Fractionalization in quantum matter: past, present and future

1) Unraveling the hidden link between composite fermions and exciton condensate

2) Quantum oscillations in insulators with neutral Fermi surfaces

IMPRS RETREAT

September 20, 2017

Inti Sodemann
Max Planck Institute for the Physics of Complex Systems
Debye and the birth of quasiparticles

- Debye model (1912)

- Quantized a la Planck-Einstein black body photons.

- Sound ~ Light. Phonon ~ Photon.

Bohr model (1913) Bose paper (1924)
Landau and the quasiparticle paradigm

• Charged quasiparticles: Fermions.

\[\Delta Q = +1 \]

\[t = -\infty \]
\[V_{int} = 0 \]

• Neutral quasiparticles (quanta of collective oscillations): Bosons.

Magnon
Spin waves

Phonon
Sound
Quantum Hall revolution

- Electrons under strong magnetic fields display the quantum Hall effect:

\[\sigma_{xy} = n \frac{e^2}{h} \]

\[n = 1, 2, 3... \]

Landau level filling:

\[\nu = \frac{N_e}{N_\phi} = n \]

\[N_\phi = \frac{BA}{\Phi_0} \]
Fractional Quantum Hall effect

- Plateau at 1/3?

\[\sigma_{xy} = \frac{e^2}{3h} \]

Tsui, Stormer, Gossard, PRL (1982).

Stormer Tsui Gossard
Fractional Quantum Hall effect

\[\Delta Q = +1 \]
\[t = -\infty \]
\[V_{int} = 0 \]
\[\Delta Q = +1 \]
\[V_{int} \neq 0 \]

- Laughlin liquid at filling 1/3

\[\Psi = \prod_{i<j} (z_i - z_j)^3 e^{-\frac{|z_i|^2}{4l^2}} \]
\[z = x + iy \]

\[\nu = \frac{N_e}{N_\phi} = \frac{1}{3} \]

\[+ \]

\[+ \]

\[+ \]

\[\cdots \]
Fractional Quantum Hall effect

- Laughlin liquid at filling 1/3 \(\nu = \frac{N_e}{N_\phi} = \frac{1}{3} \)

\[
\begin{align*}
\sigma_{xy} &= \frac{e^2}{3h} \\
\Phi_0 &= \frac{h}{e} \\
\Delta Q &= \sigma_{xy} \Delta \Phi \\
\Delta Q_0 &= \pm \frac{e}{3}
\end{align*}
\]
Fractional Statistics

- Only fermions and bosons in 3D:

\[(e^{i\varphi})^2 = 1 \]

\[e^{i\varphi} = \pm 1 \]

Bosons or Fermions

- In 2D “any-ons” are allowed:

\[\varphi = \pi/3 \]

Laughlin anyons
Fractionalization and topology

- Non-trivial degeneracy on closed manifolds:
 \[D = (\text{nontrivial quasiparticles} + 1)^G \]
 \[G = 3 \]
 \[G = 0 \]
 \[G = 1 \]

- Non-abelian anyons: “irrational” size of Hilbert space.

 \[D_{\gamma_1 \gamma_2} = 2 \quad \rightarrow \quad D_\gamma = \sqrt{2} \]
 Majorana fermions

Experimentally realized in:
- GaAs at \(\nu = 5/2 \)
- 1D chains
 superconducting p-wave.
The hidden link between composite fermions and the exciton condensate

- BEC - BCS crossover a powerful unification in physics of quantum matter:

![Diagram showing BEC and BCS](image)

- Bose Einstein condensate molecules
- Superconductor Fermions

- Unification between two celebrated quantum Hall phases of matter: the exciton condensate and the composite fermion metal.
Exciton condensate

- No tunneling but strong interactions

\[\nu = \nu_{\text{top}} + \nu_{\text{bottom}} = 1/2 + 1/2 \]

- Exciton condensate:

\[|\text{top}\rangle + e^{i\phi} |\text{bottom}\rangle \]

\[\langle c_{\text{bottom}}^\dagger c_{\text{top}} \rangle \propto e^{i\phi} \]

Long range XY order
Properties of exciton condensate

• Superfluidity for charge imbalance:
 \[Q_- = Q_{\text{top}} - Q_{\text{bottom}} \quad [Q_-, \phi] = i \]

• Linearly dispersing Goldstone mode of \(\phi \) (pseudo-spin wave).

• Half-charged vortices (merons):
 \[v = 1 \]
 \[Q_+ = e/2 \]
 \[2\pi \text{ winding} \]
 \[Q_+ = (vn_z) \frac{e}{2} \]
 \[v \in \mathbb{Z} \]
 \[n_z = \pm 1 \]

Composite fermion metal

- Fractionalized metal for half filled landau level:
 \[N_e = \frac{1}{2} N_\phi \]

- Composite fermion: electron bound to two vortices

\[\vec{B} \neq 0 \quad \Rightarrow \quad \vec{B}_{eff} = 0 \]

- Emergent 2-dimensional “gauge field” (analogous to the electro-magnetic field in 2D).

Duality in 1+1D QFT's

1 + 1 Sine – Gordon
\[\frac{1}{2} (\partial \phi)^2 + (m/\beta)^2 \cos(\beta \phi) \]

\[\frac{4\pi}{\beta^2} = 1 + \frac{g}{\pi} \]

1 + 1 Massive – Thirring
\[\bar{\psi}(i\partial - m)\psi - \frac{g}{2} (\bar{\psi} \gamma_\mu \psi)^2 \]

\[\psi^\dagger \psi = \frac{\beta}{2\pi} \partial_x \phi \]

S. Coleman, PRD 1975
Fermion vortex duality

Physical Dirac fermion

\[\mathcal{L}_e = \bar{\psi}_e (i \partial - A) \psi_e + \mathcal{L}_{\text{int}} \]

\[\delta n_{\text{elec}}(r) = \frac{\nabla \times \vec{a}}{4\pi} \]

\[\psi_e^\dagger \leftrightarrow M_{4\pi} \]

Dirac composite fermion vortex

\[\mathcal{L}_{cf} = \bar{\psi}_{cf} (i \partial - \phi) \psi_{cf} + \frac{a d A}{4\pi} + \mathcal{L}_{\text{int}} \]

\[\hat{\mathbf{z}} \times \mathbf{j}_{\text{elec}}(r) = \frac{\nabla a_0 + \partial_t \vec{a}}{4\pi} \]

Electron creation is flux insertion operator

Bilayer exciton condensate and Composite fermion metal

- Are zero and infinite distance connected?

\[d = 0 \quad \text{Exciton condensate} \quad ? \quad \text{Two C-Fermion metals} \quad d = \infty \]

- Precedents

Theory

Paired Quantum Hall State

Exciton condensate

Bonesteel et al. PRL (1996)

Numerics

\[\nu = \nu_{top} + \nu_{bottom} = \frac{1}{2} + \frac{1}{2} \]

Experiment

Eisenstein, ARCMP (2014)
Bilayer exciton condensate and Composite fermion metal

- A special particle-hole invariant “cooper pairing” of composite fermions is equivalent to exciton condensate:

\[
\Delta = i\psi^\dagger \sigma_y \tau_x \psi^\dagger \sim i\psi_{\text{top}}^\dagger \sigma_y \psi_{\text{bottom}}^\dagger
\]

Exciton condensate from CF pairing

- Symmetric gauge field is gapped via Higgs.

- Anti-symmetric gauge field remains gapless. 2+1 Maxwell theory has a spontaneously broken symmetry:

\[
\begin{align*}
a_+ &= \frac{a_1 + a_2}{2} \\
\quad \text{a}_- &= \frac{a_1 - a_2}{2}
\end{align*}
\]

\[
\begin{aligned}
\langle \mathcal{M}_-(r) \mathcal{M}^\dagger_- (0) \rangle &\xrightarrow{|r| \to \infty} \text{const} \\
n^e_{\text{top}} - n^e_{\text{bottom}} &= \frac{\nabla \times \vec{a}_-}{2\pi}
\end{aligned}
\]

\[
\langle c^\dagger_{\text{bottom}} c_{\text{top}} \rangle \propto e^{i\phi}
\]

The state is an exciton condensate!
Relative $u(1)$ photon = Goldstone mode

- Photon is exciton condensate “spin-wave”.
- Electric charges under field a_- are vortices of condensate order parameter:

$$4\pi q_- \leftrightarrow \text{vorticity}$$

$$\hat{z} \times (\vec{j}_{\text{top}}(r) - \vec{j}_{\text{bottom}}(r)) = \frac{\nabla a_0 + \partial_t \tilde{a}}{4\pi}$$
Abrikosov vortices = merons

- Abrikosov vortices carry half charge:

\[n_{\text{top}}^e + n_{\text{bottom}}^e = \frac{\nabla \times \vec{a}_+}{2\pi} \rightarrow Q_\pi = \pm \frac{1}{2} \]

- Abrikosov vortices have a complex fermion zero mode:

\[
\begin{align*}
|0\rangle & \rightarrow |1\rangle \\
|1\rangle & \equiv \psi_0^\dagger |0\rangle \\
\end{align*}
\]

Layer X-change

\[
\begin{array}{ccc}
|0\rangle & \rightarrow & |1\rangle \\
|1\rangle & \rightarrow & |0\rangle \\
\end{array}
\]

\[
\begin{array}{ccc}
q_- & \quad (\text{vorticity}) \\
1/2 & \quad 2\pi \\
-1/2 & \quad -2\pi \\
\end{array}
\]
Abrikosov vortices = merons

- Two π Abrikosov vortices of opposite vorticity are mutual semions
 \[\pi - \text{vortex} \]
 \[Q = 1/2 \]

- Their fusion is a fermion:

The electron (with layer charge imbalance neutralized by condensate).
Bogoliubov fermion

- Consider fusing two Abrikosov vortices of opposite flux but same charge (order parameter vorticity):

\[\frac{4\pi}{\alpha} \]

Neutral Vortex

- Fusion is Bogoliubov fermion

\[Q = \frac{1}{2}, \quad Q = -\frac{1}{2} \]
Dictionary

Exciton condensate

Spin-wave

\[Q = 1/2 \]

2\(\pi\) winding

XY vortex

\[Q = 1/2 \]

Composite fermion superconductor

Photon

\[E \]

\[a_1 - a_2 \]

Abrikosov vortex

\[\pi \text{ flux} \]

\[Q = 1/2 \]

4\(\pi\) neutral vortex

\[Q = 1/2 \]

\[Q = -1/2 \]

Composite fermion

Charge neutral Dipole carrying
Fractionalization w/out magnetic fields

- Spin liquids in frustrated magnets.

- Bosonic Laughlin state can be viewed as chiral spin liquid after mapping bosons to spins.

- “Smoking gun” experimental signatures?

- Fractionalization beyond the realm of frustrated magnets or quantum Hall?
Puzzles of SmB$_6$

- Simple cubic structure.
- All action happens in Samarium.
- Traditional picture of mixed valence insulator:

\[[\text{Xe}] 4f^6 5d^0 6s^2 \]

\[5d^1 + 4f^5 \rightleftharpoons 4f^6 \]
SmB$_6$ puzzling behavior

- Insulating behavior from charge transport:

\[\rho \approx \rho_0 e^{\frac{\Delta}{T}} \quad \Delta \approx 10\text{meV} \]

- De Haas-van Alphen effect visible at \(B \sim 5T \)

SmB$_6$ puzzles

• Could be magnetic breakdown?

\[\epsilon(k) \]

\[\epsilon_F \]

△ ~ 10meV

\[\omega_c \approx 0.2\text{meV} \ B[T] \]

Theory oscillations visible at \(B \sim 50T \)

Experiment oscillations visible at \(B \sim 5T \)

• Other anomalies:

Specific heat to temperature ratio has finite intercept:

\[\gamma = \frac{C}{T} \]

Like in a fermi sea

\[C_{\text{fermions}} \propto \gamma T \]

\[C_{\text{phonon}} \propto T^3 \]
“Composite exciton Fermi liquid”

\[\epsilon(k) \]

\[d \text{ electron} \]

One option: bosons condense

\[\langle b \rangle \neq 0 \]

\[\Rightarrow \text{Metal ("boring")} \]

Fermi-bose mixture:

\[b^\dagger : \text{spinless boson} \]

\[\chi^\sigma_\sigma : \text{neutral spinfull fermion} \]

\[d^\dagger_\sigma : \text{d-electron} \]

More “interesting” option:

Bosons bind with d electrons

- \[U_{df} \sum_i n_i^f n_i^d \]

Composite fermionic exciton:

\[\psi_{k\alpha} \equiv b \ d_{k\alpha}, \ \psi^\dagger_{k\alpha} \equiv b^* \ d^\dagger_{k\alpha} \]

Bound state of “f-holon” and d electron.
Properties of “Composite exciton Fermi liquid”

Fractionalized fermi sea with two pockets ("semi-metal")

Some properties:

- Essentially linear specific heat:
 \[C = \gamma T \quad \gamma \sim \ln(1/T) \]

- Sub-gap optical conductivity:
 \[\text{Re}[\sigma(\omega)] = \omega^2 \left(\frac{\epsilon_b - 1}{4\pi} \right)^2 \frac{1}{\text{Re}[\sigma_{ce}(\omega)]} \]

Upturn might indicate other physics at lower temperature

The end of the beginning!

Conceptual frontier:
• Topological matter beyond free fermions.
• Fractionalization and topology in 3D.
• Gapless fractionalized phases in 2D and 3D.
• Novel non-perturbative approaches to interacting systems.

Real world frontier:
• New probes for fractionalized matter.
• Fractionalization beyond quantum Hall and frustrated magnets.
• More cross talk between materials and models.

Non-equilibrium and transport frontier:
• Transport in fractionalized and topological matter.
• Collective behavior and broken symmetries in topological and fractionalized matter.
• Dynamics of nearly conserved quantities (hydrodynamics).