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An entanglement spectrum encodes statistics beyond the entanglement entropy, of which several have
been studied in the context of many-body localization. We numerically study the extreme value statistics of
entanglement spectra of many-body localized eigenstates. The physical information encoded in these spectra
is almost fully carried by the few smallest elements, suggesting the extreme value statistics to have physical
significance. We report the surprising observation of Gumbel statistics. Our result provides an analytical,
parameter-free characterization of many-body localized eigenstates.
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I. INTRODUCTION

Many-body localization (MBL) is understood as a distinct
phase of matter that cannot be described by conventional
statistical physics [1]. Driven by theoretical and experimental
progress, there has been a surge of interest in the phenomenon
over the past decade [2]. MBL appears in sufficiently strongly
disordered interacting quantum many-body systems, where
the appearance of local integrals of motion [3,4] leads to, e.g.,
emergent integrability [5,6], the absence of thermalization [7],
and logarithmic growth of entanglement entropy in time after
a quantum quench [8–10].

Thermal and many-body localized phases are separated
by an MBL transition [11–13]. At the localized side of the
transition, eigenstates obey area-law scaling of entanglement
entropy, while volume-law scaling is observed at the thermal
side [14]. Entanglement entropies can be extracted from en-
tanglement spectra [15,16]. An entanglement spectrum en-
codes statistics beyond the entanglement entropy [17], of
which several have been studied in the context of MBL
[18–24].

The physical information encoded in the entanglement
spectrum of a many-body localized eigenstate is almost fully
carried by only a few elements, independent of system size
[20]. This indicates the potential physical significance of
the extreme value statistics [25] of entanglement spectra in
the context of MBL. In this work, we study the extreme value
statistics of entanglement spectra of many-body localized
eigenstates.

Extreme value statistics display universal characteristics
over a wide range of physically relevant conditions [26–29].
We report the surprising observation of Gumbel statistics
[25,30]. These statistics, being observed in studies on various
physical phenomena [31–35], apply to the extreme value of
n → ∞ independent samples drawn from a distribution with
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a faster than power-law asymptotic decay. Our result provides
an analytical, parameter-free characterization of many-body
localized eigenstates.

II. GUMBEL STATISTICS

Following parts of Ref. [25], we here briefly discuss Gum-
bel statistics. Let Xi (i = 1, 2, . . . , n) be a sequence of inde-
pendent and identically distributed random variables drawn
from a distribution for which the distribution function (the
probability that Xi � x) is given by F (x),

P{Xi � x} = F (x). (1)

Let Mn denote the largest element of the sequence. It follows
from the independence of the Xi that the distribution function
of Mn is given by

P{Mn � x} = F n(x). (2)

Two distribution functions F1 and F2 are said to be of the same
type if, up to normalization,

F2(x) = F1(ax + b) (3)

for some a > 0 and b. From the extremal types theorem, it
follows that if

lim
n→∞ F n(anx + bn) = G(x) (4)

for some an and bn, then G is a distribution function of the
same type as one of the three extreme value distributions. The
distribution function of one of these extreme value distribu-
tions, relevant in the context of this work, is given by

G(x) = exp(−e−x ). (5)

This type emerges, e.g., for a density function f = dF/dx
asymptotically decaying faster than a power law, i.e., as

f (x) ∼ exp(−xα ), (6)

with α > 0 a free parameter. Equation (6) covers, e.g., expo-
nential (α = 1) and Gaussian (α = 2) decays.
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The statistics of G given in Eq. (5) are referred to as
Fisher-Tippett-Gumbel [27] or Gumbel [28] statistics. For
these statistics, the rate of convergence depends nontrivially
on the structure of F [36]. When comparing the statistics
of a collection of extreme values with Gumbel statistics, it
is convenient [26–29,31–35] to take an and bn such that the
distribution has mean zero and standard deviation 1. The
distribution function of the same type as G given in Eq. (5)
with these values for the mean and standard deviation is
obtained through Eq. (3) with

a = π/
√

6, b = γ , (7)

where γ ≈ 0.577 is Euler’s constant. The corresponding den-
sity function is given explcitly in Eq. (17) below.

III. ENTANGLEMENT SPECTRA

Here, we review the concept of entanglement spectra. In
the most general form, the setting is a quantum system divided
into subsystems A and B with Hilbert space dimensions m and
n. A pure state |ψ〉 of the composite system can be expanded
in basis states |ai〉 and |bi〉 of the respective subsystems as

|ψ〉 =
∑
i, j

Xi j |ai〉 ⊗ |b j〉, (8)

where X is an m × n matrix. Labeling the subsystems such
that m � n, the Schmidt decomposition of X uniquely ex-
pands |ψ〉 as a linear combination of product states over the
subsystems,

|ψ〉 =
n∑

i=1

√
λi |αi〉 ⊗ |βi〉, (9)

where |αi〉 and |βi〉 are basis states for respectively subsystems
A and B, and the λi (λi � 0) are the Schmidt coefficients.
An element λi can be interpreted as the physical weight
of the product state |αi〉 ⊗ |βi〉, providing a contribution of
−λi ln(λi ) to the entanglement entropy. The elements ei of the
entanglement spectrum [15,16] are given by

ei = − ln(λi). (10)

We remark that in some literature (e.g., Refs. [18,20,21]) the
“quantum information definition” ei = λi of the entanglement
spectrum is used. The smallest of the ei carry the largest
physical weight. In this work, the focus is on the statistics of
the smallest of the ei.

The Schmidt coefficients for ergodic (“random”) states
[37] obey the eigenvalue statistics of the fixed-trace Wishart-
Laguerre random matrix ensemble [38]. For this ensemble, the
joint density function P{λ1,2,...,n = x1,2,...,n} of the eigenvalues
is proportional to

n∏
i=1

xαβ/2
i

∏
j<k

|x j − xk|β δ

(
n∑

i=1

xi − 1

)
, (11)

where α = (1 + m − n) − 2/β and β is the Dyson index
given by 1 or 2 if the eigenstate is for a system with or
without time-reversal symmetry, respectively. The elements
are strongly correlated, due to which Gumbel statistics do not
apply. For the values of n relevant in the context of this work,

the extreme value statistics of the smallest ei = − ln(λi) are
close to Gaussian up to ∼3 standard deviations around the
mean value (verified numerically).

IV. PHYSICAL SETTING

We study the eigenstates of a spin chain with random onsite
disorder. Let σα

i denote a Pauli matrix (α = x, y, z) acting on
site i, and let Sα

i = σα
i /2 denote the corresponding spin-1/2

operator. The Hamiltonian of the model under consideration
is given by

H =
L∑

i=1

(	Si · 	Si+1 + hiS
z
i + 
Sx

i

)
. (12)

We impose periodic boundary conditions Sα
L+1 ≡ Sα

1 , set 
 =
0.1, and sample hi from the uniform distribution ranging over
[−W,W ]. We restrict the focus to eigenstates associated with
eigenvalues close to the middle of the spectrum (quantified
below) for system sizes L = 10, 12, 14. The model is studied
in Ref. [18], where indications for an MBL transition at
W ≈ 3.5 are reported.

The numerical analysis for systems of size L = 10 or
L = 12 involves the 10 eigenstates associated with energies
closest to the middle [max(Ei ) + min(Ei )]/2 of the spectrum
Ei [i = 1, 2, . . . , dim(H )], while for systems of size L = 14
this number is set to 50. Histograms are drawn from the data
of at least 2.5 × 105 eigenstates, which corresponds to at least
25.000 disorder realizations for L = 10 and L = 12, or at least
5.000 disorder realizations for L = 14.

For the calculation of entanglement spectra, we split the
chain into subsystems A and B covering respectively the first
and last L/2 sites, such that n = 2L/2. Note that for 
 = 0
the Hamiltonian reduces to the “standard model of MBL”
[11,12,39]. Then, the total spin projection

Sz =
L∑

i=1

Sz
i (13)

is a conserved quantity, due to which the entanglement spec-
trum is given by the union of independent subspectra labeled
by either

Sz
A =

∑
i∈A

Sz
i or Sz

B =
∑
i∈B

Sz
i . (14)

This phenomenon is reflected in, e.g., a block-diagonal struc-
ture of X in Eq. (8).

V. RESULTS

We here show the main result, namely the observation of
Gumbel statistics for the entanglement spectra of many-body
localized eigenstates. Let emin = mini(ei ) denote the smallest
element of an entanglement spectrum. Because Gumbel statis-
tics are formulated for the largest element of a sequence, we
study the statistics of −emin.

Let 〈·〉 denote an expectation value, and let

μ = 〈−emin〉, σ 2 = 〈
e2

min

〉 − 〈emin〉2 (15)
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FIG. 1. Density of ẽmin for W = 4 (top) and W = 5 (bottom) at
L = 10, 12, 14, combined with the densities g(x) and h(x). Note the
logarithmic scales on the vertical axes.

denote respectively the mean and variance of the distribution
of −emin. We define ẽmin as

ẽmin = −emin − μ√
σ 2

. (16)

By construction, the distribution of ẽmin has mean zero and
standard deviation 1. We compare the density P{ẽmin = x} of
ẽmin with the density function

g(x) = π√
6

exp

[
−

(
π√

6
x + γ

)
− e−( π√

6
x+γ )

]
(17)

for Gumbel statistics having the same mean and standard
deviation. For reference, we also compare it with the standard
Gaussian, approximating the statistics of ẽmin for ergodic
states, for which the density function is given by

h(x) = 1√
2π

exp

(
−1

2
x2

)
. (18)
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FIG. 2. Density of ẽmin for W = 2, 3, 4, 5 at L = 14, combined
with the densities g(x) and h(x). Note the logarithmic scales on the
vertical axis.

Figure 1 compares the density of ẽmin for W = 4 and
W = 5 at L = 10, 12, 14 with g(x) and h(x). The density
of ẽmin is approximated by a histogram with bins of width
0.05, which is normalized to unit area to allow for a direct
comparison with the (normalized) probability densities. We
observe good agreement with g(x) for both disorder strengths
at L = 12, 14. Deviations from Gumbel statistics can presum-
ably be attributed to finite-size effects. These effects play a
role in both the physics of the eigenstates (becoming stronger
localized with increasing system size), as well as in the ap-
proach towards the limit n → ∞ (required to observe Gumbel
statistics).

Figure 2 compares the density of ẽmin with g(x) and h(x)
for W = 2, 3, 4, 5 at L = 14. Qualitative similarities between
the density of ẽmin and g(x) can be observed at all disorder
strengths. The eigenstate entanglement spectra of Hamilto-
nian (12) are known to show statistics deviating from the
expectation for ergodic states already at disorder strengths
well below the MBL transition [18]. More generally, the ther-
mal side of the MBL transition is not fully ergodic [40]. We
were not able to draw conclusions on the convergence of the
distribution of ẽmin towards Gumbel statistics with increasing
system size at the thermal side of the MBL transition, and
remark that the statistics of ẽmin cannot be used as a probe for
the MBL transition for the system sizes under consideration.
Note that at the thermal side of the MBL transition the physi-
cal significance of the statistics of ẽmin is presumably limited
due to the vanishing physical weight in the thermodynamic
limit L → ∞.

VI. DISCUSSION

The observation of Gumbel statistics suggests that the
largest elements of an entanglement spectrum ẽi are uncor-
related. To verify this, we study the presence of short-range
correlations between the largest ẽi. Short-range correlations
can be probed through spacing statistics [41]. We order the ẽi
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FIG. 3. Densities of r1 for W = 2, 3, 4, 5 at L = 14, com-
bined with the densities for Poissonian and Wigner-Dyson statistics
(β = 1).

in decreasing order (i.e., ẽi � ẽi+1), and focus on the ratio of
consecutive spacings r1 ∈ [0, 1] given by

r1 = min

(
ẽ1 − ẽ2

ẽ2 − ẽ3
,

ẽ2 − ẽ3

ẽ1 − ẽ2

)
. (19)

In the absence of short-range correlations, the distribution of
r1 obeys Poissonian statistics, for which

P{r1 = x} = 2

(1 + x)2
. (20)

Ergodic states obey Wigner-Dyson spacing statistics [42]. For
systems with time-reversal symmetry (Dyson index β = 1),
the corresponding density of r1 is well approximated [41] by

P{r1 = x} ≈ 27

8

x + x2

(1 + x + x2)5/2
. (21)

Figure 3 compares the density of r1 for W = 2, 3, 4, 5 at
L = 14 with Poissonian and Wigner-Dyson spacing statis-
tics. At all disorder strengths, the spacing statistics are close
to Poissonian, indicating the (near) independence of the
largest ẽi.

VII. CONCLUSION AND OUTLOOK

In summary, we have provided numerical evidence that
the entanglement spectra of many-body localized eigenstates
obey Gumbel statistics. Because the physical weight of these
spectra is almost fully carried by the few smallest elements,
one might expect the extreme value statistics to have physical
significance. Our result provides an analytical, parameter-
free characterization of many-body localized eigenstates. We
stress that no conclusions on the thermal side of the MBL
transition can be drawn.

The main open question remaining is the physical mecha-
nism responsible for the occurrence of Gumbel statistics, and
the way it can be explained in terms of phenomenological
models [5]. A possible starting point for further investiga-
tions might be provided by the notion that an entanglement
spectrum can be interpreted as the eigenvalue spectrum of the
entanglement Hamiltonian

Hent = − ln(ρB), (22)

where ρB = TrA(|ψ〉〈ψ |) is the partial trace of the density ma-
trix |ψ〉〈ψ | over basis states of subsystem A [15]. One might
hypothesize that the statistics of the eigenvector associated
with emin carry relevant information.
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[3] M. Serbyn, Z. Papić, and D. A. Abanin, Local Conservation
Laws and the Structure of the Many-Body Localized States,
Phys. Rev. Lett. 111, 127201 (2013).

[4] V. Ros, M. Müller, and A. Scardicchio, Integrals of motion in
the many-body localized phase, Nucl. Phys. B 891, 420 (2015).

[5] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenol-
ogy of fully many-body-localized systems, Phys. Rev. B 90,
174202 (2014).

[6] J. Z. Imbrie, Diagonalization and Many-Body Localization for a
Disordered Quantum Spin Chain, Phys. Rev. Lett. 117, 027201
(2016).
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