Fractionalization in quantum matter: past, present and future

1) Unraveling the hidden link between composite fermions and exciton condensate

2) Quantum oscillations in insulators with neutral Fermi surfaces

IMPRS RETREAT

September 20, 2017

Inti Sodemann Max Planck Institute for the Physics of Complex Systems

Debye and the birth of quasiparticles

• Debye model (1912)

• Quantized a la Planck-Einstein black body photons.

 ω

Debye

• Sound ~ Light. Phonon ~ Photon.

Bohr model (1913) Bose paper (1924)

Landau and the quasiparticle paradigm

• Charged quasiparticles: Fermions.

 $\Delta Q = +1 \qquad \qquad \Delta Q = +1$ $t = -\infty$ $V_{int} = 0$ $V_{int} \neq 0$ X

 Neutral quasiparticles (quanta of collective oscillations): Bosons.

Phonon Sound

Magnon Spin waves

Quantum Hall revolution

Electrons under strong magnetic fields display the quantum Hall effect:

von Klitzing

Fractional Quantum Hall effect

• Plateau at 1/3?

Tsui

Stormer

Gossard

יייי?

cyclotron orbits

left-moving skipping orbit

Fractional Quantum Hall effect

$$\Delta Q = +1$$
$$t = -\infty$$
$$V_{int} = 0$$

Laughlin

Laughlin liquid at filling 1/3

$$\Psi = \prod_{i < j} (z_i - z_j)^3 e^{-\frac{|z_i|^2}{4l^2}}$$
$$z = x + iy$$

Fractional Quantum Hall effect

B

$$\sigma_{xy} = \frac{e^2}{3h}$$

$$\overline{B} \qquad \overline{I} \qquad \overline{E} \qquad \overline{I} \qquad$$

В

$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E}$$
$$j_x = \sigma_{xy} E_y$$

 B^{1}

Laughlin

B

$$\Delta Q = \sigma_{xy} \Delta \Phi$$

$$\Delta Q_0 = \pm \frac{e}{3}$$

Fractional Statistics

Only fermions and bosons in 3D:

• In 2D "any-ons" are allowed:

Fractionalization and topology

Non-trivial degeneracy on closed manifolds:

 $\mathcal{D} = (\text{nontrivial quasiparticles} + 1)^G$

Wen

non-trivial qps+1

Non-abelian anyons: "irrational" size of Hilbert space.

 γ_2

$$D_{\gamma_1\gamma_2} = 2 \implies D_{\gamma} = \sqrt{2}$$

Majorana fermions

Experimentally realized in:

-GaAs at
$$\,\nu=5/2$$

-1D chains superconducting p-wave.

The hidden link between composite fermions and the exciton condensate

• BEC - BCS crossover a powerful unification in physics of quantum matter:

 Unification between two celebrated quantum Hall phases of matter: the exciton condensate and the composite fermion metal.

Exciton condensate

• No tunneling but strong interactions

$$\nu = \nu_{top} + \nu_{bottom} = 1/2 + 1/2$$

• Exciton condensate:

 $|top
angle + e^{i\phi}|bottom
angle$

 $\langle c_{\rm bottom}^{\dagger} c_{\rm top} \rangle \propto e^{i\phi}$

Tiemann et al., PRB (2007)

Long range XY order \vec{M}

Properties of exciton condensate

• Superfluidity for charge imbalance:

 $Q_{-} = Q_{top} - Q_{bottom} \qquad [Q_{-}, \phi] = i$

- Linearly dispersing Goldstone mode of ϕ (pseudo-spin wave).
- Half-charged vortices (merons):

Spin-wave

E

- Wen, Zee, PRL 69, 1811 (1992).
- Moon, Mori, Yang, Girvin, MacDonald, Zheng, Yoshioka, Zhang, PRB 51, 5138 (1995).

Composite fermion metal

• Fractionalized metal for half filled landau level:

$$N_e = \frac{1}{2}N_\phi$$

Composite fermion: electron bound to two vortices

composite fermion fermi surface

 Emergent 2-dimensional "gauge field" (analogous to the electro-magnetic field in 2D).

Jain, PRL (1989). Halperin, Lee, Read, PRB (1993).

Duality in 1+1D QFT's

1+1 Sine – Gordon $\frac{1}{2}(\partial\phi)^2 + (m/\beta)^2\cos(\beta\phi)$

$$\frac{4\pi}{\beta^2} = 1 + \frac{g}{\pi}$$

Luttinger Coleman Haldane 1+1 Massive – Thirring $\bar{\psi}(i\partial - m)\psi - \frac{g}{2}(\bar{\psi}\gamma_{\mu}\psi)^2$ $\psi^{\dagger}\psi = \frac{\beta}{2\pi}\partial_x\phi$ S. Coleman,

Son PRX (2015). Wang, Senthil PRB (2016). Metlitski, Vishwanath, PRB (2015). Mross, Alicea, Motrunich PRL (2016). Seiberg, Wang, Senthil, Witten Ann. Phys. (2016).

Bilayer exciton condensate and Composite fermion metal

- Are zero and infinite $\nu = \nu_{top} + \nu_{bottom} = 1/2 + 1/2$ distance connected?

Precedents

Bilayer exciton condensate and Composite fermion metal

• A special particle-hole invariant "cooper pairing" of composite fermions is equivalent to exciton condensate:

I. Sodemann, I. Kimchi, C. Wang, T. Senthil, Phys. Rev. B **95**, 085135 (2017).

Exciton condensate from CF pairing

- Symmetric gauge field is gapped via Higgs.
- Anti-symmetric gauge field remains gapless. 2+1 Maxwell theory has a spontaneously broken symmetry:

$$\langle \mathcal{M}_{-}(r)\mathcal{M}_{-}^{\dagger}(0)\rangle \xrightarrow{|r| \to \infty} \text{const} \qquad n_{\text{top}}^{e} - n_{\text{bottom}}^{e} = \frac{\nabla \times \vec{a}_{-}}{2\pi}$$

The state is an exciton condensate!

Relative u(1) photon = Goldstone mode

- Photon is exciton condensate "spin-wave".
- Electric charges under field *a* are vortices of condensate order parameter:

$$4\pi q_{-} \leftrightarrow vorticity$$

$$\hat{z} \times (\vec{j}_{top}(r) - \vec{j}_{bottom}(r)) = \frac{\nabla a_0 + \partial_t \vec{a}}{4\pi}$$

Abrikosov vortices = merons

• Abrikosov vortices carry half charge:

Q = 1/2

• Abrikosov vortices have a complex fermion zero mode: Layer X-change q_- (vorticity) $|0\rangle$ $|1\rangle$ $|0\rangle$ 1/2 2π $|1\rangle \equiv \psi_0^{\dagger}|0\rangle$ $|0\rangle$ $|1\rangle$ -1/2 -2π

Abrikosov vortices = merons

- Two π Abrikosov vortices of opposite vorticity are mutual semions

Q = 1/2

• Their fusion is a fermion:

The electron (with layer charge imbalance neutralized by condensate).

Bogoliubov fermion

 Consider fusing two Abrikosov vortices of opposite flux but same a charge (order parameter vorticity):

Fractionalization w/out magnetic fields

• Spin liquids in frustrated magnets.

- Bosonic Laughlin state can be viewed as chiral spin liquid after mapping bosons to spins.
- "Smoking gun" experimental signatures?
- Fractionalization beyond the realm of frustrated magnets or quantum Hall?

Puzzles of SmB₆

- Simple cubic structure.
- All action happens in Samarium.
- Traditional picture of mixed valence insulator:

SmB₆ puzzling behavior

Insulating behavior from charge transport:

B. S. Tan et al., Science (2015).

- De Haas-van Alphen effect visible at $B\sim 5T$

SmB₆ puzzles

• Could be magnetic breakdown?

Zhang, Song, Wang, PRL (2016). Knolle and Cooper, PRL (2015).

 Other anomalies: Specific heat to temperature ratio has finite intercept:

$$\gamma = rac{C}{T}$$

Like in a fermi sea
 $C_{
m fermions} \propto \gamma T$ $C_{
m phonon} \propto T^3$

"Composite exciton Fermi liquid"

One option: bosons condense

 $\left< b \right> \neq 0$

=> Metal ("boring")

b and d attract:

$$-U_{df}\sum_{i}n_{i}^{f}n_{i}^{d}$$

$$N^d_{electrons} = N^b = N^{\chi}$$

Fermi-bose mixture:

 b^{\dagger} : spinless boson χ^{\dagger}_{σ} : neutral spinfull fermion

 d_{σ}^{\dagger} : d-electron

More "interesting" option:

Bosons bind with d electrons

Composite fermionic exciton:

$$\psi_{k\alpha} \equiv b \, d_{k\alpha}, \ \psi^{\dagger}_{k\alpha} \equiv b^* \, d^{\dagger}_{k\alpha}$$

Bound state of "f-holon" and d electron.

Fractionalized fermi sea with two pockets ("semi-metal")

Some properties:

Essentially linear specific heat:

 $C = \gamma T$ $\gamma \sim \ln(1/T)$

• Sub-gap optical conductivity:

$$\operatorname{Re}[\sigma(\omega)] = \omega^2 \left(\frac{\epsilon_b - 1}{4\pi}\right)^2 \frac{1}{\operatorname{Re}[\sigma_{\operatorname{ce}}(\omega)]}$$

D. Chowdhury, I. Sodemann, T. Senthil, arXiv:1706.00418 (2017). I. Sodemann, D. Chowdhury, T. Senthil, arXiv:1708.06354 (2017).

B. S. Tan et al., Science (2015).

The end of the beginning!

Conceptual frontier:

- Topological matter beyond free fermions.
- Fractionalization and topology in 3D.
- Gapless fractionalized phases in 2D and 3D.
- Novel non-pertubative approaches to interacting systems.

Real world frontier:

- New probes for fractionalized matter.
- Fractionalization beyond quantum Hall and frustrated magnets.
- More cross talk between materials and models.

Non-equilibrium and transport frontier:

- Transport in fractionalized and topological matter.
- Collective behavior and broken symmetries in topological and fractionalized matter.
- Dynamics of nearly conserved quantities (hydrodynamics).