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Circular Dyson Brownian motion describes the Brownian dynamics of particles on a circle (periodic
boundary conditions), interacting through a logarithmic, long-range two-body potential. Within
the log-gas picture of random matrix theory, it describes the level dynamics of unitary (“circular”)
matrices. A common scenario is that one wants to know about an initial configuration evolved
over a certain interval of time, without being interested in the intermediate dynamics. Numerical
evaluation of this is computationally expensive as the time-evolution algorithm is accurate only
on short time intervals because of an underlying perturbative approximation. This work proposes
an efficient and easy-to-implement improved circular Dyson Brownian motion algorithm for the
unitary class (Dyson index β = 2, physically corresponding to broken time-reversal symmetry).
The algorithm allows one to study time-evolution over arbitrarily large intervals of time at a fixed
computational cost, with no approximations being involved.

Introduction.— Brownian motion describes the
stochastic dynamics of microscopic particles in a thermal
environment [1, 2]. It connects a broad variety of topics,
including thermal physics, hydrodynamics, reaction
kinetics, fluctuation phenomena, statistical thermo-
dynamics, osmosis, and colloid science [3]. Brownian
motion is intimately related to random matrix theory,
which plays a key role in the understanding of quantum
statistical mechanics and quantum chaos [4–6]. Random
matrices have eigenvalue statistics that typically can be
studied using the so-called log-gas picture [7, 8]. For
matrices with real eigenvalues, the joint probability
distribution P of the eigenvalues is then written as a
Boltzmann factor

P =
1

Z e−βH , (1)

where Z is a normalization constant that has the inter-
pretation of a partition function, and β > 0 is a pa-
rameter known as the Dyson index that has the inter-
pretation of an inverse temperature. The Hamiltonian
H describes a collection of classical massless particles on
a line (the eigenvalues) repelling each other over long
ranges through a logarithmic two-body potential, held
together by a confining background potential.

The log-gas picture describes long-range interacting
particles. It has been found, for example, to accurately
describe the level statistics across the many-body local-
ization transition [9]. As the Hamiltonian in Eq. (1)
does not contain a kinetic term, the particles obey non-
trivial dynamics. The equilibrium as well as the non-
equilibrium dynamics of the particles (“level dynamics”)
are described by a phenomenon referred to as Dyson
Brownian motion [10, 11]. Dyson Brownian motion turns
out to provide a good description rather generically when
long-range interactions are involved. As such, these dy-
namics (as well as the corresponding stochastic evolu-
tion of the eigenstates [12, 13]) have found applications
in studies on, for example, disordered systems [14–17],

random matrix models [18–21], many-body localization
[22, 23], quantum information dynamics [24–26], and cos-
mological inflation [27–30].

Circular Dyson Brownian motion for unitary (“circu-
lar”) matrices describes Dyson Brownian motion on a
circle (periodic boundary conditions) and without back-
ground potential. A common scenario is that one wants
to know about an initial configuration evolved over a cer-
tain interval of time, without being interested in the in-
termediate dynamics. Dyson Brownian motion can be
evolved over a time interval of arbitrary length at a fixed
computational cost, with no approximations being in-
volved (see below for a more detailed explanation). Cir-
cular Dyson Brownian motion, however, requires exten-
sively many evaluations over small intermediate inter-
vals because of a perturbative approximation underlying
the time-evolution algorithm. Circular Dyson Brownian
motion is thus a process that is computationally expen-
sive to simulate, which moreover is subject to a loss of
accuracy with progressing time. Despite significant re-
cent [31, 32] and less recent [33–36] analytical progress
on circular Dyson Brownian motion out-of-equilibrium,
improved numerical capabilities are thus desired.

This work proposes an improved, easy-to-implement
circular Dyson Brownian algorithm for the unitary class
(Dyson index β = 2, corresponding to systems with bro-
ken time-reversal symmetry). The algorithm does not
require intermediate evaluations, and thus operates at
dramatically lower computational cost compared to the
currently used algorithm. Moreover, it does not involve
approximations, and is thus not subject to a loss of accu-
racy with progressing time. In short, it constructs the de-
sired unitary matrices by orthonormalizing the columns
of certain non-Hermitian matrices for which the elements
perform Brownian motion. Similar to Dyson Brownian
motion for Hermitian matrices, this Brownian motion
process can be time-evolved at a computational cost in-
dependent of the length of the time interval.
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Dyson Brownian motion for Hermitian and unitary
matrices.— One distinguishes between orthogonal (β =
1), unitary (β = 2), and symplectic (β = 4) random
matrix ensembles [7]. These names reflect the type of
transformations under which the ensembles remain in-
variant. Physically, the type of invariance determines the
behavior of a system under time reversal. For example,
the orthogonal class correspond to time-reversal systems,
whereas the unitary class correspond to systems with bro-
ken time-reversal symmetry. This Section considers the
unitary class, which is arguably the most convenient one.

Let H(t) be an N×N Hermitian matrix with elements
depending on time t [10]. The initial condition H(0)
can be either random or deterministic. Dyson Brownian
motion for Hermitian matrices of the unitary class is a
stochastic process described by

H(t+ dt) = H(t) +
√
dtM, (2)

where the time step dt, in order for the eigenvalue dy-
namics to obey Dyson Brownian motion, is supposed to
be small enough such that the eigenvalues of H(t + dt)
can be obtained accurately by second-order perturbation
theory. Here, M is a sample from the Gaussian unitary
ensemble that is re-sampled at each evaluation. AnN×N
matrix M sampled from the Gaussian unitary ensemble
can be constructed as

M =
1

2
(A+A†), (3)

where A is an N × N matrix with complex-valued ele-
ments Anm = unm + ivnm with unm and vnm sampled
independently from the normal distribution with mean
zero and variance 1/2.
Let M̃ = U†(t)MU(t), where the time-dependent uni-

tary matrix U(t) is chosen such that it diagonalizes H(t).
The Gaussian unitary ensemble is invariant under unitary
transformations, meaning that M̃ can be replaced by a
new sample from the Gaussian unitary ensemble. The
increments dλn(t) = λn(t+dt)−λn(t) of the eigenvalues
λn(t) when evolving from time t to t+ dt obey

dλn(t) =
√
dtM̃nm +

∑
m ̸=n

dt|M̃nm|2
λm(t)− λn(t)

, (4)

where terms of order three and higher have been ig-
nored. It can be shown that this time-evolution indeed
describes a Brownian motion process, for example by
writing down the corresponding Fokker-Planck equation.
For t → ∞, H(t) converges to a (scaled) sample from
the Gaussian unitary ensemble irrespective of the initial
condition H(0).

Dyson Brownian motion can also be studied for unitary
matrices [10, 33]. Let Q(t) be an N ×N unitary matrix
with time-dependent elements. Similar to the above, the
initial condition Q(0) can be either random or determin-
istic. Circular Dyson Brownian motion for the unitary

class is generated by

Q(t+ dt) = Q(t)ei
√
dtM , (5)

where again M is an N × N sample from from the
Gaussian unitary ensemble that is re-sampled at each
evaluation. For small enough dt, the matrix expo-
nent can be approximated by the first-order expansion
1+ i

√
dtM , which is invariant under unitary transforma-

tions (the second and higher-order terms are not). The
matrix Q(t+ dt) is thus obtained by applying infinitesi-
mal orthonormality-preserving random rotations on the
columns of Q(t). “Random” here means that rotations
in each direction are equally likely, which agrees with the
observation that 1 + i

√
dtM is invariant under unitary

transformations.
Let M̃ = U†(t)M U(t) with the time-dependent uni-

tary matrix U(t) chosen such that it diagonalizes Q(t).
As before, M̃ can be replaced by a new sample from
the Gaussian unitary ensemble. Circular Dyson Brow-
nian motion of the eigenvalues eiθ1(t), eiθ2(t), . . . , eiθN (t)

entails that the increments dθn(t) = θn(t+ dt)− θn(t) of
the eigenphases θn(t) when evolving from time t to t+dt
are given by

dθn(t) =
√
dtM̃nm +

∑
m ̸=n

dt|M̃nm|2
2 tan 1

2 [θm(t)− θn(t)]
, (6)

where terms of order three and higher have been ignored.
Eqs. (4) and (6) describe similar dynamics on a micro-
scopic scale since 2 tan(x/2) = x + O(x2). For t → ∞,
Q(t) converges to a sample from the circular unitary en-
semble irrespective of the initial condition Q(0).
The algorithm.— The Gaussian random matrix ensem-

bles have the property that the sum of n independent
samples is a sample again, although with a prefactor

√
n.

Eq. (2) and its equivalents for the orthogonal and sym-
plectic classes thus do not require the time step dt to
be small. This implies that numerically obtaining H(T )
from H(0) can be done in a single instance, at a compu-
tational cost independent of T . Eq. (5) for the evolution
of unitary matrices does not allow for a similar argu-
ment since eAeB ̸= eA+B when A and B do not com-
mute. Time-evolution for unitary matrices can naively
thus only be accomplished by subsequently evolving over
infinitesimal time intervals. Eq. (5) moreover is subject
to a loss of accuracy with progressing time as it describes
the desired dynamics only up to first order.
The starting point in establishing an improved algo-

rithm is the observation that a random unitary matrix
(circular unitary ensemble) can be obtained by orthonor-
malizing a set of random vectors [37, 38]. Let A be an
N × N matrix with elements Anm = unm + ivnm with
unm and vnm sampled independently from the normal
distribution with mean zero and unit variance. Such a
matrix is known as a sample from the Ginibre unitary



3

ensemble [8, 39]. The QR-decomposition

A = QR (7)

decomposes A in a unitary matrix Q and an upper-
triangular matrix R with real-valued diagonal elements.
This decomposition is not unique. It can be made unique
by fixing the signs of the diagonal elements of the upper-
triangular matrix, for example, by requiring them to be
non-negative. Let

Λ = diag

(
R11

|R11|
,
R22

|R22|
, . . . ,

RNN

|RNN |

)
. (8)

Then, Q → QΛ and R → ΛR is the QR-decomposition
with the upper-triangular matrix having non-negative di-
agonal entries. One can prove that the resulting unitary
matrices Q obey the distribution of the circular unitary
ensemble. Algorithmically, such unitary matrices are ob-
tained by performing Gram-Schmidt orthonormalization
(discussed below) on the columns of A. A sample from
the circular unitary ensemble can thus be obtained by
orthonormalizing a set of random vectors.

Let U(dt) be an N × N unitary matrix with time-
dependent elements. The goal is to express Q(t + dt) of
Eq. (5) as

Q(t+ dt) = Q(t)U(dt). (9)

for dt not necessarily small. Eq. (5) indicates that
the dynamics of Q(t) are generated by orthonormality-
preserving random rotations of the columns. Thus,
U(dt) interpolates between an identity matrix (dt =
0) and a sample from the circular unitary ensemble
(dt → ∞) in a way such that U(dt) is invariant un-
der unitary transformations. In other words, it gener-
ates a finite orthonormality-preserving random rotation
of the columns of Q(t). Generalizing the above algo-
rithm generating random unitary matrices, consider the
QR-decomposition

1+
√
dτA = U(dτ)R (Rnn ≥ 0). (10)

Here, A is again a sample from the Ginibre unitary en-
semble. This ensemble is invariant under unitary trans-
formations. The parameter dτ is some yet undetermined
function of dt, which for small enough dτ will be found
to be equal to dt. The aim is to show that U(dτ) corre-
sponds to U(dt) of Eq. (9). In Eq. (10), the columns un

of U(dτ) result from Gram-Schmidt orthonormalization
of the columns mn of the left-hand side,

un =
vn

||vn||
, vn = mn −

n−1∑
m=1

(um ·mn)um. (11)

In words, the n-th column is obtained by substracting
the projections on the first n − 1 columns, followed by
normalization. Columns with a higher index undergo

more substractions than columns with lower indices. For
Ndτ ≪ 1, these substractions do not significantly alter
the directions of the columns, which are then rotated
randomly since 1 + i

√
dτA is invariant under unitary

transformations. As the columns of U(dτ) are rotated
randomly, U(dτ) corresponds to U(dt) of Eq. (9) for a
proper choice of dτ , provided that Ndτ ≪ 1.
The limitation on the maximum value of dτ can eas-

ily be overcome by adapting a different, appropriate,
orthonormalization procedure. Löwdin symmetric or-
thonormalization is a procedure for which the columns
are treated symmetrically, that is, the outcome is inde-
pendent of the ordering [40]. For M denoting some ma-
trix, consider the singular value decomposition

M = U1ΣU
†
2 . (12)

Here, U1,2 are unitary matrices and Σ is a diagonal
matrix with real-valued nonnegative entries. Löwdin
symmetric orthonormalization gives the unitary matrix
U = U1U

†
2 , which can be shown to be optimal in the

sense that the distance

d =
∑
n

∣∣∣∣∣∣∣∣ mn

||mn||
− un

∣∣∣∣∣∣∣∣ (13)

between the columns mn of M and un of U acquires the
minimal possible value [41]. This invites to consider the
SVD-decomposition

1+
√
dτA = U1ΣU

†
2 , U(dτ) = U1U

†
2 , (14)

with A denoting a sample from the Ginibre unitary en-
semble. If M → U by Löwdin symmetric orthonormal-
ization, then V †MV → V †UV for unitary matrices V .
The Ginibre unitary ensemble is invariant under unitary
transformations. These two facts combined guarantee
the rotations generated by U(dτ) to be random. Thus,
U(dτ) corresponds to U(dt) of Eq. (9) for a proper choice
of dτ , without dτ required to be small.
The relation between dt and dτ can be established by

requiring U(dt) [Eq. (9)] and U(dτ) [Eq. (14)] to be
identically distributed. For U(dτ) [Eq. (14)], let u1(dτ)
denote the first column (the choice for the first column
is arbitrary), and consider the overlap

F (dτ) =
N

N − 1

(
|u1(dτ) · u1(0)|2 −

1

N

)
. (15)

The overlap is shifted and scaled such that F (0) = 1
and F (∞) = 0. Fig. 1 shows that the ensemble aver-
age of F is almost perfectly described at all times al-
ready for N = 10 by F = (1 − Ndτ/2)2 before and

F =
(
(1 + Ndτ)−2 + 2

√
2Ndτ

)−1
after the intersec-

tion at Ndτ ≈ 0.66211710937. These expressions have
been found empirically. Next consider U(dt) [Eq. (9)].
Eq. (5) dictates, as can be verified numerically, that the
product of two independent samples U(dt1) and U(dt2)
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FIG. 1. Plots of the ensemble-averaged value of F [Eq.
(15)] for dimensions N = 10, N = 100, and N = 1000
as a function of Ndτ on a small (left) and larger (right)
range. The solid lines show plots of (1 − Ndτ/2)2 and(
(1 + Ndτ)−2 + 2

√
2Ndτ

)−1
in gray and black, respectively.

is from the same distribution as U(dt1 dt2). For F de-
fined similar as above, this means that F (dt) = e−Ndt

since e−Ndt1e−Ndt2 = e−N(dt1+dt2). Equating F (dt) to
the piecewise expression F (dτ) introduced above gives

Ndt =

{
−2 ln(1−Ndτ/2) if Ndτ ≤ 0.662,

ln
(
(1 +Ndτ)−2 + 2

√
2Ndτ

)
if Ndτ > 0.662,

(16)
which can be inverted numerically to find dτ as a function
of dt. Up to first order, the approximation dt = dτ can
be made.

Numerical verification.— This Section provides a nu-
merical verification of the algorithm proposed above.
First, the focus is on the structure of the resulting ma-
trices. Fig. 2 shows density plots of |Q(dt)|2 for matrices
of dimension N = 50 at short (dt = 0.02) and longer
(dt = 0.05) times obtained through Eq. (5) [left, “naive”]
and Eqs. (9), (14), and (16) [right, “efficient”]. The ini-
tial condition Q(0) = diag(1, 1, . . . , 1) is taken such that
Q(dt) = U(dt). The values of dτ corresponding to these
values of dt are given in the caption. One observes that
the matrices on the left and right show identical charac-
teristics.

A sample from the unitary equivalent of the
Rosenzweig-Porter model, considered next, can be
obtained as Q(dt = N−γ) by taking Q(0) =

diag(eiθ
(0)
1 , eiθ

(0)
2 , . . . eiθ

(0)
N ) with the phases θ

(0)
n sampled

independently from the uniform distribution ranging over
[0, 2π) [21]. See Refs. [42, 43] for an introduction to the
Rosenzweig-Porter model and its relation to Dyson Brow-
nian motion. Level statistics are here quantified by the
average ratio ⟨r⟩ of consecutive level spacings [44, 45].
For unitary matrices with ordered eigenphases θn, the
n-th ratio is defined as

rn = min

(
θn+2 − θn+1

θn+1 − θn
,

θn+1 − θn
θn+2 − θn+1

)
. (17)

The average is taken over all n and a large number of
realizations. Wigner-Dyson level statistics are charac-
terized by ⟨r⟩ ≈ 0.600, while Poissonian level statistics

dt = 0.02 (naive) dt = 0.02 (efficient)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

dt = 0.05 (naive) dt = 0.05 (efficient)

FIG. 2. Density plots of |Q(dt)|2 obtained through Eq. (5)
[“naive”] and Eqs. (9), (14), and (16) [“efficient”] for dt =
0.02 (top, dτ ≈ 0.017) and dt = 0.05 (bottom, dτ ≈ 0.086).
Here, N = 50 and Q(0) = diag(1, 1, . . . , 1).

0.5 1.0 1.5 2.0 2.5
0.40

0.45

0.50

0.55

0.60

γ

〈r
〉

N = 100
N = 1000
N = 10 000

−15 −10 −5 0 5
(γ − 2) ln(N)

FIG. 3. The average ratio of consecutive level spacings ⟨r⟩ as
a function of γ [left] and (γ − 2) ln(N) [right] for the unitary
equivalent of the Rosenzweig-Porter model. The data is ob-
tained using Eqs. (9), (14), and (16). See the main text for
details.

obey ⟨r⟩ ≈ 0.386. The Rosenzweig-Porter model shows a
transition (at finite dimension, a crossing) from Wigner-
Dyson to Poissonian level statistics at γ = 2. When
plotted as a function of (γ−2) ln(N), the average ratio is
numerically found to be independent of N (finite-size col-
lapse) [21, 46]. Fig. 3 shows that the algorithm proposed
in this work leads to the same results, and illustrates the
capability of the algorithm proposed in this work to oper-
ate at large matrix dimensions (here, up to N = 10 000).
Ref. [47] (Fig. 1) shows a visually indistinghuishable
plot obtained using Eqs. (9), (10) with the first-order
approximation dt = dτ .

Conclusions and outlook.— Circular Dyson Brownian
motion describes the Brownian dynamics of particles in-
teracting through a long-range two-body potential in
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a one-dimensional environment with periodic boundary
conditions. This work proposed an easy-to-implement
algoritm [Eqs. (9), (14), and (16)] to simulate circu-
lar Dyson Brownian motion for the unitary class (Dyson
index β = 2, physically corresponding to broken time-
reversal symmetry). For short times Ndt ≪ 1, Eq. (14)
can be replaced by the computationally cheaper Eq. (10),
and the first-order approximation dt = dτ can be used
instead of the more complicated relation (16). The latter
approach is a generalization of a commonly used algo-
rithm generating samples from the circular unitary en-
semble, proposed in Refs. [37, 38]. In contrast to the cur-
rently used circular Dyson Brownian motion algorithm
[Eq. (5)], here the time step dt does not have to be small,
and no approximations have been involved. This allows
one to study time-evolution over arbitrarily large time in-
tervals at a computational cost independent of the length
of the time interval, without loss of accuracy. In typical
settings, this algorithm dramatically reduces the compu-
tational costs, thereby for example opening the possibil-
ity to perform large-scale simulations without the need
for high-performance computing facilities.

An arguably interesting follow-up question would be
how to modify the algorithm for the orthogonal and sym-
plectic classes. From a sample Q of the circular unitary
ensemble, a sample S from the circular orthogonal en-
semble can be obtained as S = QTQ [48]. It is thus
tempting to hypothesize that circular Dyson Brownian
motion for the orthogonal class can be simulated by the
algorithm proposed in this work, and by taking the prod-
uct of the transpose of the resulting unitary matrix and
the resulting unitary matrix itself as the output.

Circular Dyson Brownian motion can be used to nu-
merically generate non-ergodic unitary matrices (“uni-
taries”) with fractal eigenstates and a tunable degree of
complexity [21, 47]. Next to what is mentioned above,
this work can thus be expected to be relevant for fu-
ture studies on the emergence and breakdown of statis-
tical mechanics in the context of unitary (periodically
driven) systems. It also relates to recent developments
on algorithms generating random rotations [49]. Dyson
Brownian motion recently attracted a spurge of interest
in the context of the Brownian SYK model [50–56]. Uni-
tary Brownian quantum systems are of current interest in
the context of Brownian quantum circuits [57–62]. This
work finally can be expected to provide new opportunities
in the context of the non-trivial dynamics of Brownian
quantum systems.
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University.
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