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We numerically study the level statistics of the Gaussian f ensemble. These statistics generalize Wigner-
Dyson level statistics from the discrete set of Dyson indices f = 1, 2, 4 to the continuous range 0 < f < 0.
The Gaussian f ensemble covers Poissonian level statistics for f — 0, and provides a smooth interpolation
between Poissonian and Wigner-Dyson level statistics. We establish the physical relevance of the level
statistics of the Gaussian f ensemble by showing near-perfect agreement with the level statistics of a
paradigmatic model in studies on many-body localization over the entire crossover range from the thermal
to the many-body localized phase. In addition, we show similar agreement for a related Hamiltonian with

broken time-reversal symmetry.

DOI: 10.1103/PhysRevLett.122.180601

Random matrix theory [1,2] provides an essential toolbox
in nuclear [3-5], condensed matter [6-8] and mesoscopic
[9,10] physics, and is used as well in, e.g., high energy
physics [11-13]. In these fields, the physical interest for
random matrix theory comes from the apparent universality
of the local spectral statistics of quantum systems that are
chaotic in the semiclassical limit [14]. Inspired by seminal
works of Wigner [15] and Dyson [16], one typically compares
local spectral statistics with the local eigenvalue statistics of
random matrices taken from the Gaussian orthogonal
(GOE), unitary (GUE), or symplectic (GSE) ensemble—
depending on the type of transformation by which the
Hamiltonian is diagonalized. These so-called Wigner-
Dyson level statistics provide an excellent description of
the local spectral statistics of a vast majority of the systems
that are considered as quantum chaotic (ergodic) [17].

The GOE, GUE, and GSE are covered by to the Gaussian
B ensemble [16,18]. Here, € (0,00) is a continuous
parameter which for the GOE, GUE, and GSE corresponds
to f =1, 2, 4, respectively. The Gaussian f ensemble also
covers Poissonian level statistics (f — 0), as typically
observed for regular (nonergodic) systems [19,20]. The
Gaussian f# ensemble provides a smooth interpolation
between Poissonian and Wigner-Dyson level statistics.
Thanks to relatively recent progress made by Dumitriu
and Edelman [21], the eigenvalue statistics of the Gaussian
f ensemble can be sampled at low computational costs.

Physical systems displaying level statistics that can be
tuned from Poissonian to Wigner-Dyson are of central
interest in the field of many-body localization (MBL)
[22,23]. Numerical studies provide evidence [24-27] for
an intermediate phase characterized by, e.g., Griffiths
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effects in between the thermal (corresponding to f= 1)
and the MBL (corresponding to =~ 0) phase at finite
system sizes. In this Letter, we numerically study the level
statistics of a standard model in studies on MBL.
Remarkably, we find near-perfect agreement with the
eigenvalue statistics of the Gaussian  ensemble over the
entire crossover range, where f is a single fitting parameter.
Additionally, we show that similar agreement holds for a
related Hamiltonian with broken time-reversal symmetry.
We interpret the eigenvalue statistics of the Gaussian f
ensemble as generalized Wigner-Dyson level statistics. We
show how the Gaussian f ensemble provides a smooth
interpolation between Poissonian and Wigner-Dyson level
statistics by a systematic investigation of the eigenvalue
statistics for € [0, 1].

Gaussian  ensemble.—An ensemble of random matri-
ces T is described by a probability distribution P(7T) [1]. An
example is the GOE. For this ensemble of real symmetric
matrices, the probability distribution is given by

P(T) = C,e ™), (1)

where C, is a normalization constant and Tr(-) denotes a
trace. The GOE 1is invariant under transformations
T — O7'TO for real orthogonal matrices O. Similarly,
the GUE and GSE are invariant under unitary and sym-
plectic transformations, respectively. Because there are
only three types of associative division algebras (real,
complex, and quaternionic numbers), no invariant random
matrix ensembles exist beyond the GOE, GUE, and GSE.
The joint probability distribution for the eigenvalues {e;}
of n-dimensional matrices from the Gaussian ensembles is
given by
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et er) = Tl [T, 2
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i<j i=

where Cp, is a known normalization constant. As men-
tioned above, the Dyson index £ is given by f = 1, 2, 4 for
the GOE, GUE, and GSE, respectively.

An interpolation between the eigenvalue statistics of the
invariant ensembles is provided by the Gaussian f ensem-
ble [16,18]. This ensemble has a joint eigenvalue distri-
bution given by Eq. (2) for the continuous parameter
f € (0, 00). It was found only relatively recently [21] that
the eigenvalues of the tridiagonal matrix ensemble

ay bn—l
bn—l ap—1 bn—2
1 bn—Z ap— bn—3
T:ﬁ 3)
by a, by
i by a ]

with a; distributed according to the standard Gaussian
distribution, for which the probability density is given by

1
— /2, (4)

2z

and b; distributed according to the y distribution with the
shape parameter given by if, for which the probability
density is given by

P(a;) =

if b; <0,

0 .
Pb:) = r(z‘/3/2>bi‘ﬂ_l€_h‘2 if b; > 0, (5)

are distributed according to Eq. (2). This matrix ensemble
has the property that the eigendistribution factorizes into
separate terms for the eigenvalues and the eigenvectors.
Equation (3) allows one to sample from the Gaussian j
ensemble at low computational costs, and thus to generalize
Wigner-Dyson level statistics beyond f = 1, 2, 4. Various
aspects of the Gaussian # ensemble have been studied in
mathematical [18,28] and physical [29-31] contexts.

First, we study the eigenvalue statistics of the Gaussian f
ensemble for f € [0,1] by focusing on two common
statistical measures: the distribution of the ratios of con-
secutive level spacings [7,32] and the level spacing dis-
tribution [1]. For a set of eigenvalues {e;} sorted in
ascending order, the level spacings {s;} are given by
s; =e;.1 —e;, and the ratios {r;} of consecutive level
spacings are given by

. (Si1 S
r; = min (i,—’> (6)
Si Siy

For Poissonian level statistics (# = 0), the level spacing
distribution is given by P(s) =exp(—s), where the
spacings have been rescaled such that (s)=1.
Correspondingly, the distribution of r € [0, 1] is given by
P(r)=2/(1+r)? with (r) =2In(2) —1~0.386. For
p >0, we obtain data by numerically diagonalizing
matrices T as given in Eq. (3) of dimension n = 10°.
We determine the 100 eigenvalues closest to zero for each
realization, accumulating at least 10° eigenvalues. Aiming
to maximize the accuracy of the results, we unfold [33] data
before analysis. For n — oo, the density of states is given
by a semicircle with radius 2,/n. This asymptotic result,
which we use here to unfold data sampled from the
Gaussian f ensemble, serves as a good approximation at
finite (n 2 100) values of n [28].

Figure 1 shows the distributions of r and s for the
Gaussian f ensemble at various values of g€ [0,1],
indicating how the Gaussian f ensemble interpolates
between Poissonian and Wigner-Dyson level statistics.
Table I shows the average (r) as a function of f, which
will be used as the fitting parameter when comparing the
eigenvalue statistics of the Gaussian  ensemble with the
level statistics of a physical system.
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FIG. 1. Numerically obtained distributions of r (top) and s
(bottom) for the Gaussian ff ensemble at various f. The curves for
p = 0 are obtained analytically from the expressions given in the
main text.
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TABLE 1. Numerically obtained values of (r) for the Gaussian
f ensemble at various f (see main text for details). The value for
p = 0 is obtained from the expression given in the main text.

p 0.00 0.01 0.05 0.10 0.15 0.20
(r) 0.386(3) 0.389(0) 0.398(4) 0.408(9) 0.420(1) 0.429(5)

B 025 030 035 040 045 0.0
(r) 0.438(1) 0.446(2) 0.453(6) 0.461(7) 0.469(3) 0.475(8)

B 0.55 0.60 0.65 0.70 0.75 0.80
(r) 0.482(6) 0.489(0) 0.494(6) 0.500(8) 0.505(8) 0.511(2)

p 0.85 0.90 0.95 1.00 2.00 4.00
(r) 0.516(4) 0.521(5) 0.526(2) 0.530(2) 0.599(7) 0.673(9)

Comparison with spectral statistics.—Here, we compare
the level statistics of a standard model in studies on MBL
with the eigenvalue statistics of the Gaussian f ensemble.
We consider a disordered spin-1/2 XXZ chain, for which
the Hamiltonian is given by

L
H:

L
(stﬁl + S{S{Jrl + ASSE,) + Z h;Si, (7)
i=1

i=1

with 8¢ = Jo%, where 6% are Pauli matrices (a = x, y, 2)
acting on site i. During the last decade, the level statistics of
this Hamiltonian have been studied extensively in, e.g.,
Refs. [7,8,34-38]. In particular, the intermediate level
statistics between the thermal and the MBL phase have
been studied by means of a two-stage flow picture in
Ref. [8]. Following these references, we impose periodic
boundary conditions o¢f,; = o7, sample h; from the uni-
form distribution ranging over [-W, W], set A = 1 (unless
stated otherwise), and restrict the focus to the symmetry
sector Y .57 =0. We set L =16, for which
dim(H) = 12870. We consider at least 1000 disorder
realizations for each value of W. For each value of W
separately, we restrict the focus to the energy window
containing the middle 10% of the union of all sampled
spectra. The system exhibits a smooth crossover from
Poissonian to Wigner-Dyson level statistics in the
region 1.7 S W < 4.0.

Figure 2 shows the distributions of r and s for the spectra
of the Hamiltonian compared with the corresponding
distributions for the Gaussian f ensemble, where S is
estimated from (r). Note that, since r is independent of the
average level spacing, no unfolding [33] is required for
drawing the distribution of this quantity. Before drawing
the histograms of s for the Hamiltonian, the spectra are
unfolded by numerically estimating the smooth part of
the density of states [39]. Remarkably, we observe near-
perfect agreement between the spectral statistics of the
Hamiltonian and the corresponding eigenvalue statistics of
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FIG. 2. Numerically obtained distributions of » and s for the
Hamiltonian at various W (solid lines) and the corresponding
distributions for the Gaussian S ensemble (dashed lines, identical
color scheme). The top and bottom left plots are for A = 1, the
bottom right one for A = 2.

the Gaussian f ensemble at all disorder strengths. Similar
agreement can be found for A = 2, which is illustrated in
the lower right panel.

In Fig. 3, we study the sensitivity to finite-size effects.
The top panels show that the agreement between the level
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FIG. 3. Numerically obtained distributions of r for the
Hamiltonian at various W (solid lines) and the corresponding
distributions for the Gaussian f ensemble (dashed lines, identical
color scheme) for L = 12, 14 (top panels) and the estimated value
of f for the spectra of the Hamiltonian as a function of L and W
(bottom panels).
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FIG. 4. Numerically obtained distribution of r for H + H' at
various W (solid lines) and the corresponding distributions for the
Gaussian S ensemble (dashed lines, identical color scheme).

statistics of the Hamiltonian and the Gaussian f is near
perfect also at L = 12, 14. The bottom panels show a flow
towards Wigner-Dyson (Poissonian) level statistics for
W <3 (W z 3) with increasing system size. For L — oo,
the system is believed to display an MBL transition at
W =~ 3.6 [34]. As there is a one-to-one relation between (r)
and f, these results can in principle be appended with
previous results from, e.g., Ref. [35]. Studying (r) as a
function of the matrix dimension n for the Gaussian f
ensemble indicates a difference of less than 1% between the
value for n = 500 and n = 103 at all values € [0, 1].

Breaking time-reversal symmetry.—FErgodic systems
with broken time-reversal symmetry are characterized by
Wigner-Dyson level statistics for =2 [1]. For the
Hamiltonian given in Eq. (7), time-reversal symmetry
can be broken in an experimentally relevant way by adding
the three-body term

L
H' = Z i (Siv1 X Sita), (8)

i=1
where §, = [S7, 87, $%]7 [40]. For 8 2 1, the distribution of
the ratio of consecutive level spacings for the Gaussian j

ensemble can be approximated with high precision [32]
from Eq. (2) with n = 3, giving

(r+ r2)ﬂ
(1 +r+ r2)1F32

P(r) ~ ©)

In what follows, estimates of § > 1 from (r) are obtained
by using Eq. (9). Figure 4 shows the distribution of r for the
spectra of H + H' at several values of W compared with the
corresponding distributions for the Gaussian f ensemble,
where f is estimated from (r). Again, we observe near-
perfect agreement between corresponding curves at all
disorder strengths.

Higher order spacing ratios.—Going beyond the study
of the distribution of the ratios of consecutive level spacings
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FIG. 5. Numerically obtained distributions of ") with n = 2,
3, 4, 5 for the Hamiltonian at various W (solid lines) and the
corresponding distributions for the Gaussian f ensemble (dashed
lines, identical color scheme).

and the level spacing distribution, we here study the higher

order ratios ") € [0, 1] of level spacings, for a spectrum
{E;} sorted in ascending order defined as

E. . —E. E. —E.
rl(n) — min ( i+2n i+n ’ i+n i ) (10)
Ei+n - Ei Ei+2n - Ei+n

Note that (1) = r. For the Gaussian § ensemble, it can
be shown rigorously that the distribution of ") for
p=2/(n+1) is equivalent to the distribution of r(!) for
p =2(n+1) [41]. Evidence for a broader class of inter-
relations involving f# = 1, 2, 4 has been provided recently
in Ref. [42].

Figure 5 shows the distributions of (") for the
Hamiltonian compared with the corresponding distribu-
tions for the Gaussian f ensemble, where the value of f is
estimated from (r). No unfolding is applied to the spectra
of the Hamiltonian. We observe qualitative agreement up to
n = 3 (i.e., up to 6 level spacings) for all values of W. The
algorithm used to unfold the spectra can be suboptimal for
the system under consideration. Attempts to compare the
spectra of the Hamiltonian and the Gaussian f ensemble on
longer ranges by other measures such as the spectral
rigidity [43], density-density correlation function [44],
and the spectral form factor [45] did not provide conclusive
results, presumably due to this effect.

Discussion and conclusions.—We have proposed a
generalization of Wigner-Dyson level statistics from the
discrete taxonomy f =1, 2, 4 to the continuous one
B € (0,0). Using the matrix model for the Gaussian /3
ensemble introduced in Ref. [21], we have shown how the
Gaussian f ensemble provides a smooth interpolation
between Poissonian and Wigner-Dyson level statistics.
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We have studied the level statistics of a paradigmatic model
in studies on MBL, and found near-perfect agreement with
the corresponding statistics of the Gaussian f ensemble
over the full crossover range between the thermal (corre-
sponding to f# =~ 1) and many-body localized (correspond-
ing to # =~ 0) phase, where f is a single fitting parameter.
We have shown that similar agreement holds for a related
Hamiltonian with broken time-reversal symmetry.

We expect that this work paves a way for further
investigations in various ways. Primarily, we believe it
would be of significant interest to explore how universal the
Gaussian f ensemble describes the spectral statistics of
quantum systems that show intermediate level statistics
between Poissonian and Wigner-Dyson. In view of this, we
note that there are several known physical and mathemati-
cal models supporting intermediate level statistics, studied
mostly in the context of either single-particle models of
quantum chaos [46—49] or the Anderson localization
transition for noninteracting systems [50-53]. A crossover
between Poissonian and Wigner-Dyson level statistics for
f = 2 has also been found recently in a generalized SYK
model [54].

Next, we expect that our results are of relevance in the
field of MBL. In this field, level statistics are a key
ingredient in both numerical [7,35,37] and analytical
[55] studies. The detailed quantitative characterization of
the level statistics of the Hamiltonian provided in this work
might be valuable in, e.g., the finite-size scaling analysis of
the MBL transition [34,35] and studies on the intermediate
phase separating the thermal from the MBL phase [26] at
finite system sizes. Finally, we hope that this Letter can
contribute to the ongoing studies [45,56,57] on the funda-
mental correspondence between classical and quan-
tum chaos.
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Erwin Schrodinger Institute in Vienna. This Letter is part of
the Delta-ITP consortium, a program of the Netherlands
Organization for Scientific Research (NWO) that is funded
by the Dutch Ministry of Education, Culture, and
Science (OCW).
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