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Solvable random-matrix ensemble with a logarithmic weakly confining potential
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This work identifies a solvable (in the sense that spectral correlation functions can be expressed in terms of
orthogonal polynomials), rotationally invariant random matrix ensemble with a logarithmic weakly confining
potential. The ensemble, which can be interpreted as a transformed Jacobi ensemble, is in the thermodynamic
limit characterized by a Lorentzian eigenvalue density. It is shown that spectral correlation functions can be
expressed in terms of the nonclassical Gegenbauer polynomials C (−1/2)

n (x) with n � 2, which have been proven
to form a complete orthogonal set with respect to the proper weight function. A procedure to sample matrices
from the ensemble is outlined and used to provide a numerical verification for some of the analytical results.
This ensemble is pointed out to potentially have applications in quantum many-body physics.
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I. INTRODUCTION

Random matrix theory plays a major role in the analysis
of various types of complex quantum systems [1,2] with ap-
plications, for example, in nuclear physics [3,4], mesoscopic
physics [5,6], high-energy physics [7,8], and quantum chaos
[9,10]. One of the main challenges in physically-motivated
random matrix theory is to construct random matrix models
that are on the one hand simple enough to be tractable ana-
lytically, and on the other hand, provide a reasonably good
description of the system of interest. Notable progress in the
search for such ensembles has been made in the last decade
[11–14].

The central building blocks of random matrix theory are
the three classical (Gaussian, Wishart-Laguerre, and Jacobi)
random matrix ensembles (see, e.g., Refs. [15,16]). These en-
sembles are rotationally invariant (i.e., basis independent) and
solvable in the sense that spectral correlation functions can
be expressed in terms of orthogonal polynomials. For these
ensembles, the joint probability distribution for the eigenval-
ues is known explicitly. Expressing this distribution as the
Boltzmann factor of a Coulomb gas trapped in a confining
potential allows one to study the thermodynamic limit using
tools from statistical mechanics.

This work identifies a solvable, rotationally invariant ran-
dom matrix ensemble with a logarithmic (weakly) confining
potential. In the thermodynamic limit, the eigenvalue densi-
ties of the Gaussian, Wishart-Laguerre, and Jacobi ensembles
are given by respectively the Wigner semicircle, Marčenko-
Pastur, and Wachter laws [17]. Using the Coulomb gas
technique, the eigenvalue density in the thermodynamic limit
corresponding to the logarithmic potential is found to be
given by a Lorentzian. Random matrices with a Lorentzian
eigenvalue density appeared very recently in the context
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of ergodicity breaking in quantum many-body systems in
Ref. [18].

The orthogonal polynomials in terms of which spectral
correlation functions can be expressed are identified as the
nonclassical Gegenbauer polynomials C(−1/2)

n (x) with n � 2,
which have been proven to form a complete orthogonal set
with respect to the proper weight function [19]. The Gegen-
bauer polynomials form a subset of the Jacobi polynomials.
From this, it is deduced that the ensemble can be interpreted
as a transformed Jacobi ensemble. A procedure to numerically
sample eigenvalue spectra from the ensemble is outlined and
demonstrated by verifying some of the analytical results.

The outline of this work is as follows. Section II considers
the Coulomb gas picture for the joint probability distribution
of the eigenvalues. Here, it is discussed how the Lorentzian
density of states emerges from the logarithmic potential.
Section III identifies the associated (nonclassical) orthogo-
nal polynomials, and outlines how the spectral correlation
functions can be obtained. Here, the relation with the Jacobi
ensemble is also discussed. Section IV outlines how the eigen-
value spectra can be obtained from the spectra of random
matrices. Section V provides a summary of the findings and
proposes suggestions for further investigations.

II. COULOMB GAS PICTURE

For the classical random matrix ensembles, the joint prob-
ability distribution P(H ) of the entries of sampled matrices H
can be written as

P(H ) ∝ exp[−TrV (H )], (1)

where V (x) is a function referred to as the potential (see, e.g.,
chapters 4 and 5 of Ref. [16]). Let N denote the dimension of
the matrices. As P(H ) depends only on (powers of) the trace
of H , the ensembles are rotationally invariant. That is, the en-
sembles are invariant under transformations of the basis. The
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joint probability distribution P(x1, . . . , xN ) of the eigenvalues
xn is in terms of the potential given by

P(x1, . . . , xN ) = 1

ZNβ

e−β V (x1,...,xN ), (2)

V = 1

β

N∑
n=1

V (xn) + 1

2

N∑
n,m=1

ln |xn − xm|. (3)

Here, β ∈ {1, 2, 4} is the Dyson index giving the number
of degrees of freedom per (real, imaginary, or quaternionic)
matrix element. Next, ZNβ is a normalization constant fixing
the integrated probability to unity.

Equation (2) can be thought of as the Boltzmann factor
of a one-dimensional gas of particles interacting through a
pairwise logarithmic potential, confined by the one-body po-
tential. Such a gas is commonly referred to as a Coulomb
gas [15]. This interpretation allows one to use tools from
statistical mechanics to study the thermodynamic limit. After
making a continuum and saddle-point approximation (see,
e.g., chapter 5 of Ref. [16]), the eigenvalue density ρN (x) for
a potential V (x) can be shown to satisfy the integral equation

Pr
∫ ∞

−∞

ρN (y)

x − y
dy = 1

β

dV

dx
, (4)

where Pr denotes the principal value. This integral equation is
subject to the constraint

∫
ρN (x) dx = N . Equation (4) is

generically difficult to solve, and only for a limited number
of potentials the corresponding eigenvalue density has been
found (see, e.g., Sec. 3.2 of Ref. [20]).

In this work, the focus is on the random matrix ensemble
associated with the logarithmic potential

V (x) = βN

2
ln(1 + x2). (5)

For |x| � 1, this potential approximates βN ln(x). The pref-
actor N ensures that the first and second terms in Eq. (3) are
of the same order, namely N2. In the absence of this prefactor,
the first term in Eq. (3) would be vanishingly small compared
to the second one, making the potential nonconfining. The
term “weakly confining” appeared in the current context first
in Ref. [21], which discusses the potential studied in this work
in example 1.3.

At a technical level, the motivation to consider this partic-
ular potential is as follows. Substituting Eq. (5) in Eq. (4) and
dividing both sides by N gives on the left-hand side the Hilbert
transform (see, e.g., chapter 5 of Ref. [22]) H[ f (y)] of some
function f (y),

H[ f (y)] = 1

π
Pr

∫ ∞

−∞

f (y)

x − y
dy. (6)

By comparing the right-hand side x/(1 + x2) with known
Hilbert transforms, one deduces that the eigenvalue density
is given by

lim
N→∞

ρN (x) = N

π (1 + x2)
, (7)

which is referred to as ρ(x) below. An explicit derivation can
be found, e.g., in example 5.17 of the reference cited above.
Indeed, this function can easily be shown to obey the normal-
ization condition

∫
ρN (x) dx = N . This density sharply differs

from, e.g., the semicircular eigenvalue density as observed for
the Gaussian ensembles.

It can be of interest to note that random matrix ensembles
with logarithmic or squared-logarithmic potentials (although
without prefactor N) have been proposed as models for the
intermediate level spacing statistics and multifractality at the
Anderson localization transition [23] (chapter 12), [24–27].

III. ORTHOGONAL POLYNOMIALS

Spectral correlation functions for the classical random ma-
trix ensembles at finite dimension can be expressed in terms
of orthogonal polynomials (see, e.g., chapter 10 of Ref. [16]).
In view of the discussion below, the main ideas are intro-
duced using the Jacobi ensemble as an illustration. The Jacobi
ensemble is known historically to be relevant in physics in
the context of quantum conductance [28]. In recent years,
new applications appeared in the computation of eigenstate
entanglement of random free fermionic models [29–33] and
the spectral form factor of the self-dual kicked Ising model
[34].

As before, let N and β denote the dimension of the matri-
ces and the Dyson index, respectively. The eigenvalues xn ∈
[−1, 1] of samples from the Jacobi ensemble are distributed
according to

P(x1, . . . , xN ) = 1

ZabNβ

N∏
n=1

w(xn)
∏
m<k

|xm − xk|β (8)

with the weight function w(x) characterized by parameters
a > −1 and b > −1, here given by

w(x) = (1 − x)aβ/2 (1 + x)bβ/2. (9)

Similar to the above, ZabNβ is a normalization constant fixing
the integrated probability to unity. For probability distribu-
tions of the form (8), spectral correlation functions can be
expressed for β = 2 in terms of the kernel

KN (x1, x2) = e− 1
2 (V (x1 )+V (x2 ))

N−1∑
n=0

pn(x1) pn(x2), (10)

where, for notational convenience, the potential V (x) satis-
fying w(x) = e−V (x) is reintroduced. The functions pn(x) are
polynomials orthogonal with respect to the weight function.
For the Jacobi ensemble, thus∫ 1

−1
(1 − x)aβ/2(1 + x)bβ/2 pn(x) pm(x) dx = δnm. (11)

For Eq. (11), the polynomials pn(x) are given by the Jacobi
polynomials P(a,b)

n (x) (up to normalization) with the same
parameters (see, e.g., Sec. 9.8 of Ref. [35] or chapter 4 of
Ref. [36]). In terms of the kernel, the eigenvalue density ρN (x)
is given by

ρN (x) = KN (x, x). (12)

Two-point eigenvalue correlation functions can be expressed
in terms of the kernel as

ρ
(2)
N (x1, x2) = CN det

(
KN (x1, x1) KN (x1, x2)
KN (x2, x2) KN (x2, x2)

)
, (13)

with CN = 1/[N (N − 1)].
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Eigenvalue correlation functions for the potential of Eq. (5)
can be studied by first making the change of variables x → y
given by

y = x√
1 + x2

. (14)

From the inverse relation x = y/
√

1 − y2, it follows that the
orthogonality condition for the potential studied in this work
is in terms of y given by

∫ 1

−1

1

1 − y2
pn(y) pm(y) = δnm. (15)

One recognizes the orthogonality condition for the nonclas-
sical Gegenbauer polynomials C(λ)

n (y), which are (up to a
prefactor) Jacobi polynomials P(a,b)

n (y) with a = b = λ − 1/2
[Eq. (11)], with λ = −1/2. See the Appendix for details.

For λ = −1/2, the first two Gegenbauer polynomials (n =
0 and n = 1) are not normalizable (hence the classifica-
tion “nonclassical”). As mentioned above, the Gegenbauer
polynomials {C(−1/2)

n (y)}∞n=2 are known to form a complete
orthogonal set with respect to the proper weight function
[19]. In the evaluation of the kernel [Eq. (10)], the counting
thus starts at n = 2, due to which the summation runs up to
n = N + 1.

For the random matrix ensemble studied in this work,
eigenvalue correlations can thus be obtained in terms of the
variable y. The relation x = y/

√
1 − y2 allows one to subse-

quently obtain correlations in terms of the original variable
x. Having found the orthogonal polynomials, the ensemble
proposed in this work can be considered as being “solvable”
(see, e.g., Ref. [24] for details on this classification).

Aiming to illustrate the above results, here some numerical
evaluations of ρN (x) [Eq. (12)] and ρ

(2)
N (0, x) [Eq. (13)] are

presented. Figure 1 shows the difference between the normal-
ized (to unity) eigenvalue density for N finite and N → ∞
for N = 10, N = 100, and N = 1000. The difference becomes
smaller with increasing N , scaling as 1/N . The data for each
of the figures presented in this work (except for the histograms
in Fig. 3) can be generated in ∼10 minutes of computational
time on a midrange laptop.

Figure 2 compares ρ
(2)
N (0, x) for N = 25, N = 100, and

N = 1000 with the evaluation for Wigner-Dyson level statis-
tics at N → ∞ for unfolded spectra with unit mean level
spacing given by

ρ2(0, x) = 1 −
(

sin(πx)

πx

)2

, (16)

see, e.g., Ref. [2]. The finite-N results have been scaled and
transformed such that the mean level spacing is unity at x = 0
for N → ∞ (see the caption for details). The finite-N curves
approach the Wigner-Dyson result as N increases. For N =
25, effects due to the nonuniform eigenvalue density (decay-
ing with increasing x) are clearly visible. For N = 1000, the
curves are visually indistinguishable.

IV. RANDOM MATRIX CONSTRUCTION

In Sec. III, it was found that the spectral correlation func-
tions for the random matrix ensemble proposed in this work

FIG. 1. The difference between the normalized (to unity) eigen-
value density for N finite and N → ∞ for N = 10, N = 100, and
N = 1000. One observes that the difference scales as 1/N .

can be obtained from the spectral correlation functions for
the Jacobi ensemble with parameters a = b = −1 through the
transformation given in Eq. (14). This mapping of the spectral
properties of a classical ensemble to the spectral properties
of the ensemble of interest allows one to sample spectra by
diagonalizing random matrices.

Let X1 and X2 denote, respectively, M1 × N and M2 × N
matrices with independent sampled Gaussian entries. The real
(β = 1), imaginary (β = 2), or quaternionic-valued (β = 4)
entries x, z, or w are sampled from, respectively, the probabil-
ity densities

1√
2π

e− 1
2 x2

,
1

π
e−|z|2 ,

2

π
e−2|w|2 , (17)

see, e.g., Sec. 6.3 of Ref. [15]. Next, let W1 = X †
1 X1 and

W2 = X †
2 X2. A spectrum {yn} from the Jacobi ensemble

of dimension N with parameters a = N − M1 + 1 − 2/β

and b = N − M2 + 1 − 2/β is obtained by transforming the
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FIG. 2. A comparison between ρ
(2)
N (0, x) (solid lines) and the re-

sult for Wigner-Dyson level statistics at N → ∞ of Eq. (16) (dashed
lines) for N = 25, N = 100, and N = 1000. The finite-N results
have been scaled by 1/[ρ(0)/N]2 = π 2 and the linear transformation
x → πx/N has been applied in order to set the mean level spacing
at x = 0 to unity for N → ∞. The finite-N curves approach the
Wigner-Dyson result as N increases.

eigenvalues {zn} of the double-Wishart matrix

W = W1(W1 + W2)−1, (18)

which obey zn ∈ [0, 1], as yn = 1 − 2zn. Notice that there
are no issues with sampling for a = b = −1, which can be
accomplished by choosing M1 = M2 = N + 1.

Given an eigenvalue spectrum {yn} sampled from the Ja-
cobi ensemble, a spectrum {xn} of the ensemble proposed
in this work can be obtained by applying the inverse of the
transformation xn → yn as given in Eq. (14), x = y/

√
1 − y2.

Figure 3 compares the normalized (to unity) eigenvalue den-
sity ρN (x)/N with a properly normalized histogram of the
eigenvalues for β = 2 at N = 10, N = 100, and N = 1000
from the ensemble proposed in this work, obtained through
diagonalizations of matrices W as given in Eq. (18). One
observes perfect agreement.

FIG. 3. A plot of the normalized (to unity) eigenvalue densities
ρN (x)/N (“analytical”) compared with a normalized [to unity on
x ∈ (−∞, ∞)] histogram of the eigenvalues for the random matrix
ensemble proposed in this work (“numerical”) for β = 2 at N = 10,
N = 100, and N = 1000. Perfect agreement can be observed.

V. CONCLUSIONS AND OUTLOOK

In this work, a solvable (in the sense that spectral cor-
relation functions can be expressed in terms of orthogonal
polynomials), rotationally invariant random matrix ensemble
with a logarithmic weakly confining potential has been iden-
tified. This ensemble is found to be a transformed Jacobi
ensemble. Using the Coulomb gas technique, the eigenvalue
density in the thermodynamic limit is found to be given by
a Lorentzian. A procedure to sample numerically from this
random matrix ensemble has been outlined and used to verify
some of the analytical results.

As the random matrix ensemble identified in this work
can be interpreted as a transformed Jacobi ensemble, prop-
erties of the ensemble that have not been discussed here,
such as extreme value statistics [37] or the extension to a

034107-4



SOLVABLE RANDOM-MATRIX ENSEMBLE WITH A … PHYSICAL REVIEW E 107, 034107 (2023)

continuous β-ensemble [38], could in principle be estab-
lished in a straightforward way. It would be of interest to
see how the ensemble proposed in this work appears in
physical settings. For example, in the spirit of Ref. [18] and
other generalizations [39–43], this ensemble could potentially
serve as a building block for improved generalizations of the
Rosenzweig-Porter ensemble [11].
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APPENDIX: GEGENBAUER POLYNOMIALS

The Gegenbauer polynomials C(λ)
n (x) are Jacobi polyno-

mials P(a,b)
n (x) with a = b = λ − 1/2 for λ > −1/2 (see, e.g.,

Sec. 9.8.1 of Ref. [35]). Following customary normalization
(see, e.g., Sec. 4.7 of Ref.[36]), these are defined as

C(λ)
n (x) = �(λ + 1/2)

�(2λ)

�(n + 2λ)

�(n + λ + 1/2)
P(λ−1/2,λ−1/2)

n (x).

(A1)

The Gegenbauer polynomials are orthogonal with respect to
the weight function (1 + x2)λ−1/2 on x ∈ [−1, 1]. They obey
the recurrence relation

2(n + λ)x C(λ)
n (x) = (n + 1)C(λ)

n+1(x)

+ (n + 2λ − 1)C(λ)
n−1(x) (A2)

with C(λ)
0 (x) = 1 and C(λ)

1 (x) = 2λx. The normalization con-
dition for the Gegenbauer polynomials reads∫ 1

−1
(1 − x2)λ−1/2

[
C(λ)

n (x)
]2

dx = N (λ)
n (A3)

with

N (λ)
n = π�(n + 2λ)21−2λ

n!(n + λ)[�(λ)]2
. (A4)

The polynomials satisfying the orthogonality condition of

Eq. (11) are given by pn(x) = C(λ)
n (x)/

√
N (λ)

n . A recent gener-
alization of the orthogonality condition to the complex plane
has been obtained in Ref. [44].

For λ = −1/2, N (λ)
n reduces to 1/[n(n − 1/2)(n − 1)],

meaning that the polynomials with indices n = 0 and n = 1
can not be properly normalized. The Gegenbauer polynomials
{C(−1/2)

n (x)}∞n=2 have been proven to form a complete orthog-
onal set with respect to the proper weight function, and are
classified as “nonclassical” [19]. Consequently, for λ = −1/2
the counting starts at n = 2.
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