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We study the ergodic-nonergodic transition in a generalized Dicke model with independent corotating
and counterrotating light-matter coupling terms. By studying level statistics, the average ratio of
consecutive level spacings, and the quantum butterfly effect (out-of-time correlation) as a dynamical
probe, we show that the ergodic-nonergodic transition in the Dicke model is a consequence of the proximity
to the integrable limit of the model when one of the couplings is set to zero. This can be interpreted as a hint
for the existence of a quantum analogue of the classical Kolmogorov-Arnold-Moser theorem. In addition,
we show that there is no intrinsic relation between the ergodic-nonergodic transition and the precursors
of the normal-superradiant quantum phase transition.
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Nonergodic quantum dynamics and, more generally,
nonergodic phases of quantum many-body systems have
recently attracted great interest in the condensed matter
community [1–4]. One of the paradigmatic subclasses of
these systems is provided by integrable models of quantum
many-body systems, such as the anisotropic Heisenberg
(XXZ) spin-1=2 chain [5], the one-dimensional Hubbard
model [6], central spin models [7], as well as various other
interacting one-dimensional bosonic [8] or fermionic [9]
models. While integrable systems are characterized by
an infinite number of integrals of motion leading to
nonergodic dynamics, they do not exhaust all possible
nonergodic phases. In fact, many-body localized systems
represent a new class of nonergodic phases with the
ergodic-nonergodic transition (ENET) driven by disorder
strength [2,10]. For these systems, dynamically emergent
conserved quantities are responsible for a variety of
distinctive properties of many-body localized phases.
Nonergodic phases could also exist in driven and dissipa-
tive quantum systems [11,12]. The existence of nonergodic
phases breaking traditional statistical physics by not sat-
isfying the eigenstate thermalization hypothesis [13] can
possibly be linked with the existence of a yet unknown
quantum version of the classical Kolmogorov-Arnold-
Moser theorem [14,15] (qualitatively stating that classical
integrable systems remain quasi-integrable under weak
perturbations). Despite several attempts to identify such
a quantum theorem [3,16–18], fundamental questions are
still open, and progress mostly lies in the observation of
indirect signatures in specific models.
Here, we discuss the emergence of extended nonergodic

phases in a generalized version of theDickemodel [19]. This
model has two independent light-matter coupling constants,
corresponding to the corotating and counterrotating terms in
the Hamiltonian. The model can be derived as an effective

model starting from three- or four-level emitter schemes
[20,21]. While it is Bethe ansatz integrable when one of the
couplings is zero (then representing a variant of the Gaudin
model [22]), tuning the coupling parameter from a nonzero
value and considering it as a perturbation allows us to study
the transition from the nonergodic phase (corresponding to
quasi-integrability) to the ergodic phase (associated with
quantumchaotic behavior). First, we show that this transition
occurs at finite values of the integrability-breaking param-
eter, with the nonergodic phase occupying an extended
region of the phase diagram. Interestingly, this effect can
be observed experimentally [23,24]. Second, we show that
there is a clear difference between the ENET and the
precursors of the normal-superradiant quantum phase tran-
sition [25], thereby shining new light on the questionwhether
ENETs and normal-superradiant quantum phase transitions
can be intrinsically related [26–28].
The Dicke model is a paradigmatic model to benchmark

tools detecting quantum chaos [28–31]. Here, we use
several complementary methods to detect the ENET: we
study the level statistics, the average ratio of consecutive
level spacings, and the quantum butterfly effect. All of
these methods are complementary, while indicating the
same shape of the ENET. We note that in these and many
other studies in the past, signatures of nonergodic behavior
were quantified by quantities related to eigenvalues and
eigenfunctions. However, in the present many-body context
we emphasize the need of dynamical probes of non-
ergodicity. The quantum butterfly effect (also known as
“scrambling” or “out-of-time correlation”) [32–36] serves
this purpose for us. This recently developed tool has been
used, for example, in quantum gravity [36], black hole
physics [32], and many-body localization [37]. To our
knowledge, its use in quantifying the phase diagram of a
quantum optical system is new.
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Anisotropic Dicke model.—We consider the anisotropic
Dicke model (ADM),

H ¼ ωa†aþ ω0Jz þ
g1ffiffiffiffiffi
2j

p ða†J− þ aJþÞ

þ g2ffiffiffiffiffi
2j

p ða†Jþ þ aJ−Þ; ð1Þ

where a, a† are bosonic (cavity mode) operators satisfying

½a; a†� ¼ 1 in units ℏ ¼ 1 and J�;z ¼
P2j

i¼1
1
2
σðiÞ�;z are

angular momentum operators of a pseudospin with length
j composed of N ¼ 2j noninteracting spin-1=2 atoms

described by the Pauli matrices σðiÞ�;z acting on site i.
In the following, we work in the basis fjni ⊗ jj; mig
with a†ajni ¼ njni and Jzjj; mi ¼ mjj; mi. The ADM
describes the interaction between a single-mode bosonic
field with frequency ω and the atoms with level splitting
ω0, within the dipole approximation coupled to the field
with coupling parameters g1 and g2 for the corotating and
counterrotating terms, respectively. Several experimental
realizations of the ADM have been proposed [20,24,38,39].
For g1 ¼ g2 ¼ g, the ADM reduces to the Dicke model with
coupling parameter g. The ADM possess a parity symmetry
½H;Π� ¼ 0 with Π ¼ expðiπ½a†aþ Jz þ j�Þ having eigen-
values�1. Here, the focus is restricted to the positive parity
subspace, which includes the ground state for the parameter
ranges considered in this Letter (verified numerically).
When applying the rotating-wave approximation, i.e.,
setting g2 ¼ 0, the total number of excitations nþmþ j
is conserved, making the ADM Bethe ansatz inte-
grable [22]. By rotating Jy → −Jy, Jz → −Jz and setting
ω0 → −ω0, the ADM with g1 ¼ 0 maps onto the ADM
with g2 ¼ 0, showing that the ADM is integrable for g1 ¼ 0
or g2 ¼ 0. In the thermodynamic limit j → ∞, the ADM
exhibits a second-order quantum phase transition [40] at
g1 þ g2 ¼ ffiffiffiffiffiffiffiffiffi

ωω0
p

with order parameter a†a=j, separating
the normal phase at g1 þ g2 <

ffiffiffiffiffiffiffiffiffi
ωω0

p
with ha†ai=j ¼ 0

from the superradiant phase with ha†ai=j ¼ Oð1Þ. For
finite j, it has been shown numerically that the Dicke model
displays a transition from nonergodic to ergodic behavior
with an increasing value of g at g ≈ ffiffiffiffiffiffiffiffiffi

ωω0
p

=2, which is
believed to be caused by the precursors of the quantum
phase transition [26]. Both in the quantum and semi-
classical regime, this transition has been investigated
extensively [27,41–44].
Level statistics.—The onset of ergodic behavior is

typically diagnosed by inspection of the level spacing
distribution [45]. Let fEng denote the energy levels of
the ADM in ascending order. Under the assumption that the
density of states equals unity, the distribution PðsÞ of the
level spacings sn ¼ Enþ1 − En is given by the Poissonian
distribution PðsÞ ¼ expð−sÞ for nonergodic systems fol-
lowing the Berry-Tabor conjecture [46] and the Wigner-
Dyson distribution PðsÞ ¼ π

2
s exp½−ðπ=4Þs2� for ergodic

systems invariant under orthogonal transformations
satisfying the Bohigas-Giannoni-Schmit conjecture [47].
Figure 1 shows the level spacing distribution for the ADM
with ω ¼ ω0 and j ¼ 10 for several values g1;2 obtained by
exact diagonalization. The ADM is integrable and, hence,
nonergodic [13] at g1 ¼ 0 or g2 ¼ 0. One observes that
there is an ENETwhen following the line g1 ¼ g2, whereas
the system remains nonergodic along a line close to the
integrable limit g1 ¼ 0, strongly suggesting that the ENET
is a consequence of the integrability at g1 ¼ 0 or g2 ¼ 0.
Average ratio of consecutive level spacings.—Aiming to

provide a more complete view on where the ENET occurs,
we study the average hri over n of the ratio of consecutive
level spacings,

rn ¼ min

�
sn
sn−1

;
sn−1
sn

�
; ð2Þ

which is independent of the local density of states, and
can be used to localize the transition from ergodicity to
nonergodicity [48]. The average hri takes a value hri ¼
2 ln 2–1 ≈ 0.386 for Hamiltonians from the Poissonian
ensemble corresponding to the class of nonergodic systems
as described above, or a value hri ¼ 0.5307ð1Þ for
Hamiltonians from the Gaussian orthogonal ensemble
(GOE), corresponding to the above-discussed class of
ergodic systems. Figure 2 shows hri for the ADM with
ω ¼ ω0 ¼ 1 and j ¼ 10 as a function of g1;2. Clearly,
the ENET along the line g1 ¼ g2 ¼ g is caused by the
integrability of the ADM for g1 ¼ 0 or g2 ¼ 0, and is not
related to the precursors of the quantum phase transition at
g1 þ g2 ¼ 1 (verified numerically to be close to this line) as
it extends over the full ranges g1 ¼ 0 and g2 ¼ 0. One
observes that the width of the nonergodic regions on the
lower and left sides of the plot increases with increasing
values of the coupling parameters, which we expect
to be a result of the integrability of the Dicke model in
the limit g=ω0 → ∞ obtained by rotating Jx → Jz,

FIG. 1. The normalized distribution of level spacings
sn ¼ Enþ1 − En for the ADM with ω ¼ ω0 ¼ 1 and j ¼ 10 at
g1 ¼ 0.1 (left) and g ¼ g1 ¼ g2 (right). The histograms are drawn
from the sorted energy levels En with n ranging from 200 to
1000, where the lowest levels are left out to account for the
nonuniform density of states. As a reference, the Poissonian and
Wigner-Dyson distributions are shown in gray.
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Jz → Jx and translating a† → a† − 2mg=
ffiffiffiffiffi
2j

p
, where ω0Jx

is treated perturbatively. Except for the region around
g1 ¼ g2 ≈ 0.3, there are no qualitative differences when
varying the system size or number of energy levels taken
into account. For large values of j, the value of hri
converges to either the limiting value for ergodic or
nonergodic systems, depending on the values of g1;2.
Expanded up to first order in g1;2 around g1¼ g2¼ 0,
the states jn;j;mi and jn�1;j;m∓ 1i are near-degenerate
with energies for ω¼ω0 given by ωðnþmÞ and ωðnþmÞ�
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþj2þm−m2þ2ðjþj2−m2Þn

p
=

ffiffiffiffiffi
2j

p
, respectively.

This clustering phenomenon with equally separated energy
levels leads to a large value of hri, artificially suggesting
strong nonergodic behavior near g1 ¼ g2 ¼ 0.
Quantum butterfly effect.—The connection between

level statistics and ergodicity is not absolute, and counter-
examples do exist [46,49]. Here, we utilize the quantum
butterfly effect [50] as an independent dynamical
tool to validate the above result. Let VðtÞ and WðtÞ

denote time-evolving Hermitian operators for which
½Vð0Þ;Wð0Þ� ¼ 0 and ½Wð0Þ; H� ≠ 0. In an ergodic
phase, one expects a small perturbation by applying V at
time t ¼ 0 to strongly affect the outcome of a later
measurement ofW, thereby contrasting with a nonergodic
phase. This effect can be measured by the degree of
noncommutativity,

FðtÞ ¼ 1

2
½hV†ð0ÞW†ðtÞVð0ÞWðtÞiβ þ H:c:�; ð3Þ

written in the Heisenberg picture, with hOiβ denoting a
thermal average at inverse temperature β ¼ 1=T in units
kb ¼ 1 for an operator O given by hOiβ ¼ TrðOe−βHÞ=
Trðe−βHÞ. Considering, for the moment, the pure state jΨi
at t ¼ 0, this effect can be understood by viewing the first
term in F (a similar argument holds for the second term) as
the overlap between the states jΨ1i ¼ WðtÞVð0ÞjΨi and
jΨ2i ¼ Vð0ÞWðtÞjΨi. Since ½Vð0Þ;Wð0Þ� ¼ 0, jΨ1;2i ini-
tially fully overlap. With evolving time, the overlap will
decrease to a value depending on the size of the accessible
Hilbert space in an ergodic phase, thereby contrasting
with a nonergodic phase, provided that the perturbation is
small. Considering a thermal average, it is expected that
FðtÞ eventually approaches a constant value. Hence, FðtÞ
takes a relatively small or large value in ergodic and
nonergodic phases, respectively. The quantum butterfly
effect can—in principle—be measured experimentally
[51,52]. By adding a probe and control qubit to the
system, jΨi can be duplicated, after which separate states
WðtÞVð0ÞjΨi and Vð0ÞWðtÞjΨi can be obtained by the
proper use of entangling gates [53]. Subsequently, the
value of FðtÞ can be obtained by measuring the overlap of
these states.
In measuring the quantum butterfly effect in the

ADM, we take W ¼ V with V ¼ a†aþ 100 in the thermal
ensemble at inverse temperature β. For the parameters
under consideration, the number of bosonic excitations is
small compared to 100 (verified numerically), such that V
is close to the scaled unit operator, keeping the perturbation
small. Figure 3 shows 1 − FðtÞ=Fð0Þ for the ADM after
equilibration as a function of g1;2. This quantity is relatively
large (small) in an ergodic (nonergodic) phase. The Dicke
model displays a quasi-integrable structure at low energies
[27], which is characterized by, e.g., a Poissonian level
spacing distribution. Even though part of active research
[43,44], the origin of this phenomenon is still unclear. Here,
we choose β ¼ 1=10 for which the this low-energy regime
does not qualitatively influence the results (verified numeri-
cally). One observes qualitative agreement with Fig. 2,
showing that the ENET in the ADM is a consequence of the
integrability at g1 ¼ 0 or g2 ¼ 0. The result is qualitatively
independent of variations in the temperature or equilibra-
tion time for the wave function to spread out over the full
accessible Hilbert space. We also confirm that the ENET

(a)

(b) (c)

FIG. 2. (a) The average hri of rn taken over the lowest
1000 energy levels of the ADM with ω ¼ ω0 ¼ 1 and j ¼ 10
as a function of g1;2. The Dicke model and the quantum phase
transition (QPT) between the normal (NP) and superradiant (SP)
phases are indicated by a dashed and a dash-dotted line,
respectively. The lower left-hand corner, where the data artifi-
cially suggest nonergodic behavior (see main text), has been
masked. (b) The dependence of hri on the upper energy window
cutoff Λ for various values g1;2. The cutoffs for which the energy
windows contain the lowest 1000 energy levels are indicated by
black lines. (c) The dependence of hri on j for various values g1;2.
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is unrelated to the precursors of the normal-superradiant
quantum phase transition.
Discussion.—In addition to the diagnostics for ergo-

dicity utilized in this Letter, multiple alternative
measures exist. Let HðλÞ denote a parameter-dependent
Hamiltonian, and suppose Hðλ1Þ is integrable, opposed to
Hðλ2Þ. Reference [16] argues that Hðλ2Þ is nonergodic
if for any eigenstate jn2i there is an eigenstate jn1i of
Hðλ1Þ such that jhn1jn2ij2 > 1=2. Here, we investigate this
proposal by determining the quantity m ¼ maxijhijn2ij2
with jii running over all eigenstates of the integrable
Hamiltonian and jn2i denoting the n2th eigenstate of
the nonintegrable Hamiltonian labeled according to the
corresponding eigenvalues in ascending order. Figure 4
shows m for the ADM with g1 ¼ g2 ¼ 0 (upper part) and
g1 ¼ 0, g2 ¼ 1 (lower part) as the integrable Hamiltonian
for several eigenvectors and system sizes as a function of
g ¼ g1 ¼ g2 and g1, respectively. Opposed to the results
above, this measure suggests that the ENET moves
towards the integrable regime g1 ¼ 0 or g2 ¼ 0 with an
increasing energy scale or system size j. We believe that
future studies focusing on this discrepancy would be
helpful.

Conclusions.—We have shown that the ergodic-
nonergodic transition in the Dicke model is a result of
integrability of the anisotropic Dicke model when setting
one of the coupling constants to zero. We have shown that
there is an extended nonergodic region, which can be
considered as a hint for the existence of a still elusive quantum
version of the Kolmogorov-Arnold-Moser theorem. Similar
observations have been made for, e.g., Gaudin models [17],
spinless fermion models [3], or one-dimensional Bose gases
[18]. Experimental setups feasible to verify the results
experimentally have been proposed [20]. We have used both
the level spacing distribution and the average ratio of
consecutive level spacings as static and the quantum butterfly
effect as dynamical probes for ergodicity. In addition,we have
shown that there is no intrinsic relation between the ergodic-
nonergodic transition and the precursors of the normal-
superradiant quantum phase transition. We expect that a
similar approach as used in this Letter can be used to find
extended nonergodic phases in other quantum many-body
systems, such as disordered spin chains.
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