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Long-range spectral statistics of the Rosenzweig-Porter model
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The Rosenzweig-Porter model is a single-parameter random matrix ensemble that supports an ergodic, fractal,
and localized phase. The names of these phases refer to the properties of the (midspectrum) eigenstates. This
work focuses on the long-range spectral statistics of the recently introduced unitary equivalent of this model.
By numerically studying the Thouless time obtained from the spectral form factor, it is argued that long-range
spectral statistics can be used to probe the transition between the ergodic and the fractal phases. The scaling of
the Thouless time as a function of the model parameters is found to be similar to the scaling of the spreading
width of the eigenstates. Provided that the transition between the fractal and the localized phases can be probed
through short-range level statistics, such as the average ratio of consecutive level spacings, this work establishes
that spectral statistics are sufficient to probe both transitions present in the phase diagram.

DOI: 10.1103/PhysRevB.109.024205

I. INTRODUCTION

Spectral (level) statistics provide a convenient, basis-
independent probe for quantum chaos [1–3]. Starting from
early studies on the spectra of heavy atomic nuclei, spectral
statistics are nowadays frequently used to characterize phases
of matter in, for example, studies on single-body (Ander-
son) [4–7] and many-body [8–13] localization, random matrix
theory [14–16], and integrability [17,18]. Broadly speaking,
spectral statistics come in two types: short and long range.
Short-range spectral statistics are commonly quantified by the
level spacing distribution or the average ratio of consecutive
level spacings [19,20], while long-range spectral statistics
are typically studied by focusing on the spectral form factor
[21,22], next to others [3]. Often, studies on short- and long-
range spectral statistics provide complementary results.

The Rosenzweig-Porter model is a single-parameter ran-
dom matrix ensemble that supports an ergodic, fractal (also
known as delocalized yet nonergodic), and localized phase
[23,24]. These names refer to the fractal properties of the
(midspectrum) eigenstates. In the thermodynamic limit, the
phase diagram of this model can be obtained fully by an-
alytical methods [25–29]. Particularly well-studied from an
analytical point of view are the two-point spectral correla-
tions at the transition between the fractal and localized phases
[30–33]. The Rosenzweig-Porter model serves as a natural toy
model for the many-body localization transition as there is
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a fractal phase in-between the ergodic and localized phases,
similar to what has been observed in physical models [34,35].
Recently, part of the phase diagram of this model has been ob-
served experimentally [36]. During the last few years, various
variants and generalizations of the Rosenzweig-Porter model,
for example with multifractal eigenstates, have been proposed
[37–48].

Long-range spectral statistics are studied numerically most
conveniently for unitary models, for which the eigenvalues are
located on the unit circle in the complex plane. Such models
typically have a uniform density of states, meaning that no
unfolding (uniformizing the density of states) is required. The
absence of spectral edges then also guarantees that results
are not affected by deviating edge statistics. A unitary equiv-
alent of the (Hermitian) Rosenzweig-Porter model has been
proposed recently in Ref. [42]. The unitary model can, for ex-
ample, be used as a toy model for the many-body localization
transition in periodically driven (Floquet) systems [49–52].
Complementing recent interest in the spectral statistics of
the Rosenzweig-Porter model and its variants [44,53], this
work focuses on long-range spectral statistics of the unitary
equivalent of the Rosenzweig-Porter model. By numerically
studying the Thouless time obtained from the spectral form
factor, it is argued that long-range spectral statistics can be
used to probe the transition between the ergodic and the fractal
phases. The scaling of the Thouless time as a function of
the model parameters is found to be similar to the scaling
of the (inverse) spreading width of the eigenstates. Provided
that the transition between the fractal and the localized phases
can be probed through short-range spectral statistics, this work
establishes that spectral statistics are sufficient to probe both
transitions present in the phase diagram.

The outline of this work is as follows. Section II introduces
the Rosenzweig-Porter model and the unitary equivalent of
it. Section III introduces the probes and discusses the results
for short-range spectral (level spacing) statistics. Section IV,
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which contains the main results, introduces the probes and dis-
cusses the results for long-range spectral statistics. Section V
concludes with a summary and outlook.

II. ROSENZWEIG-PORTER MODEL
AND ITS UNITARY EQUIVALENT

The (Hermitian) Rosenzweig-Porter model with complex-
valued elements consists of matrices H of the form

H = H0 + 1√
Nγ

M. (1)

Here, N is the matrix dimension, and γ � 0 is a tuning pa-
rameter. The matrix H0 is diagonal with the nonzero elements
sampled independently from the normal distribution with
mean zero and unit variance. The matrix M is a sample from
the Gaussian unitary random matrix ensemble. An N × N
matrix M sampled from this ensemble can be constructed as

M = 1
2 (A + A†), (2)

where A is an N × N matrix with complex-valued elements
Anm = unm + ivnm with unm and vnm sampled independently
from the normal distribution with mean zero and variance 1/2.

The physical properties of the Rosenzweig-Porter model
are determined by the tuning parameter γ . In the ther-
modynamic limit N → ∞, one distinguishes between three
different phases, which can be characterized by their type
of (short-range) level statistics and fractal dimension of the
(midspectrum) eigenstates. Here, the fractal dimension d is
defined in terms of the scaling of the inverse participation ratio
IPR as IPR ∼ N−d , where

IPR =
∑

n

|〈n|ψ〉|4, (3)

with |ψ〉 denoting the (eigen)state under consideration and the
summation running over all basis states |n〉.

For 0 � γ < 1, the model is in the ergodic phase. This
phase is characterized by Wigner-Dyson level spacing statis-
tics (typically observed for quantum-chaotic systems) and
eigenstates with fractal dimension d = 1. For 1 < γ < 2, the
model is in the fractal phase. This phase is characterized by
Wigner-Dyson level spacing statistics and eigenstates with
fractal dimension d = 2 − γ . For γ > 2, the model is in
the localized phase, characterized by Poissonian level statis-
tics (uncorrelated levels, typically observed for integrable
systems) and eigenstates with fractal dimension d = 0. A nu-
merical investigation of finite-N scalings, which is discussed
in some more detail below, can be found in Ref. [54].

This work focuses on the unitary equivalent of the
Rosenzweig-Porter model, which was introduced recently in
Ref. [42] for the variant with real-valued elements. The eigen-
values of unitary matrices are located on the unit circle in the
complex plane, and can thus be parametrized as exp(i θ ) for
θ ∈ [−π, π ). The density of states for the unitary equivalent
of the Rosenzweig-Porter model is uniform, meaning that the
spectra can be analyzed without spectral unfolding or the
need to take into account edge effects. Constructing a uni-
tary equivalent of the Rosenzweig-Porter model is less trivial
than it might seem on a first sight. For example, for unitary
matrices eiH0 eiM/

√
Nγ

, the effective Hamiltonian as obtained

from the Baker-Campbell-Hausdorff relation is characterized
by correlations between the off-diagonal matrix elements that
are not present in the Hermitian Rosenzweig-Porter model.

Samples of the unitary equivalent of the Rosenzweig-
Porter model can be obtained through stochastic time
evolution of a time-dependent matrix U (t ) which is
initialized as

U (0) = diag(eiθ1 , eiθ2 , . . . , eiθN ) (4)

with the phases θn (n = 1, 2, . . . , N) sampled independently
from the uniform distribution ranging over [−π, π ). The dy-
namics of this unitary matrix are governed by circular Dyson
Brownian motion [55,56],

U (t + dt ) = U (t ) ei
√

dtM , (5)

where M is again a sample from the Gaussian unitary ensem-
ble. This matrix is resampled at each evaluation. The time
step dt is required to be small enough such that ei

√
dtM can

be approximated by 1 + i
√

dtM, that is,
√

dt is required to
be small compared to the mean level spacing given by 2π/N ,
meaning that dt ∼ O(N−2).

For the unitary equivalent of the Rosenzweig-Porter model
to result, this stochastic process needs to be evaluated up to
time t = N−γ , which means that the required number of time
steps scales as O(N2−γ ). When using Gaussian elimination,
the computational complexity of evolving over a single time
step scales as O(N3) (matrix-matrix multiplication), from
which it follows that the computational complexity of this
algorithm scales as O(N5−γ ). The Strassen algorithm for
matrix-matrix multiplications can reduce the computational
complexity to O(N4.81−γ ) [57]. In principle, a further reduc-
tion to a computational complexity of O(N4.37−γ ) could be
achieved using the most state-of-the-art matrix-matrix multi-
plication algorithm available [58].

Numerical sampling from the unitary equivalent of the
Rosenzweig-Porter ensemble using the algorithm described
above is computationally expensive since it requires many
evolutions over time intervals of infinitesimal length. As
Eq. (5) gives the proper time evolution only up to first order,
moreover, the results are subject to a loss of accuracy with pro-
gressing time. Indeed, this was the approach used in Ref. [42].
Reference [59] recently proposed an improved algorithm that
is not subject to these restrictions. Let

A = U (0) +
√

dtX, (6)

where X is an N × N matrix with complex-valued elements
Xnm = unm + ivnm, with unm and vnm sampled independently
from the normal distribution with mean zero and unit variance.
One can show that a realization U from the unitary equivalent
of the Rosenzweig-Porter ensemble can be obtained from the
QR-decomposition of A as U = �Q, where

A = QR (7)

with Q being unitary and R being upper triangular with real-
valued diagonal elements. The matrix �, making the QR
decomposition unique, is obtained from R as

� = diag

(
R11

|R11| ,
R22

|R22| , . . . ,
RNN

|RNN |
)

. (8)
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FIG. 1. The average ratio of consecutive level spacings 〈r〉 taken
over full spectra for dimensions N = 100, N = 1000, and N =
10 000 as a function of γ (upper panel) and (γ − γc ) ln(N )1/ν with
γc = 2 and ν = 1 (lower panel).

Within this procedure, the time step can be arbitrarily large. A
sample from the unitary equivalent of the Rosenzweig-Porter
model can be obtained by setting dt → N−γ . The compu-
tational complexity of this algorithm scales as O(N3) (QR
decomposition). In what follows, numerical data is obtained
using this procedure. It can be of interest to note that this work
is the first application of this algorithm.

III. SHORT-RANGE SPECTRAL STATISTICS

In this work, short-range level statistics are quantified
through the commonly studied average ratio of consecutive
level spacings [8,19]. Let the eigenvalues λn (n = 1, 2, . . . , N)
of the unitary matrix that is studied be parametrized as λn =
exp(iθn) with θn ∈ [−π, π ), and sorted such that θ1 � θ2 �
· · · � θN . The ratios rn (n = 1, 2, . . . , N − 2) of consecutive
level spacings are then defined as

rn = min

(
θn+2 − θn+1

θn+1 − θn
,

θn+1 − θn

θn+2 − θn+1

)
. (9)

By construction, rn ∈ [0, 1]. Poissonian and Wigner-Dyson
level statistics are characterized by an average value 〈r〉 given
by 〈r〉 = 2 ln(2) − 1 ≈ 0.386 and 〈r〉 ≈ 0.600, respectively.

Figure 1 shows the average (taken over full spectra and
a large number of samples) ratio of consecutive level spac-
ings as a function of γ for dimensions N = 100, N = 1000,
and N = 10 000 (upper panel). As expected, the curves tend

toward a transition from Wigner-Dyson to Poissonian at the
transition between the fractal and the localized phases at γ =
2. No indications for the transition between the ergodic and
the fractal phases at γ = 1 can be observed. Reference [54]
established for the (Hermitian) Rosenzweig-Porter model that
a collapse of finite-N curves is observed when plotting 〈r〉
as a function of (γ − γc) ln(N )1/ν with γc = 2 and ν = 1. A
similar scaling is shown in the lower panel, where indeed a
collapse can be observed.

IV. LONG-RANGE SPECTRAL STATISTICS

In terms of the parametrization of the eigenvalues intro-
duced above, long-range spectral statistics are conveniently
probed by the spectral form factor

K (t ) =
〈

1

N

∑
n,m

ei(θn−θm )t

〉
(10)

=
〈

1

N

∣∣∣∣∣
∑

n

eiθnt

∣∣∣∣∣
2〉

, (11)

where again 〈·〉 denotes an ensemble average [3]. The spectral
form factor can be interpreted as the Fourier transform of
the two-point spectral correlation function, where t has the
interpretation of a time. Since the phases θn can take values
ranging from −π to π only, the time only takes discrete values
t ∈ Z. For random matrices sampled from the circular unitary
ensemble, the spectral form factor KCUE can be evaluated
analytically as

KCUE(t ) =
{|t |/N if |t | � N,

1 if |t | > N.
(12)

For unitary matrices with Poissonian level statistics, one
easily finds K (t ) = 1. Spectral unfolding is conventionally
applied when considering spectra with a nonuniform density
of states, such that the long-range spectral statistics do not
depend on the global density of states. As the global density
of states for the unitary equivalent of the Rosenzweig-Porter
model is uniform for all values of γ , no unfolding is required.

Figure 2 shows the spectral form factor obtained from a
large number of spectra as a function of time for values of γ

in each of the ergodic, fractal, and localized phases for ma-
trix dimensions N = 100, N = 1000, and N = 10 000. In the
ergodic phase (γ < 1), the spectral form factor matches the
evaluation for the circular unitary ensemble [Eq. (12)] almost
precisely. The fractal phase (1 < γ < 2) is characterized by
intermediate statistics interpolating between the evaluations
for the circular unitary ensemble and Poissonian statistics. For
γ = 2, the spectral form factor appears to be scale invariant
in the sense that it is independent of N when considered
in terms of the scaled time t/N . References [24,33] report
a similar observation for the Hermitian Rosenzweig-Porter
model. In the localized phase (γ > 2), the spectral form factor
tends toward K (t ) = 1 as expected for localized systems with
increasing dimension.

The question of interest in this work is whether (long-
range) spectral statistics can be used to probe the transition
between the ergodic and the fractal phases at γ = 1. Above, it
was illustrated that level spacing (short-range) statistics are
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FIG. 2. The spectral form factor for dimensions N = 100, N =
1000, and N = 10 000 for values of γ in each of the ergodic, fractal,
and localized phases and at the transitions between them.

insensitive to this transition. Since the spectral form factor
can be interpreted as the Fourier transform of the two-point
spectral correlation function, one could say that the spectral
form factor evaluated at time t probes two-point spectral cor-
relations over a separation ∼1/t . This notion is commonly
quantified by the Thoulesss time, after Thouless [60]. The
Thouless time is typically defined as the lowest time from
which onwards the spectral form factor matches the evaluation
for the (in this case) circular unitary ensemble. See below for
the operational definition used in the analysis of the numerical
results. The Thouless time has been found useful to quantify
the onset of quantum chaos for various physical and random
matrix models in recent years [12,13,45,61–64].

Various quantities referred to as the Thouless time based
on, for example, the survival probability [65] or the spread-
ing width of the eigenstates [24] have been established in
the literature. The spreading width of the eigenstates gives
the energy window over which eigenstates of H0 [or U (0)]

hybridize due to the off-diagonal term [24,28,42]. For the
Rosenzweig-Porter model in the fractal or localized phases,
it can be obtained from Fermi’s golden rule. This width,
sometimes referred to as the (inverse) Thouless time, scales as
O(N1−γ ) in the fractal phase. The spreading width is merely a
property of the eigenstates (it can in principle take a different
value for each eigenstate), while the spectral form factor is
fully obtained from the spectrum. The Thouless time obtained
from the spreading width of the eigenstates is thus at most
only indirectly related to the Thouless time obtained from
the spectral form factor. Nevertheless, a similar scaling is
observed below.

A related question is whether one can think of models for
which the Thouless time obtained from the spectral form fac-
tor on the one hand, and the spreading width of the eigenstates,
on the other, obey different scalings, which more broadly con-
nects to the timely question on how to detect quantum chaos
[66]. One could anticipate this to be the case for models with
eigenvalue statistics and fractal dimensions of the eigenstates
that scale differently with system size. Reference [67] re-
cently proposed an experimentally realizable model with this
property. The model represents a one-dimensional lattice with
random onsite disorder and nearest-neighbor hoppings with a
randomized strength. The Hamiltonian has a tuning parameter
β > 0 which parametrizes the spectral correlations, while the
fractal dimension of the (midspectrum) eigenstates is deter-
mined by γ = − ln(β )/ ln(N ) with N denoting the matrix
dimension. Reminiscent to the Rosenzweig-Porter model, the
phase diagram hosts an ergodic (γ < 0), fractal (0 < γ < 1),
and localized (γ > 1) phase [68]. The spectral statistics are
given by those of the Gaussian-β random matrix ensemble,
meaning that the spectral form factor is independent of N
when plotted as a function of t/N (as in the fourth panel of
Fig. 2) [69]. The Thouless time obtained from the spectral
form factor for fixed β (let us say β = 0.7), for this model
operationally defined as the lowest time of intersection with
the evaluation for the Gaussian orthogonal random matrix en-
semble (see the discussion below for details), then obeys tTh ∼
N . As then γ → 0 at large matrix dimension, the eigenstates
are ergodic (fractal dimension d = 1), indicating a spreading
width that is of the order of the width of the spectrum. This
means that tTh ∼ 1 (i.e., it does not scale with N) when con-
sidering the (inverse) spreading width of the eigenstates as the
Thouless time.

The integrated value of the spectral form factor over time
is fixed by the presence or absence of level repulsion (see,
e.g., Refs. [37,70]). Level repulsion is present (absent) if the
two-point spectral self-correlation is zero (nonzero). Wigner-
Dyson level statistics obey level repulsion, while Poissonian
level statistics do not. Specifically,∫ ∞

0

[
1 − K

(
t

N

)]
dt =

{
πN (level repulsion),
0 (no level repulsion), (13)

where, for convenience, the sum over discrete times has been
written as an integral. Because of this constraint, one can-
not trivially define a time from which onwards the spectral
form factor matches the evaluation for the circular unitary
ensemble. At an operational level, the Thouless time is com-
monly defined as the time at which the spectral form factor
first intersects the evaluation for the corresponding random
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matrix ensemble, here the circular unitary ensemble (see the
references cited above). This seminal operational definition
seemingly goes back to Ref. [13] on many-body localization.

In numerical studies, the spectral form factor always dis-
plays some noise due to averaging over a finite number of
samples. For Hermitian models, unfolding inaccuracies typ-
ically induce some additional systematic deviations to the
spectral form factor. The operational definition of the Thou-
less time as the lowest time for which the spectral form factor
first intersects the spectral form factor for the corresponding
random matrix ensemle needs a slight adjustment when these
effects are too large. Often, a threshold for the difference
between the spectral form factors is introduced. The Thouless
time is then operationally defined as the lowest time for which

| log K (t ) − log KCUE(t )| < 10−ε, (14)

for some ε 
 0.4. Increasing ε lowers the sensitivity of the
Thouless time to small deviations between KCUE(t ) and K (t ).
In the present study, the number of realizations is large, the
spectra do not have edges with possibly deviating statistics
as the model is unitary, and no unfolding has to be applied.
As such, no threshold for the difference between K (t ) and
KCUE(t ) needs to be introduced. Apart from the threshold,
the procedure used to determine the Thouless time here is the
same as the one used in Ref. [13] and the later works.

Figure 3 (upper panel) shows the Thouless time tTh ob-
tained from the spectral form factor resulting from a large
number of spectra as a function of γ around γ = 1 for ma-
trix dimensions N = 100, N = 1000, and N = 10 000. The
dashed lines show fitted curves tTh ∼ Nγ−1 for γ � 1. Similar
to the (inverse) spreading width of the eigenstates introduced
above, the Thouless time appears to follow this scaling. This
is consistent with the scaling TTh ∼ N for γ = 2 that can
be read off from Fig. 2. The match is not perfect, which
might be related to above discussion of the interpretation of
the spectral form factor or finite-size effects. For γ < 1, one
observes tTh ∼ 1, indicating the presence of spectral correla-
tions ranging over a finite fraction of the entire spectrum. For
clarity, the lower panel shows a graphical illustration of how
the Thouless time is obtained. This panel shows the spectral
form factor for N = 10 000 and γ = 1.3 combined with the
evaluation for the circular unitary ensemble. As can be read
off from the upper panel, the points at which the curves first
intersect (the Thouless time) is found as tTh ≈ 80.4. Because
of the constraint of Eq. (13), there is an additional deviation
between the curves at t > tTh to compensate for the deviation
on the interval t ∈ [0, tTh].

For γ < 1, the Thouless time is of order unity, indicating
agreement of the spectral form factor with the random matrix
theory expectation almost fully. From γ = 1 onwards, the
Thouless time quickly increases, which indicates a transi-
tion to a phase characterized by different long-range spectral
two-point correlations. As mentioned before, here a scaling
tTh ∼ Nγ−1 similar to the (inverse) spreading width of the
eigenstates can be observed. Since limN→∞ tTh/N → 0 in the
fractal phase (1 < γ < 2), short-range level statistics remain
unaffected by the increase of the Thouless time. Consistent
results can be observed in Fig. 2. These results show that
the spectral form factor can be used to probe the transition
at γ = 1 between the ergodic and the fractal phases.

FIG. 3. Upper panel: The Thouless time tTh as obtained from the
spectral form factor (see the main text for details) as a function of γ

around γ = 1 for dimensions N = 100, N = 1000, and N = 10 000.
The dashed lines give fitted (least squares) curves tTh ∼ Nγ−1 for
γ � 1. Lower panel: An illustration of how the Thouless time is
determined. The plot shows the spectral form factor for N = 10 000
and γ = 1.3, combined with the evaluation for the circular unitary
ensemble (black dashed curve). The point at which these curves first
intersect (here, at t ≈ 80.4) is marked as the Thouless time.

V. CONCLUSIONS AND OUTLOOK

This work focused on the long-range spectral statistics of
the recently introduced unitary equivalent of the Rosenzweig-
Porter model. Using the algorithm of Ref. [59] to efficiently
sample this model, it was argued that the spectral form factor
is able to probe the transition between the ergodic and the frac-
tal phases (γ = 1). More precisely, it was observed that the
transition between the ergodic and the fractal phases can be
marked as the highest value of γ for which the spectral form
factor first intersects the spectral form factor of the circular
unitary ensemble at times of order unity. This time is often
referred to as the Thouless time (see, e.g., Ref. [13]), which
is a commonly used probe for quantum ergodicity. Similar to
the (inverse) spreading width of the eigenstates, the Thouless
time is found to scale as tTh ∼ Nγ−1 in the fractal phase
(1 < γ < 2). Taking into account that the transition between
the fractal and the localized phases can be probed through
short-range spectral statistics such as the average ratio of
consecutive level spacings, this work establishes that spectral
statistics are sufficient to probe both transitions present in the
phase diagram.
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An aspect arguably worth further investigation is the pos-
sible universality of the scale-invariant (in the sense that it
is independent of N when considered in terms of the scaled
time t/N) spectral form factor at the transition between the
fractal and the localized phases (γ = 2), in particular in
view of the analytically well-studied two-point spectral cor-
relation function at the transition point [30–33]. Recently,
numerical evidence hinting at such a universality obtained
by comparing the long-range spectral statistics for various
models at criticality, including the Rosenzweig-Porter model,
has been reported [71,72]. Next, the constraint on the spec-
tral form factor imposed by the presence or absence of

level repulsion [Eq. (13)] and the way in which it is taken
into account invites for reconsiderations on how to use the
spectral form factor as a probe for long-range spectral cor-
relations. In particular, one could ask if the definitions of
the Thouless time used here and in the literature could be
sharpened.
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