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Number of zero-energy eigenstates in the PXP model
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The PXP model is paradigmatic in the field of quantum many-body scars. This model has a number of
zero-energy eigenstates that is exponentially large in system size. Lower bounds on the number of zero-energy
eigenstates are obtained for both open and periodic (zero- and π -momentum sectors) boundary conditions.
These bounds are found to be tight up to system sizes accessible by numerical exact diagonalization and can be
expected to be tight in general. In addition to previous results, separate lower bounds are obtained for the spatial
inversion-symmetric and inversion-antisymmetric symmetry sectors. Furthermore, the derivations improve on
previous ones as they are free of assumptions.
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I. INTRODUCTION

This work focuses on the PXP model [1,2]. Motivated by
seminal experiments on a Rydberg atom quantum simulator
[3], it has been proposed as a model for a chain of interacting
two-level atoms subject to the constraint that two adjacent
atoms cannot be simultaneously in the excited state. The
model has a number of highly nonthermal eigenstates, which
are typically referred to as quantum many-body scars, akin to
the “scarred” eigenstates observed in certain classical billiards
[4,5]. Since the discovery of quantum many-body scars in
2018, the PXP model has been the subject of intense research
(see, e.g., Refs. [6–8] for related reviews).

Although the PXP model is nonintegrable, a number of
properties have been established analytically. Among these is
an exponentially (in system size) large number of zero-energy
eigenstates, so-called zero modes [1,2]. Since the zero modes
have a degenerate energy, any linear combination of them
is a zero mode as well. It has been shown that this allows
one to construct a (highly excited, as the energy spectrum
is symmetric around zero) nonthermal, area-law entangled
zero-energy eigenstate represented by a matrix product state
with a finite bond dimension [9]. Numerical investigations
indicate that the possibility to construct an area-law entangled
zero-energy eigenstate holds in more general experimentally
relevant deformations of this model as well [10]. In addition,
it has been found that a large set of exact zero-energy non-
thermal eigenstates can be constructed in a systematic way
from two-particle dimer states [11]. Interestingly, quantum
many-body scars have been found to be well approximated
by quasiparticle excitations on top of zero modes [9].

The exponentially large number of zero-energy eigen-
states is the result of an interplay between the symmetries
of the model and a parity-anticommutation relation [12]. A
related mechanism leading to highly degenerate zero-energy
eigenstates can be observed in models of Hilbert space frag-
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mentation [13,14]. In addition, the PXP model maps on
certain types of other models, describing, for example, inter-
acting Fibonacci anyons [15] or the quantum Hall effect on a
thin torus [16]. Other known mechanisms resulting in a large
number of zero-energy eigenstates are based on, for example,
supersymmetry [17] or topology [18] (see also Ref. [19] for
an example in the context of quantum many-body scars).

References [1,2] established lower bounds on the number
of zero-energy eigenstates as a function of the system size for
open boundary conditions, periodic boundary conditions in
the zero-momentum sector, and periodic boundary conditions
in the π -momentum sector (see Appendix A for a review of
these results). Besides analytical convenience, these sectors
are physically of the most interest as the quantum many-body
scars can be found there. The bounds are given by Fibonacci
numbers and are numerically found to be tight (the number
of zero-energy eigenstates is given by the lower bound) up to
accessible system sizes.

The PXP model is invariant under spatial inversions, mean-
ing that the lower bounds on the number of zero-energy
eigenstates can be decomposed into contributions from the
inversion-symmetric and inversion-antisymmetric symmetry
sectors. To our knowledge, this decomposition has not been
discussed in the literature. In addition, the known deriva-
tions for periodic boundary conditions are based on empirical
observations on the structure of sequences. The aim of this
work is to rederive the above results free of assumptions
and to establish separate lower bounds on the numbers
of zero-energy eigenstates for the inversion-symmetric and
inversion-antisymmetric symmetry sectors. As for the pre-
vious results, up to numerically accessible system sizes all
bounds are found to be tight.

The outline of this work is as follows. Section II reviews
the PXP model, its symmetries, and the mechanism leading to
zero-energy eigenstates. Section III considers open boundary
conditions. Following a partially similar but slightly more
involved approach, Secs. IV and V discuss periodic boundary
conditions with zero and π momentum, respectively. A dis-
cussion of the results and an outlook are provided in Sec. VI.
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II. PXP MODEL

This section discusses the PXP model and its symmetries.
The PXP model describes a chain of interacting spin-1/2
particles subject to the constraint that two neighboring sites
cannot be simultaneously in the up state. The Hamiltonian H
is given by

H =
∑

i

(
1 − σ z

i

)
σ x

i+1

(
1 − σ z

i+2

)
, (1)

where σ x,z
i is a Pauli matrix acting on the ith spin. Let L

denote the total number of spins, labeled by i = 1, 2, . . . , L.
For periodic boundary conditions, the summation runs from
i = 1 to L, and σ x,z

i ≡ σ x,z
i+L. For open boundary conditions,

the summation runs from i = 1 to L − 2, and a term σ x
1 (1 −

σ z
2 ) + (1 − σ z

L−1)σ x
L is added such that the first (i = 1) and

last (i = L) sites can be in the up state as well when the
neighboring spins are in the down state. Motivated by ex-
perimental realizations [3], spin up and down are typically
referred to as the ground (pictorially represented by ◦) and
excited (represented by •) states, respectively.

For both open and periodic boundary conditions, the
Hamiltonian commutes with the (unitary) spatial inversion
operator

I : i → L − i + 1. (2)

The inversion operator has eigenvalues +1 (symmetric eigen-
states) and −1 (antisymmetric eigenstates). For periodic
boundary conditions, the Hamiltonian additionally commutes
with the (unitary) translation operator

T := i → i + 1. (3)

The translation operator has eigenvalues exp(ip), with p being
referred to as the momentum of the eigenstates. For even and
odd L, the momentum can take the respective values

p =
(

−1 + 2n

L

)
π, p =

(
−1 + 2n − 1

L

)
π, (4)

with n = 1, 2, . . . , L. Notice that there is a zero-momentum
sector (p = 0) for both even and odd L, and there is a π -
momentum sector for even L. For both open and periodic
boundary conditions, the Hamiltonian finally anticommutes
with the parity operator

C = (−1)L
L∏

i=1

σ z
i , (5)

which is a consequence of the observation that the number
of excitations changes from even (odd) to odd (even) under its
action. The parity operator has eigenvalues +1 and −1. Notice
that [I, C] = 0 and [T, C] = 0, indicating that the anticommu-
tation relation holds separately for each symmetry sector.

The eigenvalue equation of the (real-valued) Hamiltonian
can be written in the form(

0 X

X T 0

)(
ψeven

ψodd

)
= E

(
ψeven

ψodd

)
, (6)

where E denotes an energy eigenvalue and X is a (depend-
ing on system size, nonsquare) matrix. Here, ψeven and ψodd

give the eigenstate components for the basis states with even

and odd numbers of excitations, respectively. One observes
that if (ψeven, ψodd)T is an eigenstate with energy E , then
(ψeven,−ψodd)T is an eigenstate with energy −E . As these
states are orthogonal, it follows that |ψeven|2 = |ψodd|2 = 1/2.
The spectrum is thus symmetric around zero energy.

Adapting the notation of Eq. (6), the parity operator C takes
the form

C =
(

1 0

0 −1

)
. (7)

For X of dimensions n × m, there are 2 min(n, m) eigenstates
with |ψeven|2 = |ψodd|2 = 1/2. These eigenstates have a parity
expectation value of C = 0. This expectation value is known
as the chiral charge. For the respective cases n > m and
n < m, there are |n − m| eigenstates of the form

(
ψeven

0

)
,

(
0

ψodd

)
, (8)

which have, respectively, chiral charges C = +1 and C = −1.
The total chiral charge Q of all eigenstates is thus equal to
n − m. Equation (6) shows that the eigenvalues correspond-
ing to eigenstates with chiral charges of ±1 are given by
E = 0. The number of zero-energy eigenstates Z is thus lower
bounded by Z � |Q|. The actual number can be larger due
to zero-energy eigenstates for which the eigenvalue zero is
not related to the anticommutation relation {H, C} = 0. This,
however, requires fine tuning of the model in most practical
settings (for an exception in the context of quantum many-
body scars, see Ref. [20]).

III. OPEN BOUNDARY CONDITIONS

In this section, a lower bound on the number of zero-energy
eigenstates for open boundary conditions is determined. The
main difference from the approach used in Refs. [1,2] is that
here, different particle numbers are considered separately,
which allows one to decompose the number into contributions
from the inversion-symmetric and inversion-antisymmetric
symmetry sectors.

The number of ways �L,N to distribute N excitations over
L sites with the constraint that no two consecutive sites can be
in the excited state (from now on, this is assumed implicitly)
is given by

�L,N =
(

L − N

N

)
+

(
L − N

N − 1

)
. (9)

The first term accounts for the number of configurations with
N motifs •◦ and L − 2N sites in the ground state (◦). This
number does not include configurations for which the last site
is in the excited state (•). The second term accounts for the
remaining number of configurations with the last site in the
excited state, consisting of N − 1 motifs •◦ and L − 2N + 1
sites in the ground state. Here and throughout the remainder
of this work, binomial coefficients

(n
k

)
are set to zero when

n < 0, k < 0, or n < k.
The total chiral charge QL of the eigenstates is given by the

number of configurations with an even number of excitations
(C = +1) minus the number of configurations with an odd
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number of excitations (C = −1),

QL =
∑
n�0

(�L,2n) −
∑
n�0

(�L,2n+1) (10)

= 1

2

(
(−1)�(L+1)/3� + (−1)�(L+2)/3�), (11)

where �x� denotes the largest integer smaller than or equal
to x. See Appendix B for a derivation. This result states that
the number of zero-energy eigenstates ZL � |QL| is lower
bounded by either 0 or 1. This bound can be tightened by
taking into account the presence of the spatial inversion sym-
metry.

For a given configuration |c〉 (e.g., c = ◦ ◦ • ◦ •) and its
spatial inverse I|c〉 (| • ◦ • ◦◦〉 in the example), an (unnormal-
ized) inversion-symmetric state can be constructed as |c〉 +
I|c〉. Provided that |c〉 �= I|c〉, an inversion-antisymmetric
state can be constructed as |c〉 − I|c〉. The difference �L,N =
�

(+)
L,N − �

(−)
L,N between the contributions �

(+)
L,N , from the

inversion-symmetric sector, and �
(−)
L,N , from the inversion-

antisymmetric sector, to �L,N is thus given by the number of
L-site configurations with N excitations that is invariant under
spatial inversion. In terms of �L,N and �L,N , the total chiral
charge of the eigenstates Q(+)

L , in the inversion-symmetric
sector, and Q(−)

L , in the inversion-antisymmetric sector, can
be expressed as

Q(±)
L = 1

2

∑
n�0

(�L,2n ± �L,2n)

−1

2

∑
n�0

(�L,2n+1 ± �L,2n+1). (12)

In order to evaluate Q(±)
L , the quantity �L,N is determined

below.
The numbers of zero-energy eigenstates Z (+)

L and Z (−)
L for

the inversion-symmetric and inversion-antisymmetric symme-
try sectors, respectively, are lower bounded by

Z (±)
L � |Q(±)

L |. (13)

A lower bound on the total number of zero-energy eigen-
states ZL � |Q(+)

L | + |Q(−)
L | (the numbers in the inversion-

symmetric and inversion-antisymmetric sectors added up)
can be obtained by considering the signs of Q(±)

L . If Q(+)
L

and Q(−)
L have the same sign, then |Q(+)

L | + |Q(−)
L | = |Q(+)

L +
Q(−)

L |, which is larger than |Q(+)
L − Q(−)

L |. However, when
Q(+)

L and Q(−)
L have opposite signs, then |Q(+)

L | + |Q(−)
L | =

|Q(+)
L − Q(−)

L |, which is larger than |Q(+)
L + Q(−)

L |. These con-
siderations lead to

ZL � max(|Q(+)
L + Q(−)

L |, |Q(+)
L − Q(−)

L |), (14)

with the first (second) term being the largest when Q(+)
L and

Q(−)
L have the same sign (opposite signs). In Ref. [2], assum-

ing that Q(+)
L and Q(−)

L have different signs, this inequality
appears in Eq. (A8) [reprinted in this work as Eq. (A1)] as
ZL � |Ke − Ko|, where Ke and −Ko correspond, respectively,
to the contributions from the first and second lines of Eq. (12)
to Q(+)

L − Q(−)
L .

A. Even number of sites

First, suppose that the number of sites L = 2l is even. For
an even number N = 2n of excitations, inversion-symmetric
configurations have the form A ◦ ◦(IA), where A is an (l − 1)-
site configuration with n excitations and IA is its spatial
inverse (e.g., if A = • ◦ ◦, then IA = ◦ ◦ •). The number of
inversion-symmetric configurations is thus equal to the num-
ber of l-site configurations with n excitations, provided that
the last site is in the ground state. Following the combinatorics
outlined below Eq. (9), it follows that

�2l,2n =
(

l − n

n

)
. (15)

It is not possible to construct inversion-symmetric configu-
rations with an even number of sites and an odd number of
excitations. Thus,

�2l,2n+1 = 0. (16)

The quantity |Q(+)
L + Q(−)

L | was evaluated in Eq. (11). Evalu-
ating |Q(+)

L − Q(−)
L | using the above expressions for �2l,N and

substituting the result in Eq. (14) gives

Z2l � |
∑
n�0

(�2l,2n − �2l,2n+1)| (17)

=
∑
n�0

(
l − n

n

)
(18)

= Fl+1, (19)

where Fn is the nth Fibonacci number, which is recursively
defined through

Fl = Fl−1 + Fl−2, F0 = 0, F1 = 1. (20)

The binomial identity relating Eq. (18) to Eq. (19) can be
found, e.g., below Eq. (1.74) of Ref. [21]. The Fibonacci
numbers are given nonrecursively by Binet’s formula (see,
e.g., Eq. (1.74) in Ref. [21]),

Fl = ϕl − (−ϕ)−l

√
5

, (21)

where ϕ = (1 + √
5)/2 is the so-called golden ratio. From

this, it follows that for l → ∞, one finds Fl ∼ ϕl/
√

5. Lower
bounds on Z (±)

2l follow from Eq. (13). Plots of |Q(+)
L | and

|Q(−)
L |, as well as a qualitative discussion, are provided below

at the end of the discussion of Z (±)
L for odd L.

B. Odd number of sites

Next, suppose that L = 2l + 1 is odd. When N = 2n is
even, inversion-symmetric configurations have the form A ◦
(IA), where A is an l-site configuration with n excitations.
Hence, the number of inversion-invariant configurations is
given by the number of ways to distribute n excitations over l
sites [see Eq. (9)],

�2l+1,2n =
(

l − n

n

)
+

(
l − n

n − 1

)
. (22)

When N = 2n + 1 is odd, inversion-symmetric configura-
tions have the form A ◦ • ◦ (IA), where A is an (l − 1)-site
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FIG. 1. Plots of |Q(+)
L | and |Q(−)

L | as a function of L for L =
1, . . . , 25 on a linear scale (main panel) and for L = 1, . . . , 1000 on
a logarithmic scale (inset). The curves in the main panel are close to
each other, and the curves in the inset are visually indistinguishable.
The data shown in the inset can be fitted by |Q(±)

L | � μ(±)ϕL/2, with
ϕ = (1 + √

5)/2 and μ(+) = μ(−) = 0.291 ± 0.003 (data for L � 50
excluded).

configuration with n excitations. This means that the number
of inversion-invariant configurations is given by the number
of ways to distribute n excitations over l − 1 sites. Thus,

�2l+1,2n+1 =
(

l − n

n

)
. (23)

Analogous to the procedure for an even number of sites [see
Eq. (14)], the total number of zero-energy eigenstates Z2l+1

obeys

Z2l+1 �
∣∣∣∣
∑
n�0

(�2l+1,2n − �2l+1,2n+1)

∣∣∣∣ (24)

=
∑
n�0

(
l − n

n − 1

)
(25)

= Fl , (26)

where Fl is the lth Fibonacci number [see Eq. (20)].
Again, lower bounds on the contributions from the inversion-
symmetric and inversion-antisymmetric sectors can be ob-
tained through Eq. (13).

Figure 1 shows plots of |Q(+)
L | and |Q(−)

L | as a function of
L. The bounds Z (±)

L � |Q(±)
L | have been found to be tight up

to system sizes accessible by numerical exact diagonalization
(L = 22). As |Z (+)

l − Z (−)
L | � 1 from Eq. (11), the relative

difference tends to zero for large L. As naturally expected,
|Q(±)

L | � μ(±)[(1 + √
5)/2]L/2 [see Eq. (21)] for large values

of L (the fitted prefactors μ(±) are given in the caption).

IV. PERIODIC BOUNDARY CONDITIONS
AT ZERO MOMENTUM

Zero-momentum (p = 0) states are invariant under the
action of the translation operator as the corresponding
eigenvalue is given by eip = 1. First, the total number

of orthogonal zero-momentum states (the numbers for the
inversion-symmetric and inversion-antisymmetric symmetry
sectors added up) is determined. From a given configuration
|c〉, a translationally invariant state |c(0)〉 can be constructed as

|c(0)〉 =
L−1∑
i=0

T i|c〉. (27)

Note that for some configurations (e.g., c = • ◦ ◦ • ◦◦), a
translationally invariant state results already from the first
terms of the summation (up to i = 2 instead of i = 5 in the ex-
ample). For a configuration with N excitations and the first site
in the excited state, there are at most N − 1 unique different
configurations with the first site in the excited state that can be
obtained by repeatedly applying the translation operator. The
number �L,N of configurations with N excitations on L sites
with the first site in the excited state is given by

�L,N =
(

L − N − 1

N − 1

)
; (28)

see the discussion following Eq. (9) for a justification. For the
moment ignoring “at most,” the number of orthogonal zero-
momentum states for given L and N is thus given by �L,N/N .

As mentioned, certain configurations (e.g., c = • ◦ ◦ • ◦◦)
have a smaller number of different configurations with a
particle on the first site that can be obtained by repeatedly
applying the translation operator. These configurations consist
of d (d = 2 in the example) repeating motifs (• ◦ ◦ in the
example). It thus follows that the number �

(0)
L,N,d of L-site

configurations with N excitations that consist of d repeating
motifs with an excitation on the first site is given by

�
(0)
L,N,d =

{(L/d−N/d−1
N/d−1

)
if (L/d ), (N/d ) ∈ N,

0 otherwise.
(29)

Let the number of L-site configurations containing N exci-
tations that consist of d repeating motifs with an excitation
on the first site that are not configurations of i × d (i > 1)
repeating motifs with an excitation on the first site be given
by �̃

(0)
L,N,d . This quantity is given in recursive form by

�̃
(0)
L,N,d = �

(0)
L,N,d −

∑
i>1

�̃
(0)
L,N,i×d . (30)

From the �̃
(0)
L,N,d configurations, one can construct d/N ×

�̃
(0)
L,N,d orthogonal zero-momentum states. In terms of this

number, the number of orthogonal L-site zero-momentum
states �

(0)
L,N with N excitations is thus given by

�
(0)
L,N =

{ 1
N

∑
d�1 d × �̃

(0)
L,N,d if N > 0,

1 if N = 0.
(31)

Since the basis state with zero excitations is translationally
invariant, one finds �

(0)
L,0 = 1.

Analogous to the procedure for open boundary con-
ditions, next, the difference between the numbers of or-
thogonal zero-momentum states in the inversion-symmetric
and inversion-antisymmetric sectors is determined. From
a zero-momentum state |c(0)〉 as given in Eq. (27), a
zero-momentum, inversion-symmetric state can be con-
structed as |c(0)〉 + I|c(0)〉. Provided that |c(0)〉 �= I|c(0)〉, a
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zero-momentum, inversion-antisymmetric state can be con-
structed as |c(0)〉 − I|c(0)〉. The contribution to �

(0)
L,N from

the inversion-symmetric sector is denoted by �
(0,+)
L,N , while

the contribution from the inversion-antisymmetric sector is
denoted by �

(0,−)
L,N . The difference �

(0)
L,N = �

(0,+)
L,N − �

(0,−)
L,N is

given by the number of orthogonal L-site momentum-zero
states with N excitations that is invariant under spatial in-
version. The total chiral charges of eigenstates Q(0,+)

L , in
the inversion-symmetric sector, and Q(0,−)

L , in the inversion-
antisymmetric sector, are then given by

Q(0,±)
L = 1

2

∑
n�0

(
�

(0)
L,2n ± �

(0)
L,2n

)

−1

2

∑
n�0

(
�

(0)
L,2n+1 ± �

(0)
L,2n+1

)
, (32)

analogous to Eq. (12). The corresponding numbers of zero-
energy eigenstates Z (0,+)

L , in the inversion-symmetric sector,
and Z (0,−)

L , in the inversion-antisymmetric sector, obey
Z (0,±)

L � |Q(0,±)
L |. With the aim to evaluate Q(0,±)

L , the quantity
�

(0)
L.N is evaluated below.

A. Even number of sites

First, the focus is on the case in which both L = 2l and
N = 2n are even. Zero-momentum states as given in Eq. (27)
that are invariant under spatial inversion are constructed out
of a configuration |c〉 for which T i|c〉 = I|c〉 for some i � 0.
Configurations for which |c〉 = I|c〉 (case i = 0) have the form
c = ◦A ◦ ◦(IA)◦, where A is an l − 2 site configuration with
n excitations and IA is its spatial inverse. Configurations for
which T |c〉 = I|c〉 (case i = 1) have the form c = B ◦ (IB)◦,
where B is an l − 1 site configuration with n excitations.
Note that T I = IT −1 and that the first site of B needs to be
in the excited state because otherwise, B◦ can be written as
◦A◦ by taking A as B with the first site removed, leading to
double counting. Configurations for which T 2i|c〉 = I|c〉 obey
T i|c〉 = IT i|c〉 and are thus covered by the case i = 0. Con-
figurations for which T 2i+1|c〉 = I|c〉 obey T i|c〉 = IT i+1|c〉
and are thus covered by the case i = 1. Notice that, as a conse-
quence, states constructed out of configurations that consist of
repeated motifs (for which multiple values of i can be found)
are counted only once.

The quantity �
(0)
2l,2n is given by the number of possible

configurations c = ◦A ◦ ◦(IA)◦ and c = B ◦ (IB)◦ with A and
B as defined above. This means that �

(0)
2l,2n equals the number

of l-site configurations (namely, ◦A◦ or B◦) with n excitations,
provided that the last site is in the ground state. Thus,

�
(0)
2l,2n =

(
l − n

n

)
; (33)

see the discussion following Eq. (9).
Next, suppose that N = 2n + 1 is odd. Configurations for

which T |c〉 = I|c〉 have the form c = A ◦ • ◦ (IA)◦, where
again A is a configuration with n excitations on l − 2 sites.
Configurations for which T 2i+1|c〉 = I|c〉 are again covered
by the case i = 1. No configurations for which |c〉 = I|c〉 can
be found, like configurations for which T 2i|c〉 = I|c〉. From

this, it follows that

�
(0)
2l,2n+1 =

(
l − n − 1

n

)
(34)

counts the number of possible configurations (A◦) on l − 1
sites with n excitations, provided that the last site is in the
ground state.

The number of zero-energy eigenstates Z (0)
2l in the zero-

momentum sector is lower bounded by Z (0)
2l � |Q(0,+)

2l −
Q(0,−)

2l |; see Eq. (14) for a justification. Analogous to the
procedure followed for Eq. (17), it follows that Z (0)

2l � Fl+1 −
Fl = Fl−1, where Fl is the lth Fibonacci number [see Eq. (20)].
Plots of |Q(0,+)

L | and |Q(0,−)
L | are provided following the dis-

cussion of Z (0,±)
L for odd L.

B. Odd number of sites

Next, suppose that L = 2l + 1 is odd. When N = 2n is
even, configurations for which |c〉 = I|c〉 holds have the form
c = ◦A ◦ (IA)◦, where A is a configurations consisting of
l − 1 sites with n excitations. Following the reasoning for odd
L and N [see the discussion above Eq. (34)], it follows that

�
(0)
2l+1,2n =

(
l − n

n

)
, (35)

which gives the number of possible l-site configurations ◦A
with n excitations, provided that the first site is in the ground
state. When N = 2n + 1 is odd, configurations satisfying
|c〉 = I|c〉 have the form c = ◦B ◦ • ◦ (IB)◦, with B denoting
a configuration of l − 2 sites with n excitations. Following the
reasoning for even L and even N [see the discussion above
Eq. (33)], it follows that

�
(0)
2l+1,2n+1 =

(
l − n − 1

n

)
, (36)

which gives the number of possible configurations B◦ on l − 1
sites with n excitations, provided that the last site is in the
ground state. Analogous to the case of even L, it follows that
Z (0)

2l+1 � Fl+1 − Fl = Fl−1.

Figure 2 shows plots of |Q(0,+)
L | and |Q(0,−)

L | as a function
of L. The bounds Z (0,±)

L � |Q(0,±)
L | have been found to be

tight up to numerically accessible system sizes (L = 22). The
data obey |Q(0,±)

L | � μ(0,±)[(1 + √
5)/2]L/2 [see Eq. (21)] for

large L (the fitted prefactors μ(0,±) are given in the caption).
The bounds on the number of zero-energy eigenstates can be
evaluated for single values L � 500 in less than 20 min of
computational time on a single core of a laptop processor.

V. PERIODIC BOUNDARY CONDITIONS
AT MOMENTUM π

States with momentum π change sign under the action of
the translation operator (eip = −1). Consequently, these states
can be found only when the number of sites is even [see
also Eq. (4)] and the number of excitations is at least one.
As above, first, the total number of orthogonal states within
the sector is determined, after which it is decomposed into
contributions from the inversion-symmetric and inversion-
antisymmetric symmetry sectors.
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FIG. 2. Plots of |Q(0,+)
L | and |Q(0,−)

L | as a function of L for L =
1, . . . , 25 on a linear scale (main panel) and for L = 1, . . . , 1000 on
a logarithmic scale (inset). The curves in the inset are visually indis-
tinguishable. The data shown in the inset can be fitted by |Q(0,±)

L | �
μ(0,±)ϕL/2, with ϕ = (1 + √

5)/2 and μ(0,+) = 0.1272 ± 0.0005 and
μ(0,−) = 0.1266 ± 0.0005 (data for L � 50 excluded).

From a given configuration |c〉 consisting of L = 2l sites,
a π -momentum state |c(π )〉 can be constructed as

|c(π )〉 =
2l−1∑
i=0

(−1)iT i|c〉, (37)

provided that there is no i � 0 for which |c〉 = T 2i+1|c〉 as an
odd number of translations induces a minus sign. From such a
state, a π -momentum, inversion-symmetric state can be con-
structed as |c(π )〉 + I|c(π )〉, provided that I|c(π )〉 �= T |c(π )〉.
A π -momentum, inversion-antisymmetric state can be con-
structed as |c(π )〉 − I|c(π )〉, provided that neither I|c(π )〉 =
|c(π )〉 nor I|c(π )〉 = T |c(π )〉 occurs. If the second condition
holds, an inversion-symmetric state is recovered.

The total number �
(π )
2l,N of orthogonal π -momentum states

(the numbers for the inversion-symmetric and inversion-
antisymmetric sectors added up) for a given number L = 2l
of sites with N excitations can be obtained by first defining
�

(π )
L,N,d and 	

(π )
L,N,d as the numbers of L-site configurations

having N excitations, consisting of d (for 	
(π )
L,N,d , d is required

to be even and L/d is required to be odd) repeating motifs with
an excitation on the first site. Analogous to Eq. (29), one finds

�
(π )
L,N,d =

{(L/d−N/d−1
N/d−1

)
if L/(2d ), (N/d ) ∈ N,

0 otherwise,
(38)

and

	
(π )
L,N,d =

⎧⎨
⎩

(L/d−N/d−1
N/d−1

)
if (L/d + 1)/2, (d/2),

(N/d ) ∈ N,

0 otherwise.
(39)

The respective numbers �̃
(π )
L,N,d and 	̃

(π )
L,N,d of these configu-

rations that do not consist of i × d (i > 1) repeated smaller
motifs with the same properties are, analogous to Eq. (30),

given by

�̃
(π )
L,N,d = �

(π )
L,N,d −

∑
i>1

�̃
(π )
L,N,i×d (40)

and

	̃
(π )
L,N,d = 	

(π )
L,N,d −

∑
i>1

	̃
(π )
L,N,i×d . (41)

Taking into account that a configuration that contributes to
�̃

(π )
L,N,d can consist of an even number of repeated motifs

consisting of an odd number of sites (such that |c(π )〉 = 0),
it follows that

�
(π )
2l,N = 1

N

∑
d�1

d
[
�̃

(π )
2l,N,d − (

	
(π )
2l,N,d − 	̃

(π )
2l,N,d

)

× δ
(
�

(π )
2l,N,d > 0

)]
, (42)

where δ(condition) equals unity if the condition is true and
zero if it is not. The smallest system size for which the term
involving 	

(π )
L,N,d plays a role is L = 6 due to the state con-

structed out of the configuration consisting of two repeated
• ◦ ◦ motifs.

The total number �
(π )
2l,N of zero-energy eigenstates in

the π -momentum sector can be decomposed into contri-
butions �

(π,+)
2l,N , from the inversion-symmetric sector, and

�
(π,−)
2l,N , from the inversion-antisymmetric sector. Let �

(π )
2l,N =

�
(π,+)
2l,N − �

(π,−)
2l,N denote the difference between these contri-

butions. Analogous to Eq. (32), the total chiral charges of
eigenstates Q(π

2l ,in the inversion-symmetric sector, and Q(π,−)
2l ,

in the inversion-antisymmetric sector, are given by

Q(π,±)
2l = 1

2

∑
n�1

(
�

(π )
2l,2n ± �

(π )
2l,2n

)

− 1

2

∑
n�0

(
�

(π )
2l,2n+1 ± �

(π )
2l,2n+1

)
. (43)

The corresponding numbers of zero-energy eigenstates Z (π,±)
2l

are lower bounded by Z (π,±)
2l � |Q(π,±)

2l |. The quantity �
(π )
2l,N

is evaluated below.
First, suppose that N = 2n is even. The quantity �

(π )
2l,2n is

given by the number of states for which I|c(π )〉 = |c(π )〉 minus
the number of states for which T |c(π )〉 = I|c(π )〉. The first con-
tribution has been encountered before when considering the
zero-momentum sector. The second contribution is due to the
observation that |c(π )〉 − I|cπ 〉 gives an inversion-symmetric
state if T |c(π )〉 = I|c(π )〉. Applying the combinatorics as out-
lined above Eq. (33) then gives

�
(π )
2l,2n =

(
l − n − 1

n

)
−

(
l − n

n

)
. (44)

Next, suppose that N = 2n + 1 is odd. In this case, no states
for which |c(π )〉 = I|c(π )〉 can be found. The number of or-
thogonal states satisfying T |c(π )〉 = I|c(π )〉 is the same as for
the momentum-zero sector [see above Eq. (34)]. One thus
finds

�
(π )
2l,2n+1 = −

(
l − n − 1

n

)
, (45)
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FIG. 3. Plots of |Q(π,+)
L | and |Q(π,−)

L | as a function of L for L =
2, . . . , 25 on a linear scale (main panel) and for L = 2, . . . , 1000 on
a logarithmic scale (inset). The curves in the inset are visually indis-
tinguishable. The data shown in the inset can be fitted by |Q(π,±)

L | �
μ(π,±)ϕL/2, with ϕ = (1 + √

5)/2 and μ(π,+) = 0.08563 ± 0.00002
and μ(π,−) = 0.08518 ± 0.00002 (data for L � 50 excluded).

where an overall minus sign is in place (see the beginning of
this paragraph).

The total number of zero-energy eigenstates Z (π )
2l in the

π -momentum sector is lower bounded by Z (π )
2l � |Q(π,+)

2l −
Q(π,−)

2l |; see Eq. (14) for a justification. Analogous to Eq. (17),
it follows that Z (π )

2l � (Fl − Fl+1) + Fl = −Fl−1 + Fl = Fl−2

for l > 0 and Z (π )
0 = 0. Here, again, Fl is the lth Fibonacci

number [see Eq. (20)]. Note that F−1 = F1 − F0 = −1.
Figure 3 shows plots of |Q(π,+)

L | and |Q(π,−)
L | as a function

of L. The bounds Z (π,±)
L � |Q(π,±)

L | have been found to be
tight up to numerically accessible system sizes (L = 22). The
data can be fitted by |Q(π,±)

L | � μ(π,±)[(1 + √
5)/2]L/2 [see

Eq. (21)] for large L (the fitted prefactors μ(π,±) are given in
the caption).

VI. CONCLUSIONS AND OUTLOOK

This work established lower bounds on the number of zero-
energy eigenstates for the PXP model with open boundary
conditions, periodic boundary conditions at zero momentum,
and periodic boundary conditions at π momentum. These
bounds have been decomposed into contributions from the
inversion-symmetric and inversion-antisymmetric sectors. All
bounds have been found to be tight up to system sizes that
can be accesses by numerical exact diagonalization and can be
expected to hold in general because exceptions would require
fine tuning of the model [see below Eq. (8)].

The results obtained in this work directly translate to de-
formations of the model that preserve the symmetries and the
constraint that two consecutive sites cannot simultaneously
be in the excited state. It is natural to expect that extensions
can be made to higher-dimensional generalizations of the
PXP model, which are of timely interest [22]. Of particular
interest for further extensions could be the model studied in

Refs. [10,12], which focus on the properties of the zero modes
in the context of ergodicity breaking.
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APPENDIX A: REVIEW OF PREVIOUS RESULTS

This Appendix reviews the results on the counting of zero-
energy eigenstates obtained in Refs. [1,2], which partially
overlap with the results obtained in this work.

1. Open boundary conditions

For open boundary conditions, the starting point is

ZL � |Ke − Ko|, (A1)

where ZL is the total number of zero-energy eigenstates
(the numbers for the inversion-symmetric and inversion-
antisymmetric sectors added up) for systems consisting of L
sites and Ke (Ko) is the number of configurations with an even
(odd) number of excitations that is inversion symmetric [see
the discussion above Eq. (14)]. For L = 4, as an example,
the configurations • ◦ ◦• and ◦ ◦ ◦◦ contribute to Ke, while
Ko = 0.

First, consider even L = 2l . For any configuration A of
length l − 1, there is a corresponding inversion-symmetric
configuration of length 2l given by A ◦ ◦(IA). As in the main
text, here, IA denotes the inverse of A [see the discussion
above Eq. (34)]. The number of possible configurations A is
given by Fl+1, where Fl denotes the lth Fibonacci number
[see Eq. (20)]. Noting that every element of Ke has the form
A ◦ ◦(IA) and K0 = 0, it follows that Z2l � Fl+1. Next, con-
sider odd L = 2l + 1. Elements of Ke have the form A ◦ (IA),
where A is a configuration with l sites. Elements of Ko have
the form B ◦ • ◦ (IB), where B is a configuration of length
l − 1. Following the same reasoning, one finds Ke = Fl+2 and
Ko = Fl+1, leading to Z2l+1 � Fl .

2. Periodic boundary conditions

The derivation for periodic boundary conditions focuses on
the zero-momentum sector. First, consider odd L = 2l + 1.
For an odd number of excitations, translationally invariant
states [see Eq. (27)] are constructed from a basis state |c〉
of the form c = ◦A ◦ • ◦ (IA)◦, where A is a configuration
consisting of l − 2 sites. It is shown that the number of or-
thogonal translationally invariant, inversion-symmetric states
is given by the number of possible configurations A. It thus
follows that Ko = Fl . For an even number of excitations,
inversion-symmetric, translationally invariant states are con-
structed from a basis state |c〉 of the form c = ◦B ◦ (IB)◦,
where B is a configuration consisting of l − 1 sites. By
the same reasoning, it follows that Ke = Fl+1. Substituting
these results in Eq. (A1) gives Z2l+1 � Fl−1. Note that these
results are consistent with what is found in this work, al-
though here, no decomposition into contributions from the
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inversion-symmetric and inversion-antisymmetric sectors can
be extracted.

Next, consider even L = 2l . For odd N , inversion-
symmetric zero-momentum states are constructed from a
configuration |c〉 of the form c = ◦A ◦ • ◦ (IA)◦, where A is
of length l − 2. By the same reasoning as above, it follows
that Ko = Fl . For even N , the number of inversion-symmetric
zero-momentum states cannot be obtained with the reasoning
used before [also see the discussion above Eq. (33)]. Let
K = Ke + Ko, such that Eq. (A1) can be rewritten as

ZL � |K − 2Ko|. (A2)

Let Me and Mo denote the numbers of inversion-symmetric
and inversion-antisymmetric states composed out of two con-
figurations with an even and odd number of excitations,
respectively, and let M = Me + Mo. As an example, for L =
4 the (unnormalized) states | • ◦ • ◦〉 ± | ◦ • ◦ •〉 contribute
to Me (among others), while the states | • ◦ ◦ ◦〉 ± | ◦ ◦ ◦ •〉
contribute to Mo. Trivially, K = 2(M + K ) − (2M + K ). As a
function of L, it is empirically observed that the sequences
2M + K and M + K have respective generating functions
f (x) and g(x) given by

f (x) =
∑
k�1

φ(k)

k
ln

1

1 − xk (1 + xk )
(A3)

and

g(x) = 1

2

∑
k�1

(
φ(k)

k
ln

1

1 − xk (1 + xk )

)

− 1

2

(1 + x)(1 + x2)

x4 + x2 − 1
, (A4)

where φ(k) is the Euler totient function giving the number
of positive integers up to k that are relatively prime to k.
The sequence 2(M + K ) − (2M + K ) as a function of L thus

has a generating function given by 2g(x) − f (x). By recog-
nizing the generating function of the Fibonacci sequence, it
follows that 2(M + K ) − (2M + K ) = F�N/2�+2. Hence, Ke =
Fl+1, and thus, Z2l+1 � Fl−1 by Eq. (A2). As for open bound-
ary conditions, this result is consistent with what is found
in this work. Note that also, here, no decomposition into
contributions from the inversion-symmetric and inversion-
antisymmetric sectors can be extracted.

For the π -momentum sector, it is mentioned that the num-
ber Z (π )

2l of zero-energy eigenstates is lower bounded by
Z (π )

2l � Fl−2, also consistent with what is found in this work.

APPENDIX B: DERIVATION OF EQ. (11)

This Appendix provides a derivation of Eq. (11). From the
standard binomial identity(

n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
, (B1)

it follows, by substituting n = (L + 1) − N and k = N , that(
L − N

N − 1

)
=

(
L − N + 1

N

)
−

(
L − N

N

)
. (B2)

Substituting this result into Eq. (10), with a slight change in
notation, one obtains

QL =
∑
N�0

(−1)N

(
L − N + 1

N

)
. (B3)

This quantity can be evaluated through the binomial identity
(1.75) of Ref. [21],

�n/2�∑
k=0

(−1)k

(
n − k

k

)
= 1

2
((−1)�n/3� + (−1)�(n+1)/3�). (B4)

Substituting n = L + 1 and k = N directly gives the desired
result.
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