, is prominent,
as is the forward direction LES at the z-axis. Fig. 5.15 shows a detail including
the marginal distributions, showing how the LES features could be observed.

By initially disregarding these complications, it is possible to understand the
recollision by itself and the divergence which results in the ideal case, which is
the main purpose of this chapter.

5.5 Summary

The critical line is the central feature of the low energy recollision, and it governs
the whole spectrum in an intuitive way - for initial conditions close to the critical
line the spectrum is enhanced, far away from it there is no e↵ect. The di↵erent
features that have been associated with the LES in the past can all be linked to
the critical line in the following ways:

5.5.1 The caustic

The caustic itself, which is the image of the critical line in the joint momentum
spectrum, was discussed in [65], without discussion of the deflection function
or the diagonalization treated here, but rather as a phenomenological result
from classical calculations. In measured 2dPMD from experiments, caustic-like
structures appear [73]. They are rather weak due to the e↵ects of Section 5.4 and
quantum e↵ects, that generally tend to smear out classical divergencies [65,84].

The ”transverse LES” discussed in [82], manifested there as a fork-like struc-
ture, is identified here as the ”tail” of the caustics, which extends to large
transverse momenta. The elastic recollision assumptions of [82] reproduce the
structure for large energies; for small energies the inelastic recollision treated in
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5.5 Summary

this chapter gives a more detailed view and reproduces the shape of the caus-
tic. There is no essential disagreement in the results; in particular it is clear in
Fig. 5.14 that the caustics extend to large energies where they take the shape
described in [82].

We further point out that the shape of the VLES caustic strongly resembles
the ”v-shape” that has been observed in several experiments and simulations.
It seems likely that this v-shape is indeed due to recollisions of the VLES type.

The question that has been raised in previous discussions, whether the e↵ect
is predominantly along the polarization direction (”bunching”) or the trans-
verse direction (”focusing”) is somewhat inappropriate for the caustic, since the
bunching e↵ect we discuss here is acting in all directions, and depends on the
angle ' from the origin to the turning point. Pure bunching in one or the other
direction does occur for specific values of ' but has no fundamental importance
- all bunching directions are on an equal footing. The underlying reason is the
potential � of Eq. (4.3), which is almost radially symmetric for the relevant an-
gles, thus allowing bunching in a large range of angles. The strength of bunching
is not equal for all angles but also not sharply peaked anywhere, though a quan-
titaive treatment of this question requires studying the higher derivatives of �
which is beyond the scope of this work.

5.5.2 Longitudinal bunching

The general properties of caustics, outlined in Appendix A.5 show that the
marginal distribution will have a divergent peak wherever the caustic runs per-
pendicular to the direction. Equivalently, there will be a saddle point in the
deflection function of the momentum in that particular direction. The marginal
spectrum along the laser polarization axis will have two such peaks per LES
recollision due to the general shape of the caustic. This is the longitudinal
bunching discussed in [67]. Simulations show that this is a very strong e↵ect
and gives a clear series of peaks. The VLES peak tends to be hidden by FTI un-
less the pulse is very short. The visibility is further obscured by averaging over
the focal intensities and di↵erent ionization cycles within the pulse (for longer
pulses), giving the appearance of a ”double hump” that has been observed many
times [59, 71].

5.5.3 Forward-direction LES

One major advantage of the method discussed here, where fully di↵erential
information about the momentum spectrum is available, is the ability to analyze
the conditional spectrum along arbitrary direction. This is the setting where
the LES was discovered and where most of the discussions have been centered.
From the deflection functions one immediately sees that the spectrum in forward
direction will have a peak when the initial conditions giving forward motion are
close to the critical line.

Important in shaping the conditional forward spectrum is the restriction on
initial conditions leading to forward motion. This gives a line in initial phase
space, which comes close to the critical line only once for each LES event, thus
giving a peak. Using an approximate diagonalization the angle of bunching
is typically around 30� at the peak maximum, i.e. more longitudinal than
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5 Realistic LES collision

transverse. It is however quite rapidly changing also within the peak, due to
the recollision angle ' changing rapidly.

Since the matrix G(') is almost constant for the relevant angles, the r-
dependence is dominating the bunching eigenvalue. Thus the maximum of the
LES peak roughly corresponds to the trajectory with turning point closest to
the origin.

5.5.4 Final remarks

The LES should therefore best not be seen as a purely directional e↵ect but
rather a signature of a divergence in the spectrum: a critical line in the initial
conditions giving a caustic in the final joint momentum distribution. This caus-
tic is not directly visible in one-dimensional spectra: it manifests itself as a (in
principal divergent) peak in the marginal distributions along any direction, and
traces of it can be visible in the conditional spectra. Specifically in the forward
direction, the e↵ect is seen by an accumulation (but not divergence) which is
due to bunching in rapidly changing angle, typically centered around 30�.

The longitudinal bunching of [67] thus describes the e↵ect in the marginal
spectrum in the polarization direction, and the saddle point in the deflection
function discussed there is a special case of the critical line. The ”Coulomb
focusing” of [63] is more dubious to interpret in our context - while there is pure
bunching in the transverse direction, this does not give a peak in the forward
direction but with quite some o↵set, due to the negative transverse momentum
(resulting from passing by the ion) of electrons recolliding at ⇢ = 0. Due to
the pure geometric e↵ect, the di↵erential distribution along z will diverge [85],
but this is true for all longitudinal momenta since, from the passing of the ion,
there are electrons present with p⇢ = 0.
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Chapter 6

The Zero-energy-structure

In this chapter a recently discovered [6] feature at the extreme low end of the
photoelectron energy spectrum is discussed. The basic experimental setup re-
mains the same as in previous chapters. The observation was made through
combination of the high precision COLTRIMS detection method [23] with a
high intensity mid-IR laser (� = 3.2 µm), thereby probing a new parameter
regime.

The origin of the observed peak in [6] was unknown. Compared to the
LES, which was also detected in the experiment, it occured at a much smaller
energy scale. Its peak momentum value was in fact indiscernible from zero,
within the experimental resolution. Its high concentration around zero made it
a pronounced visible peak in the momentum spectrum, even though its total
weight was small compared to larger scale features. It was speculated to be
formed by either some recollision mechanism distinct from the LES one, or by
ionization of bound states initially formed by the FTI mechanism Section 2.5.
It soon became referred to as the zero-energy-structure, ZES.

The structure was confirmed experimentally in [86], together with a quali-
tative theoretical description in [73]. A fully quantitative theory in agreement
with experiments was given in [8], where the results were reported that are
described in more detail in this thesis.

In this chapter and the next a complete classical theory of the ZES is pre-
sented, along with numerical simulations. The explanation relies on the FTI
mechanism of Section 2.5 for population of highly excited atomic states, fol-
lowed by ionization of these states by an external electric field. This field is
present in the detectors used in [6] and similar experiments. The ZES can
thus be regarded as an experimental artefact which does not indicate unknown
features of the laser-atom interaction, as was speculated initially. On a more
positive side, it does show the result of a physical process which is susceptible
to a complete analysis, and could potentially resolve very fine details about the
physics of the problem, especially with an increase in precision from that of
today.

In Section 6.1, the experiment and the workings of the detection apparatus
is described from a theoretical point of view. In Section 6.2 our hypothesis is
put forth and the di↵erent time scales of the motion is discussed. This indi-
cates that the physics of ZES formation is that of the Stark problem, which is
described in Section 6.4. Only the aspects important for the ZES are discussed.
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6 The Zero-energy-structure

Figure 6.1: Experimental detection of ZES, from [6].

A detailed analysis of the motion is postponed until Chapter 7, in order to keep
the reasoning in direct connection with the experiment clear. Simulation re-
sults are shown in Section 6.5, demonstrating that the simple scaling properties
resulting from the Stark model are indeed reproduced by a full numerical treat-
ment. In Section 6.6 a comparison with experimental data is made, confirming
the validity of the Stark scaling.

6.1 Experimental observation

6.1.1 Properties of the ZES

The first observation of the ZES [6] was done in an experiment with laser wave-
length of 3.2 µm and intensity of I = 1014 W/cm2, with a pulse length of
ca 50 fs corresponding to around 6 cycles, ionizing argon atoms. The full 3D
photoelectron momentum distribution was measured; the central part is shown
in Fig. 6.1. The experiment is clearly in the classical regime since no interfer-
ence patterns are visible; the LES was also detected. The ZES is the narrow
peak very close to zero, at momenta where previous studies have not shown any
particular features.

[6] reported the following characteristic properties of the peak:

1. A significant single peak on top of a comparatively flat background.

2. Peak energy at a few meV, within experimental resolution from 0.
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Figure 6.2: Sketch of the reaction microscope setup. The z-axis is antiparallel
to the electric field. The magnetic field makes the real experimental situation
more complicated but the measurement in z-direction is untouched.

3. A small shift towards negative momentum, however also within experi-
mental resolution from 0.

The peak also appeared in the experiments of [73,86], where a shift was not
clearly seen.

6.1.2 Principle of the reaction microscope

All ZES experiments were done using a so-called reaction microscope (REMI)
[23] utilizing the COLTRIMS (cold target recoil ion momentum spectroscopy)
technique. Its purpose is to measure the full 3D momentum spectrum of elec-
trons and ions, resulting from some interaction process (not limited to photoion-
ization but including all kinds of scattering processes). For single-ionization
processes, the ability to simultaneously measure the electron and ion products
enhances the precision [87].

The central part of the reaction microscope is a vacuum chamber, where
the target atoms are inserted as a dilute gas. On each side, a detector plate
is placed at a macroscopic distance (typically decimeters) from the interaction
region. Charged particles are guided towards the detector plates by a weak
electric field, sending positive particles to one plate and negative particles to
the other. In order to handle the large possible velocities of light particles (in
our case, electrons) and keep them confined within the chamber until they reach
the detector plate, a magnetic field is applied parallel to the electric field, giving
the particles a spiralling motion. For technical details on the setup, the reader
is referred to [23].

Important from the theoretical side are the following points only. The scat-
tering process under study takes place under influence of external electric and
magnetic fields, that guide the electrons and ions to the detector plates. The
magnetic field is irrelevant for our problem, since it only has significant influence
at very high electron velocities that are only reached on macroscopic distance
from the ion. It is neglected in the following. The electric field typically ranges
between 1�10 V/cm, which is much weaker than other fields in the experiment,
leading one to assume that it does not change the scattering process appreciably.
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6 The Zero-energy-structure

Having escaped the scattering region, the electrons are accelerated by the exter-
nal field, deflected by the magnetic field, and then hits the detector at a specific
position rd and time td. The time of interaction t

0

is precisely known due to
the shortness of the laser pulse, so the time of flight to the detector td � t

0

is known to high accuracy. So is the position at the detector plates (xd, yd).
Thus one obtains the initial momentum in two directions (x, y) - the plane of
the detector plate - from its position and flight time, and the momentum in the
third direction z - that of the detector field - from time of flight only:

p(m)

z = Ft
ref

� Ftd . (6.1)

t
ref

is a reference time corresponding to motion from the laser focus to the
detector under influence of the extraction field only; it is typically not calculated

but instead the line p
(m)

z = 0 is manually calibrated from measured data.
It is immediately seen from Eq. (6.1) that the REMI cannot distinguish

between an electron with a certain initial momentum in the direction opposite to
the detector plate, and an electron which, for whatever reason, spends a certain
amount of time in the interaction region before escaping, with low velocity, to
the detector.

6.2 Hypothesis

Our model for ZES formation relies on two points:

1. FTI populating excited atomic states across threshold (Section 2.5).

2. The electric field of the detector ionizing some of these states.

Field ionization of Rydberg states by an external electric field is a common
experimental technique [88], but it is not clear from the outset how electrons
from that process will be detected in the REMI setup. For bound states, it
is meaningless to talk about a definite final electron velocity after interaction,
since the electron moves in Kepler ellipses arond the ion. What we will show is
that in an intermediate energy range the electron does escape to the detector,
but only after spending a long time in the vicinity of the ion. This means that
compared to what one expects without taking the electric field of the detector
into account:

1. The liberated electrons show up at the detector, forming a peak (as will
be shown).

2. They are detected with very low energy.

3. They are most likely to arrive a little later than t
ref

, due to the delay time
in escaping the influence of the ion.

The three essential features of the ZES are thus reproduced.

6.3 Separation of time scales

The creation of bound states by FTI and the ionization by the extraction field
occur on vastly di↵erent time and length scales, so they can be viewed as se-
quential processes.
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6.4 Stark problem

The first step, the FTI, is already contained in a complete description of the
strong-field ionization process, and serves essentially as giving initial conditions
for the second step. The second step by itself is field ionization of Rydberg
states, as widely used in studying high-lying atomic states and their response to
external fields. The generality of our model does not even require step 1 to be a
strong-field laser experiment; any physical process (broadband one-photon exci-
tation, inelastic collisions etc) producing a rather flat spectrum across threshold
would lead to the same physical situation. We will therefore make less reference
to the strong-field excitation and discuss the field ionization in as general terms
as possible.

The total Hamiltonian is

H =
p2

2
� 1

|x| + x ·EL(t) + x ·EC

where EL(t) is the time-dependent electric field of the laser, and EC the constant
field of the detector. The combined potential of the ion and the laser field during
tunneling is shown in Fig. 6.3, compared with the potential of the ion and the
detector field. The axes scales di↵er by many orders of magnitude. While the
laser-atom interaction in the strong-field regime takes place on a length scale
of nanometers and a typical energy scale of eV, the detector field perturbs the
Coulomb potential only on a µm scale, and in meV of enery. This also leads to
a similar separation of time scales. The laser oscillates on a fs time scale, while
the escape of electrons with E = 0 typically takes nanoseconds for experimental
field strengths. Closer to the barrier, the delay is even longer.

For motion in the potential of Fig. 6.3b, the motion of Fig. 6.3a gives only
initial values. Once the laser pulse is over at time t

1

, we still have r(t
1

) ⌧ 1
µm for low energy electrons. The spectral features produced by step 1 - LES,
VLES and others - are typically not resolved at the order of meV, giving an
almost flat spectrum. The same is true for quantum features not included in
the classical simulations, where ATI peaks (single photon peaks) still have a
width � 1 meV.

We are thus led to study step 2 separately, for a given initial distribution
that can be obtained in simulation from step 1, or approximated by some rea-
sonable assumptions. One complication is that we are not only interested in the
momentum distribution of the liberated electrons, but also their time of flight
to the detector, since this is the measured quantity that enters into Eq. (6.1) in
order to calculate the initial velocity along the extraction field axis.

6.4 Stark problem

The situation in the extraction field (step 2) is the well-known Stark problem [89]
of an electron under the combined influence of an ionic potential and a constant
electric field.

Since we are interested in motion on a µm length scale of a single liber-
ated electron, multi-electron and polarization e↵ects are neglected (like in the
laser-driven motion in previous chapters) giving the single-electron hydrogenic
Hamiltonian:

H =
p2

2
� 1

|x| � Fz (6.2)
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where as always in the following the field is oriented antiparallel to the z-axis;
EC = �Fez. The di↵erence to Eq. (2.1) lies simply in the constant final term,
as opposed to a time-dependent laser term. This gives a drastic simplification
and allows fully analytical solutions.

6.4.1 Scaling properties

Eq. (6.2) allows the general scaling [90]

p = p0F 1/4

x = x0/F 1/2 (6.3)

which is seen by introducing the scaled quantities in Eq. (6.2), arriving at

H =
p02pF

2
�

p
F

|x0| �
x0
p
F

· F =
p
FH 0

Since an overall factor in the Hamiltonian does not enter into the equations of
motion, this is equivalent to the original Hamiltonian with energy scaled as

E =
p
FE0 . (6.4)

The scaling of time is also obtained as

t = x/p = x0/p0F�3/4 = t0F�3/4 (6.5)

It therefore su�ces to study the scale-free (F = 1) Hamiltonian

H =
p02

2
� 1

|x0| � x0 · e
F

(6.6)

and then scale all results according to Eqs. 6.3-6.5 for arbitrary field strengths.
Here e

F

is a unit vector in the direction of the constant field F.
The scaling alone tells a great deal about the motion. The overall ionization

threshold, being a limit in energy, must scale as ⇠
p
F . Any structure in the

final momentum, as measured in the experiment, must scale as ⇠ F 1/4.
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Figure 6.5: Level curves of the parabolic coordinates defined by Eq. (6.8)

We always take the constant field along the z-axis. The potential of Eq. (6.6)
is then, dropping the primes,

V = � 1

|x0| � z0 .

The potential along the z-axis is shown in Fig. 6.4. It has a minimum at z0 = 1,
taking the value V (1) = �2. Combined with the scaling Eq. (6.4) this is the
well-known limit for field ionization [88]

E
min

= �2
p
F (6.7)

which is widely used in the context of static field ionization of Rydberg states.
It is the lower limit of accessable energies; whether a state is actually ionized
depends also on the motion in other directions. This is analyzed by properly
separating the problem, as is done next.

6.4.2 Separation of variables

From now on we drop the primes and use exclusively scaled units unless oth-
erwise noted. The Hamiltonian Eq. (6.6) is separable in parabolic coordinates.
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6 The Zero-energy-structure

Define in 3D [91]

⇢ =
p
⇠⌘ ⇠ = r + z

z = (⇠ � ⌘)/2 ⌘ = r � z
x = ⇢ cos', y = ⇢ sin' ' = arctan(y/x)
r =

p
⇢2 + z2 = (⇠ + ⌘)/2 ⇠, ⌘ � 0

(6.8)

See Fig. 6.5. Restricting to the planar problem gives ' = 0 or ' = 180�.
Since the parabolic coordinates are always positive, ' makes a discontinuous
jump whenever the z-axis is crossed.

The Hamiltonian doesn’t depend on ', so it is a cyclic coordinate; in our
problem we can to good approximation set p' = 0, leading to a 2D situation.

The Hamiltonian Eq. (6.6) in parabolic coordinates then becomes

H = 2
⇠p2⇠ + ⌘p2⌘
⇠ + ⌘

� 2

⇠ + ⌘
� ⇠ � ⌘

2

Since energy is conserved, we can write the Hamilton-Jacobi equation [92]
as

2⇠

✓
@S

@⇠

◆
2

+ 2⌘

✓
@S

@⇠

◆
2

� 2� ⇠2 � ⌘2

2
� E(⇠ + ⌘) = 0

which separates into

2⇠

✓
@S

@⇠

◆
2

� 1� ⇠2/2� E⇠ = �

2⌘

✓
@S

@⌘

◆
2

� 1 + ⌘2/2� E⇠ = ��

where � is a constant of motion that can be identified as

� = �(�z

r
+ px(zpx � xpz))�

x

2
. (6.9)

This gives expressions for p⇠ and p⌘:

p⇠ =
@S

@⇠
=

s
E

2
+

�

2⇠
+

1 + ⇠2/2

2⇠
(6.10)

p⌘ =
@S

@⌘
=

s
E

2
� �

2⌘
+

1� ⌘2/2

2⌘
(6.11)

and the action is given by

S =

Z
p⇠d⇠ +

Z
p⌘d⌘ . (6.12)

The separation constant � can be given an intuitive meaning when consider-
ing the limiting case of trajectories passing through the origin. (All trajectories
of interest in our case are of this kind, since they start very close to the origin
in the scaled coordinates.) For such trajectories, close to the origin r k p, so in

74



6.4 Stark problem

' = arccos�

z0

Figure 6.6: Definition of � for trajectories starting at the origin.

polar coordinates z = r cos', ⇢ = r sin', pz = p cos', p⇢ = p sin'. Eq. (6.9)
goes into

� = cos'� p2r sin'(sin' cos'� cos' sin')� r sin'

2
�! cos'

as r �! 0. � is simply the cosine of the angle of the escaping trajectory towards
the z-axis, cf. Fig. 6.6. � = 1 means the trajectory goes along the z-axis to
infinity, while � = �1 means it starts in negative z-direction. Since a trajectory
cannot go through the origin, such a motion will never result in ionization, so
� = �1 gives a trapped electron for all energies. This is a periodic orbit of the
Stark problem [93,94]; for E � 0, it is the only one. For lower energies, there is
a range of periodic orbits, as is seen by studying the motion given by Eq. (6.10)
and ((6.11) in detail as follows.

6.4.3 Initial conditions

We always have the initial condition

⇢(0) = z(0) = 0 .

The initial momentum is given in terms of E and � by

p⇢ =
p
2E sin arccos� =

p
2E
p

1� �2

pz =
p
2E� .

E and � must in principle be distributed according to the full laser-induced
dynamics. They can for a first treatment however be approximated as constant
in the allowed range:

w(E) = 1/2 for � 2  E  0

w(�) = 1/2 for � 1  �  1 .

The real distribution in � does change depending on the setup, especially when
changing the angle between the laser polarization and the extraction field di-
rection. The change induced by this is too small to be seen in the experiments
discussed here; it could possibly be observed in future experiments with higher
resolution and/or stronger extraction field (which makes features easier to see
due to the scaling Eq. (6.3)). Some other excitation mechanism, e.g. broadband
single-photon excitation, would also lead to a di↵erent �-distribution. The dy-
namical features presented here do in most cases still prevail, since only the rel-
ative weight of the contribution to the spectrum is changed (cf. Appendix A.3).
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6.4.4 Field ionization threshold

We can rewrite the expressions Eq. (6.10)-(6.11) as

p⇠ =

r
1

2
(E � V⇠(⇠)) , V⇠ = �1 + �

⇠
� ⇠

2
(6.13)

p⌘ =

r
1

2
(E � V⌘(⇠)) , V⌘ = �1� �

⌘
+

⌘

2
(6.14)

The two potentials depend parametrically on �; they are plotted in Fig. 6.7.
Motion in ⌘ is clearly bound for all energies and separation constants, with a
turning point at

p⌘ = 0 =) ⌘ = E +
p
E2 + 2(1� �) .

In ⇠ there are turning points at

p⇠ = 0 =) ⇠ = �E ±
p
E2 � 2(1 + �)

which are only real if the condition

E  �
p
2(1 + �) =) �  E2/2� 1

is fulfilled. Thus we get the more precise ionization condition corresponding to
Eq. (6.7), but including the fully separated problem

E
lim

= �
p
2(1 + �) . (6.15)

For linear motion in positive direction (going over the saddle point in the po-
tential towards the detector), � = 1 so the value E

lim

= �2 is recovered,
corresponding to Eq. (6.7) and Fig. 6.4.

A schematic picture of the ionized states in the E,�-plane of initial coordi-
nates is shown in Fig. 6.8. For all energies E < 0, there is an interval of �-values
giving bound motion, i.e. periodic orbits. The total weight of the bound states
(for a flat initial distribution) is found as

R
0

�2

dE(E2/2� 1)
R
0

�2

dE
=

⇥
E3/6� E

⇤
0

�2

2
=

1

3
. (6.16)
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Figure 6.9: Final measured momentum distribution in scaled units.

6.4.5 Final momentum distribution

The measured momentum spectrum of the Stark motion, with initial conditions
evenly distributed within the allowed range, is shown in Fig. 6.9.

Note that the measured momentum along the field p
(m)

z is given by the
physical time of flight, according to Eq. (6.1).

A peak is clearly formed close to the z-axis, at p
(m)

z ⇡ �0.6. In addition
to this a series of peaks with decreasing magnitude appear at larger negative
pz. The main peak, which is very prominent compared to its the background,
is identified with the ZES.

The formation of the spectrum is discussed further in Chapter 7.
It is important to note that, due to the scaling properties of Eq. (6.3),

Fig. 6.9 is completely general and depicts the spectrum for any extraction field
strength. By scaling the axes by F 1/4 (atomic units) the momentum spectrum
for a specific field strength is obtained.

This points to the universality of the ZES; its qualitative properties are
completely independent of the field strength. The quantitative change of these
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6 The Zero-energy-structure

Figure 6.10: CTMC simulation including the detector field. � = 3.2 µm, inten-
sity 1014 W/cm2, extraction field strength F = 1.5 V/cm, argon target.

properties are directly predicted by the Stark scaling.

6.5 Simulation results

Simulations were carried out for the full problem of laser driven dynamics un-
der the additional extraction field, by modifying the CTMC method; see Ap-
pendix C.

The results of a simulation including the detector field is shown in Fig. 6.10.
The parameters were chosen according to those of [6]: laser wavelength � = 3.2
µm, intensity 1014 W/cm2, extraction field strength F = 1.5 V/cm. The ZES
turns up close to zero momentum, very similar to the experimental result of [6].
Looking in detail there is a slight shift towards negative momentum in the
direction of the detector field.

A second simulation result is shown in Fig. 6.15. Here the detector field is
turned 90� with respect to the laser polarization, giving a small shift towards
negative y-momentum.

The simulations clearly show that the ZES can result from including the
detector field in the simulation. While this does not prove that this is indeed
what was seen in [6] it gives clear evidence for this. Most importantly the
simulations presented here are a very accurate description of the experiment
(within the limits of classical physics, see Section 6.7 for a discussion on this
point). If the ZES is due to something else, why is the peak described here not
visible?

6.5.1 Scaling of momentum

We investigate the scaling properties of the ZES peak numerically and compare
to the expected scaling in Section 6.4. In the simulation this is simply done by
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Figure 6.12: Scaling of the ZES peak position with extraction field strength.
The theoretical value �0.6F 1/4 is compared to simulated results.

changing the value of the extraction field strength F .
Fig. 6.11 shows the momentum spectra in pz, i.e. integrated over a narrow

range px and py, for three di↵erent field strengths and the setup of Fig. 6.15
of an extraction field perpendicular to the laser polarization. The axes have
been scaled according to Eq. (6.3), in order to illustrate the generality of the
peak shape. Then all three spectra lie on top of each other, confirming the
overall scaling. The integration limits in other directions are also scaled: here,
the scaled limit |p|  0.1 was used for px and py. Since the peak is centered
on the z-axis choosing di↵erent limits will not a↵ect its location much, but the
shape may change slightly. For direct comparison, the proper scaling should be
applied for all coordinates.

The excellent agreement between the curves of Fig. 6.11 shows that the
laser-driven motion is indeed unimportant for the ensuing extraction dynamics.
Only the latter can be rescaled by Eq. (6.3); the length- and momentum scales
of the laser driven electron is the same for all field strengths in real coordinates;
hence in scaled coordinates they are di↵erent in each case. Since time is also
scaling according to Eq. (6.5), we are e↵ectively changing both laser wavelength
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Figure 6.13: Left: Scaling of the number of ionized states with field strength.
Theoretically a slope of 1/2 is expected. Right: Ratio of ionized states to
initially occupied ones in �2  E  0. A small, almost constant o↵set from the
value 2/3 predicted by Eq. (6.16) is observed, pointing to a somewhat non-flat
distribution of �.

and intensity in the scaled problem for each di↵erent extraction field strength.
That the universal shape of Fig. 6.11 survives untouched is clear evidence for
the separation of the two processes.

Another feature of Fig. 6.11 is the second peak located around pz = �3.
While much weaker than the main peak, it is visible and corresponds to the

peak close to p
(m)

z = �3 in Fig. 6.9. Due to its weakness it may be hard to
detect experimentally; it would however give strong support to our model if
observed.

The location of the momentum peak (in real, unscaled coordinates) is shown
in Fig. 6.12. The theoretical curve is obtained by combining the F 1/4-scaling of
Eq. (6.3) with the absolute peak location in scaled coordinates, approximated
as pz ⇡ �0.6. This value was extracted from Fig. 6.11.

6.5.2 Scaling of energy

In simulation the number of escaped electrons can simply be counted and is
plotted as function of field strength is shown in Fig. 6.13. Since the absolute
scale has no meaning here it is plotted as a log-log plot, so that the square-root
behaviour of Eq. (6.4) gives a line with slope 0.5. Such a line fits the simulated
points extremely well, confirming the energy scaling ⇠ F 1/2.

The number of liberated electrons divided by the total number of electrons
in the energy range (�2

p
F , 0) is also shown in Fig. 6.13 and roughly agrees

with the value 2/3. The small, but systematic, o↵set is caused by the nonho-
mogeneous distribution of �-values. The �-distribution is almost independent
of energy, so the small correction necessary is the same for all field strengths,
giving a constant shift of the numerical points.

Numerically also the measured energy spectrum can be compared before and
after the extraction. (We mean here the detected energy; the physical energy
is of course constant.) It is shown in Fig. 6.14. The flat pre-extraction (and
physically correct) spectrum is distorted, and a narrow peak is formed above
threshold with a corresponding dip below it. Note however that not all states
are ionized; there are still populated states in the region E 2 (�2, 0), in direct
correspondence to Fig. 6.8.
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In an experiment, the peak above threshold is certainly measurable, and
since it is sitting on a constant background, its area could be determined. This
area then directly corresponds to the area missing in the ”dip” region below
threshold. The ZES could in this way be used to gain information about the
occupation of Rydberg states after FTI. Unfortunately, in the experiments de-
scribed in Section 6.6 the energy spectra were not detailed enough for a reliable
analysis. The idea was however put forward in [73], where a discrepancy between
their experimentally measured ZES weight and their theoretically expected one
can be explained exactly by a failure of taking the factor 3/2 into account.

6.6 Comparison with experiment

The scaling of the ZES momentum peak was measured experimentally in a
collaborative work [8]. The o↵set from zero was measured by orienting the ex-
traction field perpendicular to the laser polarization axis. Due to the cylindrical
symmetry of the laser-induced process, the distribution of higher energy elec-
trons (not significantly influenced by the extraction field) must be symmetric
around the polarization axis; the o↵set of the ZES from this axis can then be
measured very accurately. This breaks however the cylindrical symmetry of the
full problem.

A typical measurement result together with a corresponding simulation is
shown in Fig. 6.15. In order to increase the contrast the experiment was done at
laser wavelength of 800 nm, in a regime where the CTMC simulation does not
reproduce overall features well. The symmetry axis and ZES is however clearly
visible and makes a comparison possible. The agreement illustrates that the
details of the laser driven motion is not important for the ZES peak formation.

The scaling of the peak location with field strength is shown in Fig. 6.16.
There is no parameter fitting involved; the curve comes directly from theory,
while the experimental dots are the direct measurement results. While agree-
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ment is not perfect, it is a strong indication that Stark dynamics is at play, and
that the model described here is the mechanism behind the peak, as conjectured
in Section 6.2.

6.7 Quantum e↵ects

The separation of variables used here is identical to the one used when describ-
ing the strong-field tunneling process (Section 2.3.2) [38]. Physically, quantum
tunneling must certainly be possible also in the case of a constant field. The very
weak fields involved in the extraction process makes this a highly improbable
event that can be neglected.

This is seen by studying the scaling of the action corresponding to Eq. (6.3):

S =

Z
p · dq = F�1/4

Z
p0 · dq0 .

The intermediate step between quantum mechanics and classical mechanics
is semiclassics, where the idea is to assign a phase given by exp(�iS/~) to
each classical trajectory. Changing the field strength and seeing how the phase
changes in this expression, is then equivalent to scaling ~ according to

~ = F 1/4~0

so in the weak field limit, ~ similarly gets smaller, leading to a suppression of
quantum e↵ects. The semiclassical aspects of the Stark problem for field-ionized
trajectories has been studied extensively [95–97], showing excellent agreement
with experiments [98–100]. Interference structures from field ionization was seen
at field strengths around F ⇠ 1 kV/cm. At our field strengths 1 � 10 V/cm
~ is about 3 � 5 times smaller, and the interference patterns will be accord-
ingly denser and harder to resolve. Mainly however the classical trajectories
were found to describe the dynamics very accurately [100], supporting our fully
classical treatment.

We can estimate the breakdown of classical mechanics by using the analytical
expression for p⇠ in Eq. (6.10). Quantum tunneling and reflection could happen
close to the ionization barrier in ⇠, for energies close to �2. A quantitative
measure of the ”quantumness” of a trajectory is given in semiclassical theory
by the quantality function [101, 102] (sometimes referred to as the ”badlands
function”):

Q = ~2
✓
3

4

p02

p4
� p00

2p3

◆
(6.17)

It is shown in Fig. 6.17, using the momentum at the barrier, p = p⇠(1), where
quantum e↵ects are most severe, for a field strength of F = 10 V/cm. Changing
the field strength means scaling the y-axis by F 1/4. In practice therefore the
extraction fields used, in the range of 1 � 10 V/cm, will only slightly modify
Fig. 6.17. The arrows are pointing to the �-values corresponding to the first

and second return to p
(m)

⇢ = 0, for each energy. It is seen that, at least for
the first two returns, the quantality functions stays well below 1, so that a
classical treatment is very accurate. Further, the interval of significant quantum
behaviour is limited to a narrow range around � = E2/2 � 1 (i.e. close to the
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barrier), so the trajectories in that range will only give small contributions to
the spectrum and the classical features coming from the large over-the-barrier
region, is dominating the final spectrum.

All in all, the prominent classical features that do arise will not be destroyed
by a small quantum correction - semiclassically they form the basics of the
spectrum, with interferences modifying them. This agrees with the conclusion
of [100].

6.8 Summary

The hypothesis presented in Section 6.2 is supported by simulation results,
where inclusion of the extraction field leads to a ZES in the measurement.
Due to separation of time and energy scales, the extraction step is reduced to
Stark motion, obeying the general scaling Eq. (6.3) and leading to a peak in the
momentum spectrum, as shown in Fig. 6.9. The peak location together with
the scaling agrees with simulation results of the full problem for a large range of
extraction field strengths, and shows reasonable agreement with experimental
results, without any free parameters. It was further shown that measuring
the peak weight can in principle lead to information about the population of
negative energy states, that would remain bound were it not for the extraction
field.

The experimental ZES is thus explained in a consistent way. At first glance
this may be a negative result, since the ZES is created by the experimental
detector and does not indicate any unknown physical process. There are however
more positive aspects as well. Firstly, it does not signal a breakdown of the
description in use of the laser driven ionization, so that the understanding of
that process remains intact. Secondly, the presence of a ZES in a mesurement
indicates that Rydberg states were populated by the laser-atom interaction,
with energies above E = �2

p
F where ionization by the extraction field is

possible. It is therefore a probe of high-lying Rydberg states, and could be used
to obtain additional information about the final energy distribution after the
laser pulse. In experiments with laser ionization of atomic clusters, release of
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6.8 Summary

bound electrons through an external field has been used to retrieve information
about the cluster [103–105]. That the ZES has exactly the same origin suggests
that similar ideas may be used.
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Chapter 7

Stark dynamics

In this chapter the motion in the Stark field is discussed in detail and analytical
results are obtained. The overall goal is to understand the momentum spectrum
of liberated electrons Fig. 6.9. In particular the time dynamics corresponding to

the measurement p(m)

z will be discussed, since discussions of the Stark problem
typically do not address this question, while it is essential for our situation. The
time development of an ensemble of trajectories is the new aspect of the Stark
problem that we highlight, as discussed in Section 7.1.

The individual classical trajectories of the 2D Stark problem are known and
have been described e.g. in [106] and [96]. A full discussion, including the time
evolution and the 3D situation, is contained in [107]. The rich and surprisingly
complex dynamics can be solved fully analytically. Since we are only interested
in a limited energy range (cf. Section 6.4.3) we need not investigate all the
di↵erent solutions that arise. We will outline the derivations with particular
focus on how to obtain the asymptotic momentum and time delay, which show
up in the ZES measurements.

7.1 Background

The interest in the Stark problem - an atom in an external electric field - dates
back at least to [89], where it was seen that absorption lines of atomic spectra
(the most powerful tool available to atomic physics at the time) were split and
shifted when an electric field was applied to the atom. This so-called Stark
e↵ect was among the early successes of quantum mechanics [108], which could
predict quantitatively the magnitude of the shift and the reason for the splitting
(lifting of degeneray due to breaking of rotational symmetry).

The Stark e↵ect arises as an energy shift of a single atomic state; it is easily
measured for low quantum numbers where di↵erent energy shells remain well
separated even with the Stark shift, but gets increasingly complicated close to
threshold where even a small energy splitting makes the energies overlap. Close
to threshold a classical treatment gets increasingly accurate.

The tunneling induced by a weak electric field has alo been used to study
atomic states. The goal of this so-called ZEKE spectroscopy has been to resolve
excited atomic states on a very fine energy scale, by laser excitation followed by
tunneling ionization of specific Stark states. Due to the exponential dependence
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7 Stark dynamics

of tunneling probability on energy, di↵erent energy states can be resolved very
exactly by measuring the ionization time depending on the field strength. The
focus has also here been on exciting one or a few states only, in order to retreive
information about them.

In the high-intensity excitation process described in this thesis, a very dif-
ferent energy distribution is obtained, one that is broad and almost flat across
threshold. The energy scale of strong field processes is the ponderomotive en-
ergy Up which is typically tens of eV:s, meaning that state-selective excitation is
impossible. Due to the large number of photons involved, the selection rules for
angular momentum also play little role, so that all available angular momenta
states are typically populated. In e↵ect, a wave packet with an energy width
of several Up and containing, for each energy, many di↵erent angular momenta,
is created. This further supports the application of the classical method, which
was used already for the excitation process itself in previous chapters.

Classical trajectories in a Stark field has been studied in various contexts.
In atomic physics the most spectacular result is probably the observation of
interference of di↵erent paths, leading to a di↵raction pattern on a detector
screen [100,109] as predicted by [96]. In these studies a semiclassical picture was
used (classical trajectories + quantum phase) for electric fields around F ⇠ 1
kV/cm. However, the time dynamics did not have to be taken into account.

On a completely di↵erent scale, time dynamics of single trajectories have
been studied. Due to Newtoninan gravitation having the identical form to
Coulomb attraction, the Stark situation arises in astrophysics when studying
a body moving in a gravtiational field, combined with a constant field. A
spaceship with a constant propulsion force, pointing in a certain fixed direction
in space while passing close by (or orbiting) a planet, is the typical situation.
In this situation time dynamics is of interest, asking questions like: how long
does it take, after switching on the engines, to escape a planet’s gravitational
field? Naturally the interest is however focused on single trajectories, and not
ensembles of bodies as in the atomic situation.

The question: ”for a given distribution of initial conditions for the Stark
problem, what is the final distribution in momentum and time of escaping tra-
jectories”, seems not to have been asked before.

7.2 Stark trajectories

We pick up where the discussion ended in Section 6.4.2, stating here the relevant
equations Eq. (6.10), ((6.11)) and ((6.12)) again:

p⇠ =
@S

@⇠
=

s
E

2
+

�

2⇠
+

1 + ⇠2/2

2⇠

p⌘ =
@S

@⌘
=

s
E

2
� �

2⌘
+

1� ⌘2/2

2⌘

S =

Z
p⇠d⇠ +

Z
p⌘d⌘ . (7.1)

From the expression Eq. (7.1) we proceed by forming the derivatives of S

88



7.2 Stark trajectories

with respect to the two constants of motion, E and �.

t =
@S

@E
=

Z
1

4p⇠
d⇠ +

Z
1

4p⌘
d⌘

0 =
@S

@�
=

Z
1

4⇠p⇠
d⇠ �

Z
1

4⌘p⌘
d⌘

=)
Z

1

2⇠p⇠
d⇠ =

Z
1

2⌘p⌘
d⌘ ⌘ ⌧ (7.2)

t =

Z
⇠ + ⌘

2
d⌧ =

Z
rd⌧ . (7.3)

The definition of the ”scaled time” ⌧ is commonly called a Sundman regulariza-
tion [110]. It was introduced to handle the divergency of the Coulomb potential
at the origin; it falls out naturally of the treatment as the quantity which links
motion in ⇠ with motion in ⌘.

In order to obtain the time evolution of the problem, i.e. ⇠(⌧) and ⌘(⌧), it
is necessary to invert Eq. (7.2):

⌧ =

Z
1

2⇠p⇠
d⇠ =

Z
d⇠p

2E⇠2 + 2⇠(1 + �) + F ⇠3

⌧ =

Z
1

2⌘p⇠
d⇠ =

Z
d⌘p

2E⌘2 + 2⌘(1� �)� F⌘3
(7.4)

and then find the time t from Eq. (7.3). Eq. (7.4) have the form of elliptic
integrals [106], so their inverse will be (combinations of) elliptic functions [111].

Depending on how the roots of the polynomial under the square root sign
in Eq. (7.4) are distributed in the complex plane, the final result takes di↵erent
forms. Our interest here is limited to the case of ionizing trajectories, starting
at the origin, below the field-free ionization threshold E = 0. This corresponds
to a single case. Referring to Appendix D for details on the calculation, we state
here the results

⇠(⌧) = �2

⇠

1� cn(�⇠⌧ |m⇠)

1 + cn(�⇠⌧ |m⇠)

⌘(⌧) = Bsd2(�⌘⌧ |m⌘) (7.5)

where

�⇠ = [2(1 + �)]1/4

m⇠ =
1

2
� E

2�2

⇠

�⌘ =
1p
2
[E2 + 2(1� �)]1/4

m⌘ =
1

2
+

E

4�2

⌘

B =
1� �p

E2 + 2(1� �)
.

sd and cn are Jacobi elliptic functions [78].
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Figure 7.1: Two examples of evolution of ⇠ and ⌘ as functions of the scaled time
⌧ .

The motion starts at the origin, ⇠ = ⌘ = 0. It is characterised by the two
times

T⇠ ⌘ 2K(m⇠)

�⇠
; ⇠ �! 1 as ⌧ �! T⇠

T⌘ ⌘ 2K(m⌘)

�⌘
; ⌘(⌧) = ⌘(⌧ + T⌘)

with K(m) the complete elliptic integral of the first kind. Motion is periodic
in ⌘, while it is monotonously increasing in ⇠, diverging in a finite scaled time
⌧ = T⇠. Typical plots are shown in Fig. 7.1.

7.3 Obtaining the measuremed momentum

Our main interest is the measured momentum (p(m)

⇢ , p
(m)

z ). Far away from the
ion motion is like that in a constant field only; the Coulomb potential no longer
a↵ects the escaping particle. We see by direct derivation that

p⇢ = ⇢̇ =
⇠⌘̇ + ⌘⇠̇

2
p
⇠⌘

pz = ż =
⇠̇ � ⌘̇

2
(7.6)

with the inverse

⇠̇ =
⇢⇢̇+ zż

r
+ ż

⌘̇ =
⇢⇢̇+ zż

r
� ż . (7.7)

Asymptotically the constant-field motion can be expressed as

ż ⇠ t

z ⇠ t2/2

and ⇢/r ! 0, z/r ! 1. Eq. (7.7) then gives

⇠̇ �! 2ż ⇠ 2t

⌘̇ �! 0
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so that we can write

⇠̇ �! 2t ⇠ 2
p
2z ⇠ 2

p
⇠ .

This together with Eq. (7.6) gives in turn the asymptotic expressions for p⇢ and
pz in terms of the parabolic coordinates

p⇢ �! ⇠̇⌘

2
p
⇠⌘

=
p
⌘ (7.8)

pz �! ⇠̇

2
=
p
⇠

We are interested in detection at a very large distance ⇠. We therefore can
take the detector position at ⇠ �! 1, so that detection happens at ⌧ = T⇠. The
measured p⇢ is then obtained using Eq. (7.8) and Eq. (7.5); it can be written
explicitly as

p(m)

⇢ =
p
B|sd(�⌘T⇠|m⌘)| . (7.9)

Note that

p(m)

⇢ = 0 =) �⌘T⇠ = 2nK(m⌘) =) T⇠ = T⌘ . (7.10)

For the measured pz, it is not enough to consider the evolution in ⌧ , since
the experimental measurement concerns the time of flight. Hence we need to
compute the physical flight time t, and compare to the reference flight time t

ref

without the Coulomb field. As is shown in Appendix D.3, it is possible to obtain
the time delay from the integration of Eq. (7.3), with the expressions Eq. (7.5)
inserted, by removing the field-free escape time. This results in the time delay

t(m) = �⇠(K(m⇠)�2E(m⇠))+
Ap
2

✓
E(amu|m⌘)�m⌘1u�m⌘snucdu

m⌘m⌘1

◆
(7.11)

where

u = 2
�⌘

�⇠
K(m⇠)

A =
1� �

(E2 + 2(1� �))3/4

and the parameter of the elliptic functions in Eq. (7.11) is m⌘. Finally then

p(m)

z = �t(m) . (7.12)

We note that the time delay takes a simpler form in the case � = 1 (motion
straight in the ”downhill” field direction)

t(m)(� = 1) =
p
2(K(m⇠)� 2E(m⇠)) with m⇠ = 1/2� E/4 (7.13)

and in particular this gives the minimal time delay, for E = 0 =) m⇠ = 1/2:

t(m)(� = 1, E = 0) =
p
2(K(1/2)� 2E(1/2)) = �

r
2

⇡
�2

✓
3

4

◆
⇡ �1.2
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7 Stark dynamics

where we have used the general identity K(1/2)�2E(1/2) = ��2(3/4)/
p
⇡ [78].

With Eq. (7.9) and Eq. (7.11)-(7.12) we now have the final measured mo-
mentum as a function of the initial conditions E and �.

The successive build up of the momentum spectrum, as the initial conditions
E and � are varied, is shown in Fig. 7.2. The final result is the distribution
shown in Fig. 6.9. Due to intersection of lines with constant E, a pronounced
caustic structure is formed, giving a peak in the spectrum.

The motion is illustrated by a few representative trajectories in Fig. 7.3.

7.4 Periodicity in the measured momentum spec-
trum

The presence of periodic orbits in a dynamical system gives it a structure, and
often a lot of the dynamics can be understood by studying them. Here the
periodic orbits of the Stark problem stand in direct correspondence to the final
shape of the momentum spectrum.

The periodic behaviour of the momentum spectrum can be analyzed by the
analytic expressions. For this consider for each energy E 2 (�2, 0) the value of
� separating bound and free motion:

E = �
p
2(1 + �) =) � =

E2

2
� 1 .

At this specific �(E) there exists a single trajectory with motion purely in
⌘, sitting on top of the barrier in ⇠ with a constant value ⇠ = |E|. These
trajectories form a specific family of periodic orbits which we call barrier orbits.
They are inaccessible in our problem due to our initial condition r

0

= 0; they
nevertheless shape the motion of neighbouring trajectories. It is clear that
trajectories spending a long time in the potential before escaping do so with ⇠
close to the barrier, where motion in ⇠ is slow. They can make several oscillations
in ⌘ during this time, essentially approximating the barrier orbit before escaping.
The period of the single barrier orbit therefore characterises the period of the
structure in the momentum spectrum. Approaching the barrier orbits:

�⌘ �! 1p
2
[2(1 + �) + 2(1� �)] = 1 as � ! E2/2� 1

m⌘ �! 1

2
+

E

4
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✓
1

2
+

E

4

◆

B �! 1� E2

4

⌘(T⇠) = Bsd2
✓
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����
1

2
+

E

4

◆

The period of a barrier orbit in physical time t can be calculated, as shown
in Appendix D.4

TE =

Z T⌘

0

⇠(⌧) + ⌘(⌧)

2
d⌧ = �2K(m⌘) + 4E(m⌘) ; (7.14)
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Figure 7.2: Development of the caustic structure. (a)-(f) shows the final mo-
mentum for E = 0 and the initial angle indicated. In (g) a line is drawn for all
initial angles (i.e. all �) for E = 0, and (h) shows similar lines for several con-
stant energies. Caustics are formed when the lines intersect around measured
pz ⇡ �0.6 and pz ⇡ �3.
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Figure 7.3: Escaping trajectories. Left: E = 0, right: E = �1. Note how, at
the lower energy, a smaller ejection angle gives qualitatively similar motion.
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Figure 7.4: Left: Barrier orbits for di↵erent energies (blue E = 0, red E = �0.5,
black E = �1, green E = �0.5, cyan E = �0.8. (b) Trajectories for E =
�1, ending up in three consecutive lobes in measured momentum spectrum,
increasingly approximating the barrier orbit (black).
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Figure 7.5: Period of the barrier orbit as function of energy, from Eq. (7.14).
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an expression similar in form to Eq. (7.13) for the forward-direction trajectories.
We can now understand the periodic structure of Fig. 6.9. Successice pe-

riods are created by trajectories that, due to � ! E2/2 � 1 spend increasing
time approximating the barrier orbit. The period from Eq. (7.14) is shown in
Fig. 7.5. It corresponds well to the distance between the first and second re-
turns, indicating that already then one is in the asymptotic region. Plotting a
few corresponding trajectories in Fig. 7.4b illustrates this point further.

Fig. 6.9 (and equivalently Fig. 7.2h) is thus characterised on the one hand by

Eq. (7.13), giving the maximum p
(m)

z of each constant energy (and in particular
the overall maximum, for E = 0), and on the other hand by the characteristic
period for each energy, given by Eq. (7.14) corresponding to the barrier orbit.
This also indicates that the periodic structure will deteriorate for long delay
times, since the periods are not identical for di↵erent energies. They are how-
ever close enough that the first few returns are almost ”in phase” and produce
spectral peaks.

7.5 Analytic expressions

We collect here a few analytical expressions that can be found describing the
features of Fig. 6.9. Unfortunately the location of the main peak (the ZES)
at pz ⇡ �0.6 cannot be obtained exactly through an analytical treatment.
However, in particular for the special case E = 0, the expressions simplify
and a few characteristic values can be written down.

p
(m)

⇢ = 0 for E = 0

For E = 0 we have m⇠ = m⌘ = 1/2 so that Eq. (7.10) gives

T⇠ = nT⌘ =) �⌘ = n�⇠ =) (1� �) = 4n4(1 + �)
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so that the asymptotic motion is purely along z if

� =
1� 4n4

1 + 4n4

and the time delay for these trajectories simplifies to

t(m) = �
p
2p
⇡
�2

✓
3

4

◆
1� 2n2

(1 + 4n4)1/4
.

This can be used to approximate the location of the peaks along the z = 0 axis.
Note that the prefactor is the period TE of the barrier orbit, since K � 2E =
��2(3/4)/

p
⇡, and the second factor ! n for large n, giving the expected

asymptotically periodic behaviour.

Limit for E such that ⌘ completes at least one period

For � = 1, we have �⇠ =
p
2, �⌘ =

p
|E|/2, m⇠ = 1/2 � E/4 and m⌘ = 0 so

that the condition T⇠ = nT⌘ reduces to

p
|E|K

✓
1

2
� E

4

◆
= 2K(0) · n = n⇡ .

For n = 1 this gives E = �1.55. For lower energies there is no � which can fulfill
the condition, meaning that an asymptotic value of ⌘ = 0 is only possible after
one oscillation in ⌘ is completed - i.e. there are no trajectories escaping without
crossing the z-axis. In [100] this was called a limit for direct electrons. The

measured momentum for this energy is p(m)

z = �1.41, thus marking the on-axis
beginning of the caustic structure in the final momentum spectrum. In [100],

where a narrow range of eneriges were excited and only p
(m)

⇢ and not p(m)

z was
measured, a bright spot was reported close to this energy, clearly manifesting
the same divergence as that seen in Fig. 6.9.

7.6 Summary

The fact that the motion in a combined constant electric field and a Coulombic
potential can be treated analytically gives insight into the development of the
spectral features contributing to the ZES. The exact expressions for the tra-
jectories and the time delay give an immediate connection between the initial

conditions (E, �) and the observed momentum spectrum (p(m)

⇢ , p
(m)

z ), where

as before p
(m)

z is really not a momentum measurement but the negative time
delay in escaping the Coulomb potential. In particular the appaerent period-
icity of the momentum spectrum is seen to stem from the presence of periodic
orbits. Unfortunately the conditions for a divergence in the spectrum can in
general only be written implicitly. For E = 0 the expressions simplify and the

conditions giving p
(m)

z = 0 can be given in explicit form. Further the divergent
ZES structure is related to the necessity of indirect ionization, with trajectories
making at least one oscillaion in ⌘ before escaping. That a divergence is known
to occur experimentally in pure p⇢-mesurements [100] for the corresponding en-
ergy connects the peak found here with previously described aspects of Stark
motion.
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Chapter 8

Summary and outlook

This thesis has treated two features of modern day strong-field ionization ex-
periments using IR lasers and mometum imaging of electrons. The low energy
structure is by now an established experimental result. Probing more extreme
laser parameters - in particular shorter pulses - is an experimental challenge,
meaning that a su�ciently complete theoretical understanding is a prerequisite
for finding interesting parameter ranges, and deciding which experiments could
contribute to a progress in understanding.

The classical trajectory model was shown in Chapter 3 to give very accurate
predictions of the LES peak energy for the mid-IR laser regime. This supports
the overall validity of classical modelling of IR driven electron motion in general
and the three-step trajectory model in particular. The general scaling with
pulse length and ponderomotive energy, as illustrated in Fig. 3.9 by the di↵erent
targets and intensities used, comes naturally from the three-step model.

Chapter 4 shows that each LES stems from a critical line in the initial phase
space, resulting in a caustic in the final momentum spectrum. It is formed
during a soft recollision at around ⇠ 20 au distance from the ion, and its shape
can be reproduced by an analytical model. That the electron never comes close
to the ion, and that furthermore the recollision distance scales very slowly with
laser parameters as seen in the model, shows the validity of a universal classical
recollision model, since the internal structure of the ion plays a negligible role
at the relevant distances.

The analytical results of Chapters 4 and 5 are supported by numerical sim-
ulations and consistent with available experimental results.

The validity of the model is restricted to wavelengths in the approximate
span 1 µm < � < 3.2 µm for an intensity of I = 1014 W/cm2. The lower
limit comes from the onset of discrete ATI peaks in the spectrum overshadow-
ing the LES, and the fact that the recollision model is less valid the shorter
the wavelength gets. The upper limit comes from a breakdown of the dipole
approximation, so that the Lorentz force drives the electron trajectories away
from those of the model. This e↵ect grows gradually and depends on the in-
tensity. However for a large span of laser parameters where present strong-field
experiments take place the model is valid and is expected to give quantitative
predictions of the peak locations.

Several interesting experimental investigations are suggested by the LES re-
sults of this thesis. Using even shorter pulses (1-2 cycles), and in particular
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detectors capable of measuring energies down to threshold, could possibly re-
solve the VLES and clarify its formation. In order to resolve the higher order
LES and VLES it is desirable that Up be large, since this increases the overall
scale of the features. Measuring the full 2D momentum distribution using the
reaction microscope setups presently available, together with a few-cycle pulse
duration, is expected to show the caustic structures clearly, since their contrast
increases in an ultrashort pulse where ionization takes place predominantly dur-
ing the center half laser cycle. One could then see a single, clear caustic and
possibly even resolve the cusp structures, though quantum mechanical e↵ects
will smoothen its appearence.

However as seen in Chapter 5 extreme parameters are not necessary, and the
transverse structure of the LES, in particular the maximum given by Eq. (4.14),
could be measured in rather long pulses at a wide range of Up. It may even be
beneficial to use a shorter wavelength since this increases the contrast due to the
narrower overall energy distribution, so that less ionization events are necessary
for a high precision measurement. Using the setup of Fig. 5.15 (which was used
in [82]) coupled with high precision 2D momentum measurement could resolve
the transverse peak and furthermore show how the prolongation of the VLES
and LES caustics form the fork structure and joins onto the rings coming from
the elastic collisions discussed in [82].

The understanding of the LES caustic formation and the soft recollision event
may open doors to using the LES as a probe of the properties of the ion itself.
Since the trajectory and recollision models are equally valid for small molecules,
strong field ionization of a molecule with an internal structure may lead to a
perturbed LES. Since the shape of the LES does not depend on the tunneling
probabilities but on the dynamics, the e↵ect of the molecule’s structure on the
tunneling event could be disentangled from its e↵ect on the recollision.

The zero energy structure is shown in Chapter 6 to result from a weak
external electric field ionizing Rydberg states that were created by the strong
field interaction. Its features are universal: they result from Stark dynamics,
as described in Chapter 7, and will result from any broadband excitation of
the energies between the field ionization threshold and the field-free threshold.
The combined measurement of final transverse momentum and time-of-flight is
necessary for the shape described here; the time delay gives the characteristic
peak location. The ionization of Rydberg states by a weak external field has
previously been used to study clusters. With the ZES resulting from such states,
its presence shows that the laser-atom interaction populated Rydberg states,
while its absence indicates that no such states were populated, or that they
decayed by other means before the electron could escape over the field-induced
threshold. Its possible use in connection with the study of autoionizing states
[74] should be mentioned.

The Stark dynamics gives a direct image of the initial distribution, created
by the laser, on the measured momentum. With increased precision and/or
stronger extraction fields, this could possibly be used to get a glimpse of the
initial distribution. The features of the final momentum distribution will shift
around as the initial distribution changes, although not so sensitively as to be
seen in the current results. Such a measurement could include varying the
angle between the laser polarization axis and the extraction field direction, and
studying how the ZES structure changes. Another possibility would be to use
an ultrashort laser pulse so as to create an asymmetric initial distribution.
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Appendix A

Classical spectra

A.1 Basic theory

The state of a system in Hamiltonian mechanics is described by a point in phase
space; the set of all possible generalized coordinates q and generalized momena
p. If configuration space is n-dimensional, the dimension of phase space is 2n.
For simplicity, we assume in the following that the configuration space is Rn.
We can write the time evolution of a specific state (q0,p0) formally using the
flow g:

gt : R2n ! R2n

(q0,p0) 7! (q,p)

where the evolution at each instant is governed by Hamilton’s equations of
motion

q̇ =
@H

@p

ṗ = �@H

@q
.

In atomic physics one typically does not measure single trajectories, but
rather an ensemble of trajectories corresponding to e.g. evolution of an initially
bound state wave packet. One thus computes the evolution of a probaiblity
density in phase space.

In this view the outcome of a single measurement (e.g. of particle energy)
is a stochastic variable, distributed according to some final distribution (e.g.
the energy spectrum). A large number of single measurments are done, giving
information about the full distribution.

Several notations are in use; in probability theory one typically writes fX(x)
for the probability density of the stochastic variable X taking a value (in a small
neighborhood of) x. We will mostly use the simpler notation

w(x) = fX(x) .

Denote the full state vector in phase space by x:

x = (q
1

, . . . , qn, p1, . . . , pn) 2 R2n .
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The probability density wt of the ensemble at time t is then calculated from the
initial ensemble w

0

as

wt(x̄) =

Z
dx0w

0

(x0)�(x̄�gt(x
0)) =

Z
dx0w

0

(x0)

����
@gt
@x0

����
�1

�(x0�g�1

t (x̄)) . (A.1)

x0 denotes initial variables; x̄ a specific value of the final coordinate, and @gt
@x0 is

the Jacobian of the mapping gt. This Jacobian is the central object influencing
the final spectrum, and contains the e↵ect of the dynamics.

The probability distribution of a scalar observable, i.e. the energy E or a
single momentum pi, given as a function of the state of the system E = E(x),
is similarly given by

wt(Ē) =

Z
dx�(Ē � E(x)) =

Z
dx

1

| gradE|

����
E(x)=

¯E

. (A.2)

where the integral is evaluated along the 6n � 1-dimensional subspace defined
by E(x) = Ē. The two expressions Eq. (A.1) and Eq. (A.2) can be combined
to give

wt(Ē)

Z
dx0 1

| grad
x

0 E|

����
E(gt(x))= ¯E

A.2 Bivariate probablity distributions

A probability distribution of two stochastic variables X,Y is called a bivari-
ate distribution. There are several di↵erent distributions that are used in the
bivariate case:

Joint probability distribution

The 2D distribution of X,Y simultaneously taking specific values x, y is called
the joint probability distribution:

PX,Y (x, y) = P (X 2 (x, x+ dx), Y 2 (y, y + dy))

Marginal probability distribution

The 1D distributions of X (Y ) taking a specific value x (y), regardless of the
value of the other variable, is called the marginal distribution.

PX(x) =

Z
dyPX,Y (x, y)

PY (y) =

Z
dxPX,Y (x, y)

Conditional probability distribution

The 1D distribution of X (Y ) taking a spectific value, while the other variable
has a fixed value, is called the conditional probability distribution.

PX(x)|y=ȳ =
PX,Y (x, y = ȳ)R
dx0PX,Y (x0, y = ȳ)
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A.3 2D momentum spectra

A.3 2D momentum spectra

In this thesis dynamics in two dimensions is studied. Phase space is then four-
dimensional. However the initial values q0 depend on the initial p0, while the
final observable is the asymptotic p only, without regard to final q; we can write

p(p0) = lim
t=1

gt(p
0,q0(p0)) .

w(p̄) =

Z
dqw(p̄,q) = lim

t=1

Z
dqdp0w

0

(p0)gt(p
0,q0(p0)) . (A.3)

We thus have the bivariate situation.
Since the 2D situation arises from a cylindrically symmetric 3D case, we call

the variables ⇢ and z. In contrast to common definition, ⇢ is often allowed to
take on negative values, since this eases physical intuition.

By analogy with scattering problems, the final momentum, as function of
initial momentum, is called the deflection function. It is useful to look at the
1D deflection functions in p⇢ and in pz separately, i.e.

p⇢ = p⇢(p
0
⇢, p

0
z)

pz = pz(p
0
⇢, p

0
z)

Eq. (A.3) takes the form

w(p̄⇢, p̄z) =

Z

p

0|p(p0
)=¯p

dp0⇢dp
0
zw0

(p0⇢, p
0
z)

����
@(p⇢, pz)

@(p0⇢, p
0
z)

����
�1

. (A.4)

The central role in shaping the spectrum is played by the Jacobian of the map-
ping from initial to final momentum. In particular a vanishing determinant
gives a divergent distribution.

The marginal distribution in pz is similarly given by

w(p̄z) =

Z

p

0|pz(p
0
)=p̄z

dp0⇢dp
0
zw0

(p0⇢, p
0
z)

1

| grad pz|
.

Finally the (unnormalized) conditional distribution at p⇢ = 0 is:

w(0, p̄z) =

Z

p

0|pz(p
0
)=p̄z,p⇢(p

0
)=0

dp0⇢dp
0
zw0

(p0⇢, p
0
z)

����
@(p⇢, pz)

@(p0⇢, p
0
z)

����
�1

(A.5)

where again the spectrum is governed by the Jacobian determinant, evaluated
at initial conditions giving final p⇢ = 0.

A.4 Singularities in the spectrum

Of special interest are the critical points of the deflection function(s), since a
vanishing gradient leads to a divergence in the marginal spectrum. In the joint
probability a vanishing Jacobian determinant has the similar e↵ect. Critical
points lead to so-called van Hove singularities [112], in the case of an observable
given by a scalar function, e.g. energy or a marginal momentum distribution.
In a joint probability distribution, divergencies appear in the form of caustics.
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They are commonly discussed in the context of semiclassical dynamics [113].
A caustic is the result of a generalized critical point [114], what we will call a
critical line, in the initial conditions.

The study of singularities of mappings is called singularity theory, or catas-
trophe theory [115]. There is a wealth of mathematical results in the field,
starting with the work of Morse [116,117]. The 2D case was treated thoroughly
by Whitney [118], where most of our necessary results appear in a more general
context. We will in the following state some basic results, without mathematical
rigour; for a detailed treatment see e.g. [119]. In particular we will discuss how
the two basic 2D singularities, the fold and the cusp arise in our context, and
their relation to the divergence in the derived 1D marginal distributions.

Critical points

We call a point in initial phase space x
0

a critical point of the scalar observable
A if

gradA = 0 .

The spectral characteristic of the critical point is given by the eigenvalues of the
Hessian matrix H of A.

• detH > 0: the critical point is an extremum, giving not a divergence but
a cut-o↵ in the spectrum.

• detH < 0; the critical point is a saddle point, gives a divergence (in
principle always visible, can however be weak)

• detH = 0; the critical point is singular and gives a weak divergence in the
spectrum

A.5 Critical lines and caustics

Now consider the joint probability distribution of two final observables, f and
g. The function under study is denoted

f(x) =

⇢
f(x, y)
g(x, y)

and is assumed to be a smooth function.The space of initial conditions may
contain chaotic regions which are not included in the discussion, since they will
typically not contribute to the essential features of the spectrum if there are also
regular regions present. The Jacobian matrix of the function (f, g) is denoted
as J and its determinant by |J ].

For connection with the previous paragraph, replace f and g by p⇢ and pz.
We choose here the more general notation f and g since the results are general
and can also be applied also to rotations of the final coordinates.

A divergent spectrum is obtained from Eq. (A.4) if

|J | = det
@(f, g)

@(x, y)
= 0 . (A.6)
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A.5 Critical lines and caustics

In analogy to the critical points of a 1D mapping, this condition defines a set of
critical lines in the plane of initial conditions. We use the term ”critical line” for
the initial values giving a zero Jacobian, and the term ”caustic” for the image
of that line, i.e. the final values where the spectrum is divergent.

Although naturally arising in this context, the concept of critical lines of
deflection functions is not very widespread. The concept is introduced in [120]
and used in e.g. [121].

A.5.1 Properties of the critical line

• The critical line cannot begin or end in a regular domain, i.e. where
(f, g) is continuously di↵erentiable. This follows since the critical line is a
contour line of the smooth function |J |.

• One and only one critical line is passing through each nonsingular (Hf 6= 0)
critical point of f and g. Clearly if grad f = 0, Eq. (A.6) is fulfilled, so
that the contour line |J | = 0 passes through this point. Uniqueness follows
since contour lines of the funtion |J | only intersect when grad |J | = 0 which
implies Hf = 0. For g the same reasoning holds.

• The previous point also holds for any linear combination of f and g. In
fact since the determinant |J | is invariant under rotations

f 0 = f cos'� g sin'

g0 = f sin'+ g cos' (A.7)

we can at any point along the critical line find new functions f 0, g0 such
that grad f 0 = 0 by rotation. If the line is parametrized smoothly by a
parameter s, the rotation angle '(s) is a smooth function.

By the aforementioned rotation, we can in the following always assume that the
critical line is caused by a singular point in the function f . The nature of the
singular point cannot change suddenly, since the Hessian matrix is a continuous
function along the critical line and continuous under the rotations Eq. (A.7); its
determinant has to go through 0 when going from positive to negative values.

Hence the critical line has a definite character, given by the sign of the
determinant of Hf 0 , of either extremal, degenerate, or saddle point kind.

A.5.2 Properties of the caustic

We can now translate these results to apply to the image of the critical line,
i.e. the caustic. Let c(s) be a parametrization of the critical line c. Assume
grad f = 0 for some s = s

0

. We can write the caustic as a function f(g) close
to the critical point. Its derivative is

df

dg
=

df/ds

dg/ds
= 0 at s

0

since grad f(s
0

) = 0 .

Hence the critical line runs perpendicular to the f -axis. The converse is also
clear: if the caustic runs perpendicular to a coordinate axis, it must hold that
grad f = 0, so that there is a singular point in the deflection function along that
coordinate axis.
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We can carry this one step further and expand the caustic around the image
of the point s

0

as

f(s) = f
0

+
d2f

ds2

����
s0

(s� s
0

)2

g(s) = g
0

+
dg

ds

����
s0

(s� s
0

) .

We can now write the image of the critical line as a function f(g):

s� s
0

=
g(s)� g

0

dg/ds
=)

f(s) = f
0

+
d2f

ds2

����
s0

✓
g(s)� g

0

dg/ds

◆
2

= f
0

+
d2f

dg2

����
s0

(g(s)� g
0

)2 .

This means that the caustic has the shape f ⇠ g2. This is the general shape of
a fold [118].

Change of character

Let the Hessian be degenerate at a critical point x
0

and e
1

the eigenvector
associated with the zero eigenvalue. We parametrize the critical line through
x
0

as c(s). Since

grad f = H(x
0

)(x� x
0

) = 0 along e
1

=)
J = 0 along e

1

=)
c0(s) k e

1

we also have

d2f

ds2
= 0 .

We can translate this to the image of the critical line since along the line

d2f

dg2
=

d2f/ds2

d2g/ds2
= 0 (A.8)

meaning that at a point where the character of the critical line changes, the sec-
ond derivative of f(g) vanishes. The converse also holds: if the second derivative
f 00(g) vanishes, Eq. (A.8) holds, so that d2f/ds2 = 0 which means the Hessian
Hf has a zero eigenvalue associated with the direction of c0(s).

Thus the points where the character changes correspond to inflection points
of the caustic.

At points where grad f k grad g k grad |J |, the caustic has a cusp

If the gradient of the Jacobian determinant is parallel to the gradients of the
functions (which are always parallel to each other at the critical line) the
parametrized critical line c(s) runs perpendicular to the gradients of f and
g, i.e.

df(s)

ds
=

dg(s)

ds
= 0 at s

0

.
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We can expand the image f(c(s)) around the point f(c(s
0

)):

f(s) = f(s
0

)+ (s� s
0

)
df

ds

����
s0

+(s� s
0

)2
d2f

ds2

����
s0

= f(s
0

)+ (s� s
0

)2
d2f

ds2

����
s0

.

As the parameter s is taking values going through s
0

, the critical line cmakes
an abrupt turn and goes back through its old trace, since the vector drawing
the line is quadratic in s� s

0

. It forms a cusp singularity. The limiting angle '
in the f, g-plane is found as ' = arctan(g00/f 00).

Visibiliy of the caustic

The existence of the critical line does not necessarily mean that its image, the
caustic, will be visible everywhere. It will typically be strongest close to the
cusps, since there both f and g are changing slowly. In our LES situation this
is the case. Secondly, the weight of initial condition always also come into play
- if the initial probability is small, even the divergence at the caustic will not
be a prominent spectral feature since it is easily drowned in the background.

We stress that the divergence is a purely mathematical result. In a real
measured spectrum there is always a coarse-graining process involved, since any
detector has a finite resolution. The same is true in numerical trajectory simu-
lations, where the final spectrum is obtained by counting the number of points
within a ”bin” in final momentum, or by convolution with some smoothing
function. If this is taken into account the divergence is regularized and instead
shows up as a peak with finite height. If the caustic is very weak, this peak can
then be hidden by background noise or other e↵ects.
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Appendix B

Explicit expression for G(')

Here we state explicit expressions for the derivatives of � that enter into the
Jacobian and the espression �p. Start by noting that

@r
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r
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z
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and we further get

f 0
1

= � cos'I/2� 3 sin'I 0/2 + cos'I 00
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2

= sin'I/2� 3 cos'I 0/2� sin'I 00 .

From this �p is found directly by Eq. (4.2).

The second derivatives show similar behaviour, e.g.:
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and similarly
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It is straightforward to check that the latter two are equal. Thus
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so that the Hessian of � takes the form
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For ' = 0 the expressions simplify:

I(0) = ⇡

I 0(0) = 0

I 00(0) =
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1

(0) = 0

f
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so that G(' = 0) is diagonal in the original basis, and the bunching eigenvalue
µ
2

= g
1

= �3⇡/8.
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Appendix C

Simulation method

Exact numerical treatment of strong-field physics, by propagating the time-
dependent Schrödinger equation, is challenging, since due to the laser driving
large electron velocities are reached, while at the same time the details of the
ionic core and its interaction with the possibly recolliding electron needs to be
treated in detail. One needs short time steps and dense spatial representation
for the interaction, which however makes it very costly to calculate the high
velocity driven motion, regardless of using a large space-time grid [122, 123] or
expansion in some basis sets [124–126].

The classical trajectory Monte Carlo method simulates classical motion after
tunneling. The initial conditions are given by a model of the tunneling, which is
non-classical. For this reason it is sometimes called a semiclassical method. In
other branches of quantum physics the word ”semiclassical” is typically used for
approximations where Planck’s constant is assumed to be small, taken ~ ! 0
[11]. The reasoning here is completely unrelated since it is purely classical
motion, with the initial conditions obtained by a quantum mechanical argument.
We therefore avoid the designation ”semiclassical”.

C.1 Tunneling

The tunneling process is treated in line with the PPT theory, assuming an
adiabatic response of the atomic ground state to the laser field. We use the
instantaneous tunneling rate (probability/time) [61]:

w?(p
0
?, t

0) =
1

F2(t0)

1p
1 + p02?/2Ip

exp

(
� 2

3F(t0)

✓
1 +

p02?
2Ip

◆
3/2
)

(C.1)

where F = F/(2Ip)3/2 is the reduced field strength. One should stress that
this is the instantaneous rate, and not averaged over one laser period as is
typically done in an SFA situation, which leads to Eq. (2.11) describing the
final, observable spectrum.

We assume that tunneling occurs from the ground state with magnetic quan-
tum number m = 0. With linear polarization the system has cylindrical sym-
metry around the laser polarization axis z. We therefore use cylindrical coordi-
nates. There is no motion in the azimuthal angle ' = arctan(x/y) around the
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polarization axis (see Fig. 3.5), so the problem is reduced to 2D. The presence of
the extra dimension does however show up in the initial probability. Eq. (C.1) is
written in terms of a single perpendicular component of the initial momentum;
it is a conditional probability e.g. for ' = 0:

w(p0x, t
0)|p0

y=0

= w?(p
0
?, t

0)

and similarly for all other angles. In order to get the total probability of a
particular p⇢ one must integrate over the azimutal angle ', giving an additional
geometrical factor of p⇢:

w(p0⇢, t
0) =

Z
dp0xdp

0
yw(p

0
x, p

0
y, t

0)�
⇣
p0⇢ �

q
p02x + p02y

⌘

=

Z
d'p0⇢w?(p

0
⇢, t

0) = 2⇡p0⇢w?(p
0
⇢, t

0) (C.2)

The distribution is sampled by first normalizing w(p⇢, t) so that its maximum
value is 1, which is attained when the field is maximal. Then random values t̄0

and p̄⇢
0 is chosen, and w(p̄⇢0, t̄0) is computed for these values. Another random

number ⇠ between 0 and 1 is generated, and if w(p̄⇢0, t̄0) > ⇠, a trajectory is
started. Typically between 1 and 10 million trajectories are run in order to get
detailed final momentum spectra.

In the realistic simulations t0 is allowed throughout the pulse. For illustration
in several cases, e.g. Fig. 5.3, it is limited to the center half cycle, i.e. the range
t0 2 (�⇡/2!,⇡/2!).

For computing deflection functions like in Fig. 5.1, the value of p⇢ and t0 are
chosen on an equally spaced grid, with no tunneling probability involved.

C.2 Motion

The motion after tunneling takes place in the combined field of the ion and the
driving laser, governed by the Hamiltonian Eq. (2.1). It leads to the equations
of motion

⇢̈ =
⇢

r3

z̈ =
z

r3
� F (t) .

Tunneling instant t0 and initial radial momentum p0⇢ is randomly chosen
according to Eq. (C.2). The initial conditions are then calculated as

p⇢(t
0) = p0⇢

pz(t
0) = 0

⇢(t0) = 0

z(t0) = tunnel exit

By separation in parabolic coordinates, the tunneling exit is found by numerical
root finding of [38, 127]

0 = �2Ipz
2 + z +

1

4
+ 2|F (t0)|z3
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C.3 Focal averaging

Numerical propagation is performed by a Stoermer rule algorithm with adap-
tive stepsize [128, 129] until the pulse is over at t

1

= 4⌧ , with ⌧ the FWHM.
The final energy is given directly by

E =
p2(t

1

)

2
� 1

|r(t
1

)|

The asymptotic momentum in pure Coulomb motion is fully determined due to
conservation of energy, angular momentum and the Laplace-Runge-Lenz vector.
It is computed as [91]

p =
p
2E

p
2E(L⇥A)�A

1 + 2E|L|2 (C.3)

where L = r(t
1

) ⇥ p(t
1

) is the angular momentum and A = p(t
1

) ⇥ L �
r(t

1

)/|r(t
1

)| is the Laplace-Runge-Lenz vector.

C.3 Focal averaging

Focal averaging is included by also randomizing the intensity according to the
distribution wI(I) of Eq. (2.8). Extending the method for choosing the initial
transverse momentum p0⇢ and tunneling instant t0, a relative intensity i0  1
is also chosen at random. The probability Eq. (C.1), which depends para-
metrically on intensity through the field strength, is computed giving a value
w0 = wi(i0)w(p0⇢, p

0
z, I0i

0) 2 (0, 1). Here wi(i0) is computed from Eq. (3.12). The
value is then compared with an equidistributed random number ⇠ 2 (0, 1), and
the trajectory is released whenever w0 > ⇠.

C.4 The Jacobian

For finding the Jacobian in Fig. 5.8, the procedure is similar to that used in
calculating the deflection function. Instead of just computing the final momen-
tum p at each grid point (p0⇢, A(t

0)), it is also computed at four surrounding
points o↵set by a distance � typically taken as � = 0.001 au. The partial
derivatives are then found by linear approximation, e.g. for the first element of
the Jacobian

@p⇢
@p0⇢

=
p⇢(p0⇢ +�, A(t0))� p⇢(p0⇢ ��, A(t0))

2�

C.5 The critical line

The critical line is the contour line where det J = 0; however using a grid
calculation, as when computing the deflection function in Fig. 5.1, and then
looking for a zero does not give a su�cient accuracy unless the grid spacing is
very small, making the computation costly. Instead the line is found step by
step, by computing for each point the value at a distance h away in the initial
phase space, at varying the angle arctan(p⇢/pz). See Fig. C.1. A root search is
then performed, giving an accurate value of the next point along the line. An
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initial value is found by searching for a root along a specific A0 and varying p0⇢ in
a narrow range, which is manually chosen from a low-resolution grid calculation
of the Jacobian; for Fig. 5.1, the initial interval was p0z = 0.3, 0.08 < p0⇢ < 0.12.

p0
n

root search

h
p0
n+1

+

�

�

�

Figure C.1: Stepwise search for a zero of the Jacobian. From the current point
p0
n where det J is vanishing, det J is computed at a series of new points at equal

distance h away varying the angle. Once a sign change is found between two
points, a precision root search is performed for angles between these points,
giving the next point p0

n+1

along the critical line.

C.6 The forward direction spectrum

The line of initial conditions giving forward directed motion is found in an
analogous way, looking for zeros in p⇢ stepwise along the line. Once the line
is found, the elements of the Jacobian matrix is computed element-wise in the
same way as for Fig. 5.8 for each point along the line.

C.7 The zero energy structure

In order to include the e↵ect of the detector on the scattering process, the basic
CTMC method needs to be extended.

C.7.1 Inclusion of the electric field

The detector field is introduced by simply putting in an extra term �x ·EC in
the equations of motion Eq. (C.4). Thereby the radial symmetry is preserved
only if EC k EL; otherwise a full 3D problem is obtained. For the situation of
Fig. 6.17 the system is:

ẍ =
x

r3
� F (t)

ÿ =
y

r3

z̈ =
z

r3
� FC . (C.4)
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C.7 The zero energy structure

t
0

t
1

laser pulse

check energy (fs)

extraction field only

t
2

simulation stopped (ns)

Figure C.2: Sketch of the di↵erent steps of the simulation with an extraction
field.

C.7.2 The detector plate

As opposed to Section C.2 where the simulation runs for a prescribed time -
until the laser pulse is negligible and motion is in the Coulomb field alone,
where the asymptotic momentum is found from Eq. (C.3) - motion in a constant
field never reaches an asymptotic momentum, and the momentum along the
extraction field takes arbitrary large values if the running time is prolonged. The
simulation needs in principle to be done like the experiment, running until the
electron reaches a certain distance d, where its momentum in the perpendicular
directions and its time of flight are recorded. By the same formula Eq. (6.1),
the momentum distribution after interaction is reconstructed.

Since some electrons do not escape from the atom but are bound, even with
the electric field of the detector, in practice one needs some maximum allowed
running time.

To check the particle location at each time step introduces a complication
into the numerical code, leading to significantly larger running times. An al-
ternative approach is preferred. This makes use of the fact that well outside
the interaction region, the Coulomb field plays no role any more. This has to
be assumed anyway in order for the method and Eq. (6.1) to work. (In the
simulation we however do not need any assumption about the time it takes to
reach this region, in contrast to the experimental extraction where it is assumed
to happen instantly and without momentum change on the way out.) One can
therefore run until a certain time t

2

(corresponding to several nanoseconds),
record the electron’s position z

2

, and then calculate the flight time to a certain
detector distance zd using the expressions for motion in a constant field F .

td = t
2

±
p
2|z

2

� zd|/F

with positive sign if z
2

< zd, negative sign otherwise. This expression is then

used in Eq. (6.1) to obtain the measured momentum p
(m)

z .
Both methods have been used and give largely identical results. A few

electrons, which at the stoppage time are still in the Coulomb barrier region,
will be assigned a di↵erent momentum by the second method than the first,
which models the experiment more closely. The error can be minimized by
making the maximum allowed running time for method 2 longer. Given that
the overall computation time for a given simulation time is much shorter with
method 2, there is still a gain in precision by the second method.

A further drastic simplification is made in order to make the computation
time shorter. After the laser pulse, the energy of each trajectory is conserved;
thus by looking at the energy at a time t

1

after the pulse is over, the influence
of the detector field can be estimated. It is negligible for all energies except
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in a narrow range around E = 0; for higher energies, the Coulomb field is
negligible during the subsequent motion, and the free-flight formula Eq. (C.3)
gives accurate results; for lower energies, the electron remains bound close to
the ion despite the presence of the detector field. We thus stop the simulation at
t
1

and check the particle energy; if it is larger than some E
max

, its asymptotic
motion is treated by Eq. (C.3) and its final momentum recorded. As described
in Section 6.4 all states below E = �2

p
F remain bound forever, so only if

E(t
1

) 2 (�2
p
F ,E

max

) is the simulation allowed to continue until the time
t
2

, where the momentum is obtained using method 2 above. We typically use
E

max

= 2
p
F ; consistency was checked by changing E

max

between 2
p
F and

10
p
F , without noticeable di↵erence in the results.
The modifications are completely independent of the laser parameters and

the atomic species studied in the simulation. It is therefore not necessary to
tailor the simulation parameters for each new problem; the extensions to the
standard CTMC method are completely general. The final time t

2

can be ad-
justed according to the external field strenght; as long as it is large enough for
all interesting trajectories to escape the potential, its exact value is however
largely irrelevant.
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Appendix D

ZES analytics

Here we perform some analytical calculations referred to in Chapter 7. The
Jacobi elliptic functions are used throughout; for an overview of their properties
see e.g. [111].

D.1 Calculation of ⇠(⌧)

⌧ =

Z ⇠ d⇠p
2E⇠2 + 2⇠(1 + �) + ⇠3

=

Z ⇠ d⇠p
⇠(⇠ � ⇠

1

)(⇠ � ⇠
2

)

where ⇠
1,2 = �E ± i

p
2(1 + �)� E2. This integral corresponds to the case

17.4.71 in [78] with the real root = 0. (Note 2(1 + �) � E2 > 0 for unbound
motion, cf. Eq. (6.15).) We set according to 17.4.70

�⇠ ⌘ (2(1 + �))1/4

m⇠ ⌘ 1

2
� 1

2

E

�2

⇠

yielding

⌧ =
1

�⇠
F ('|m⇠) where cos' =

�2

⇠ � ⇠

�2

⇠ + ⇠
(D.1)

Using the propertiy of the elliptic functions that

cnF ('|m) = cos'

we rewrite Eq. (D.1) as

cn�⇠⌧ =
�2

⇠ � ⇠

�2

⇠ + ⇠
=)

⇠(⌧) = �2

⇠

1� cn�⇠⌧

1 + cn�⇠⌧

✓
= �2

⇠

(1� cn�⇠⌧)2

1� cn2�⇠⌧
= �2

⇠

(1� cn�⇠⌧)2

sn2�⇠⌧

◆

which is the desired expression.
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Properties

Due to properties of the function cn: cn0 = 1 and cn2K = �1, we see that

⇠(0) = 0

⇠ �! 1 as ⌧ �! 2K(m⇠)/�⇠

where K(m⇠) is the complete elliptic integral of the first kind.

D.2 Calculation of ⌘(⌧)

⌧ =

Z ⌘ 1p
2E⌘2 + 2⌘(1� �)� ⌘3

=

Z ⌘ 1p
�⌘(⌘ � ⌘

1

)(⌘ � ⌘
2

)

where ⌘
1,2 = E ±

p
E2 + 2(1� �). Note that ⌘

1

� 0, ⌘
2

 0 and |⌘
1

|  |⌘
2

|
since E is negative. This integral corresponds to the case 17.4.68 in [78] with
�
1

= ⌘
1

, �
2

= 0 and �
3

= ⌘
2

. We set according to 17.4.61 (substituting m for
m

1

)

�⌘ ⌘ 1

2

p
⌘
1

� ⌘
2

=
1p
2
(E2 + 2(1� �))1/4

m⌘ =
⌘
1

⌘
1

� ⌘
2

=
1

2
+

E

4�2

⌘

yielding

⌧ =
1

�⌘
F ('|m⌘) where sin2 ' =

(⌘
1

� ⌘
2

)⌘

⌘
1

(⌘ � ⌘
2

)

Using snF ('|m) = sin' we rewrite this as

sn2�⌘⌧ =
(⌘

1

� ⌘
2

)⌘

⌘
1

(⌘ � ⌘
2

)
=)

⌘(⌧) =
⌘
1

⌘
2

sn2�⌘⌧

⌘
1

sn2�⌘⌧ � (⌘
1

� ⌘
2

)

= m⌘
⌘
2

sn2�⌘⌧

m⌘sn2�⌘⌧ � 1

= m⌘
⌘
2

sn2�⌘⌧

�dn2�⌘⌧
=

1� �p
E2 + 2(1� �)

sd2�⌘⌧ ⌘ Bsd2�⌘⌧

which is the desired expression.

Properties

Due to properties of the function sd: sd0 = 0 and sd2K = 0 (period 4K so that
period of sd2 is 2K), we see that

⌘(0) = 0

⌘(�⌘⌧) = ⌘(�⌘(⌧ + 2K(m⌘)/�⌘))

i.e. ⌘ is periodic with period 2K(m⌘)/�⌘.
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Furthermore the maximum of sd is at K: sdK = 1/
p
1�m, yielding the

maximum of ⌘

⌘(⌧ = K(m⌘)/�⌘) =
B

1�m⌘
= ⌘

1

= E +
p
E2 + 2(1� �)

a result easier obtained directly from setting p⌘ = 0 in Eq. (6.11).

D.3 Finding the time delay

The physical time is given by Eq. (7.3). The time delay giving the measured
momentum is given by calculating the physical time and subtracting the e↵ect
of asymptotic motion in the constant field only. By itself Eq. (7.3) diverges as
⌧ ! T⇠. Removing the asymptotic motion gives an expression for the time delay
due to the Coulomb potential:

td = lim
⌧1=T⇠

Z ⌧1

0

⇠ + ⌘

2
d⌧ �

p
⇠(⌧

1

) .

We treat the contribution from ⇠ and ⌘ separately.

D.3.1 t⇠

We write the integral as

t⇠ =

Z ⌧1

0

⇠

2
d⌧ =

�2

⇠

2

Z ⌧1

0

1� cn�⇠⌧

1 + cn�⇠⌧
d⌧

where we suppress the parameter m⇠. Changing variable to u = �⇠⌧ gives

t⇠ =
�⇠

2

Z u1

0

1� cnu

1 + cnu
du ⌘ �⇠

2
I
1

We rewrite the integral I
1

as

I
1

=

Z u1

0

✓
1� cnu

snu

◆
2

du = lim
u0=0

Z u1

u0

ns2udu+

Z u1

u0

cs2udu�
Z u1

u0

2
cnu

sn2u
du

�
.

We are interested in the limit when u
1

! 2K. Due to sn2u = sn2(2K � u) and
cn2u = cn2(2K � u) we can rewrite the first integral as

Z u1

u0

ns2udu =

Z K

u0

ns2udu+

Z K

2K�u1

ns2udu

and the second similarly. Using the identities [130]

Z K

u

ns2udu = cnudsu+K(m)� E(m)� u+ E(amu|m)

Z K

u

cs2udu = cnudsu� E(m) + E(amu|m)
Z

cnu

sn2u
du = �dsu
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then gives

I
1

= lim
u=0

{2[cnudsu� E(m) + E(amu|m)] +K(m)� u� 2dsu}

+ lim
u=2K

{2[cn(2K � u)ds(2K � u)� E(m) + E(am(2K � u)|m)]

+K(m)� (2K � u) + 2dsu}

As u ! 0 cnu ! 1, so that the problematic dsu-terms cancel out in the
first limit, but in the second the divergence survives. We can write (with
E(am0|m) = E(am2K|m) = 0)

I
1

= 2(K(m)� 2E(m)) + lim
u=2K

4dsu .

In calculating the time delay, we subtract

p
⇠ = �⇠

1� cnu

snu
! �⇠

2

u� 2K

where we expand snu close to 2K. Expanding dsu similarly gives dsu ! 1/(u�
2K), so that putting it all together gives

t⇠ �
p
⇠ =

�⇠

2
I
1

�
p

⇠

= �⇠

✓
K(m)� 2E(m) + lim

u=2K

⇢
2

u� 2K
� 2

u� 2K

�◆

= �⇠(K(m)� 2E(m)) .

The divergences cancel exactly and a compact result is obtained.

D.3.2 t⌘

Here the integral can be found directly in tables [78]

mm
1

Z u

0

sd2udu = E(amu|m)�m
1

u�msnucdu (D.2)

so that

t⌘ =
B

2

Z ⌧d

0

sd2(�⌘⌧ |m⌘)d⌧

=
Ap
2

✓
E(amu|m⌘)�m⌘1u�m⌘snucdu

m⌘m⌘1

◆

where

u = 2
�⌘

�⇠
K(m⇠)

A =
1� �

(E2 + 2(1� �))3/4
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D.4 Calculating the period of barrier orbits

D.4 Calculating the period of barrier orbits

We calculate the physical time

t =

Z T⌘

0

⇠(⌧) + ⌘(⌧)

2
d⌧

during one half-period of oscillation in ⌘ (corresponding to one quarter-period
in physical coordinates), for the periodic orbits described above. Since for these
orbits ⇠ = |E|,

t =
|E|
2

T⌘ +

Z T⌘

0

⌘(⌧)

2
d⌧ (D.3)

with

⌘(⌧) = Bsd2(⌧ |m)

B = 1� E2

4

m =
1

2
+

E

4
T⌘ = K(m) .

The identity Eq. (D.2) gives

Z T⌘

0

⌘(⌧)

2
d⌧ =

B

2mm
1

(E(amK(m)|m)�m
1

K(m)�msnK(m)cdK(m))

and using the general properties of elliptic functions

E(amK(m)|m) = E(m)

cdK = 0

leads to

Z T⌘

0

⌘(⌧)

2
d⌧ =

B

2mm
1

(E(m)�m
1

K(m)) .

Noting that

mm
1

=

✓
1

2
+

E

4

◆✓
1

2
� E

4

◆
=

1

4
B

we put everything into Eq. (D.3) to get

t = �E

2
K(m) + 2E(m)� 2

✓
1

2
� E

4

◆
K(m) = 2E(m)�K(m)

Multiplying by two to get the delay for one half-period gives Eq. (7.14).
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[25] D B Miloševič, G G Paulus, D Bauer, and W Becker. Above-threshold
ionization by few-cycle pulses. Journal of Physics B: Atomic, Molecular
and Optical Physics, 39(14):R203, 2006.

122



BIBLIOGRAPHY

[26] S V Popruzhenko. Keldysh theory of strong field ionization: history,
applications, di�culties and perspectives. Journal of Physics B: Atomic,
Molecular and Optical Physics, 47(20):204001, 2014.

[27] L. V. Keldysh. The envelope Hamiltonian for electron interaction with
ultrashort pulses. Zh. Eksp. Teor. Fiz., 47:1945, 1964. [Sov. Phys. JETP
20, 1307 (1965)].

[28] F H M Faisal. Multiple absorption of laser photons by atoms. Journal of
Physics B: Atomic and Molecular Physics, 6(4):L89, 1973.

[29] Howard R. Reiss. E↵ect of an intense electromagnetic field on a weakly
bound system. Physical Review A, 22:1786, 1980.

[30] H. R. Reiss. Complete Keldysh theory and its limiting cases. Phys. Rev.
A, 42:1476–1486, Aug 1990.

[31] Vladimir S Popov. Tunnel and multiphoton ionization of atoms and ions
in a strong laser field (Keldysh theory). Physics-Uspekhi, 47(9):855, 2004.

[32] Misha Yu Ivanov, Michael Spanner, and Olga Smirnova. Anatomy of
strong field ionization. Journal of Modern Optics, 52(2-3):165–184, 2005.

[33] S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin. Laser ioniza-
tion of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B,
8(4):858–867, 1991.

[34] Denys I. Bondar, Michael Spanner, Wing-Ki Liu, and Gennady L. Yudin.
Photoelectron spectra in strong-field ionization by a high-frequency field.
Phys. Rev. A, 79:063404, Jun 2009.

[35] M Abu-samha, D Dimitrovski, and L BMadsen. The role of the atomic po-
tential in the regime of strong-field tunnelling ionization: imprints on lon-
gitudinal and 2d momentum distributions. Journal of Physics B: Atomic,
Molecular and Optical Physics, 41(24):245601, 2008.

[36] L. Guo, S. S. Han, and J. Chen. Time-energy analysis of above-threshold
ionization in few-cycle laser pulses. Phys. Rev. A, 86:053409, Nov 2012.

[37] A Rudenko, K Zrost, C D Schröter, V L B de Jesus, B Feuerstein,
R Moshammer, and J Ullrich. Resonant structures in the low-energy
electron continuum for single ionization of atoms in the tunnelling
regime. Journal of Physics B: Atomic, Molecular and Optical Physics,
37(24):L407, 2004.

[38] L. D. Landau and E. M. Lifschitz. Lehrbuch der theoretischen Physik, III:
Quantenmechanik. Akademie-Verlag Berlin, ninth edition, 1994.

[39] A M Perelomov, V S Popov, and M V Terent’ev. Ionization of atoms in
an alternating electric field. Zh. Eksp. Teor. Fiz., 50:1393, 1966. [Sov.
Phys. JETP 23, 924 (1966)].

[40] A M Perelomov, V S Popov, and M V Terent’ev. Ionization of atoms in
an alternating electric field: Ii. Zh. Eksp. Teor. Fiz., 51:309, 1966. [Sov.
Phys. JETP 24, 207 (1967)].

123



BIBLIOGRAPHY

[41] M V Ammosov, N B Delone, and V P Krainov. Tunnel ionization of
complex atoms and of atomic ions in an alternating electromagnetic field.
Zh. Eksp. Teor. Fiz., 91:2008, 1986. [Sov. Phys. JETP 64, 1191 (1986)].

[42] D. R. Hartree. The wave mechanics of an atom with a non-Coulomb
central field. Part I. Theory and methods. Mathematical Proceedings of
the Cambridge Philosophical Society, 24:89–110, 1 1928.

[43] Gennady L. Yudin and Misha Yu. Ivanov. Nonadiabatic tunnel ionization:
Looking inside a laser cycle. Phys. Rev. A, 64:013409, Jun 2001.

[44] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman. Free-
free transitions following six-photon ionization of xenon atoms. Phys. Rev.
Lett., 42:1127–1130, Apr 1979.

[45] E. Karule. Two-photon ionisation of atomic hydrogen simultaneously with
one-photon ionisation. Journal of Physics B: Atomic, Molecular and Op-
tical Physics, 11:441–447, 1978.

[46] G G Paulus, W Becker, W Nicklich, and H Walther. Rescattering e↵ects
in above-threshold ionization: a classical model. Journal of Physics B:
Atomic, Molecular and Optical Physics, 27(21):L703, 1994.

[47] P. B. Corkum. Plasma perspective on strong field multiphoton ionization.
Phys. Rev. Lett., 71:1994–1997, Sep 1993.

[48] G. G. Paulus, W. Nicklich, Huale Xu, P. Lambropoulos, and H. Walther.
Plateau in above threshold ionization spectra. Phys. Rev. Lett., 72:2851–
2854, May 1994.

[49] B W Shore and P L Knight. Enhancement of high optical harmonics by
excess-photon ionisation. Journal of Physics B: Atomic and Molecular
Physics, 20(2):413, 1987.

[50] M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, Anne L’Huillier, and P. B.
Corkum. Theory of high-harmonic generation by low-frequency laser
fields. Phys. Rev. A, 49:2117–2132, Mar 1994.

[51] R. L. Carman, C. K. Rhodes, and R. F. Benjamin. Observation of harmon-
ics in the visible and ultraviolet created in CO

2

-laser-produced plasmas.
Phys. Rev. A, 24:2649–2663, Nov 1981.

[52] X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré, and G. Mainfray.
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[82] M. Möller, F. Meyer, A. M. Sayler, G. G. Paulus, M. F. Kling, B. E.
Schmidt, W. Becker, and D. B. Miloševič. O↵-axis low-energy structures
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