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Abstract
Non-adiabatic photo-ionization is difficult to control as it relies on the derivatives of the
envelope and not on phase-details of the short ionizing pulse. Here, we introduce a catalyzing
state, whose presence render non-adiabatic ionization sensitive to phase-details of tailored
pulses. Since a catalyzing state is in general easy to create, this opens a perspective for
coherent control of ultra-fast ionization.
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1. Introduction

In recent years new phenomena in coupling of light to matter
have been uncovered through tailored laser fields, where the
emphasis has shifted from a typical coherent-control scenario
by a shaped laser pulse [1] to two-color pulses and/or dif-
ferent time-dependent polarizations [2–4]. Coherent control
of multi-photon transitions in the optical strong-field regime
by shaped pulses has been demonstrated [5] aided by Stark
shifts which modify multi-photon processes [6]. Along another
thrust, ever shorter pulses with nominal carrier frequencies
in the extreme-ultraviolet (XUV) regime have been pursued,
either generated by high-harmonic sources [7, 8] or by free-
electron lasers [9, 10], which can produce quite intense pulses.
For those pulses, phase manipulation is also possible [11]. Sur-
prisingly, using the longitudinal coherence within the wave-
form of light wave-packets, produced by individual relativistic
electrons, it is even possible with synchrotrons to shape pulses
on the attosecond time-scale (duration and separation) with
XUV carrier frequencies [12].

For the regime of ultra-short intense pulses, we have
demonstrated non-adiabatic photo-ionization (NAPI) [13–15],
typically for weakly-bound systems E0 ≪ ω, with the

∗ Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

electron’s binding energy E0 and the photon frequency ω. The
characteristic of NAPI is a peak of the ionization yield just
above the ionization threshold. The physics behind NAPI is a
time-scale hierarchy such that the photo-electron cannot fol-
low the fast change of the pulse envelope (therefore NAPI).
We have shown that NAPI is sensitive to the derivative of the
pulse envelope [15]. As a consequence, a single Gaussian pulse
acts like a double pulse in the NAPI regime with a time delay
between the two pulse-derivative peaks given roughly by the
width of the original Gaussian pulse. This remarkable feature
illustrates that the dynamics of NAPI is quite different from
standard photo-ionization and therefore, it is not clear a priori
if and how NAPI is susceptible to coherent control.

In the following, we will investigate if NAPI can be influ-
enced and steered by a tailored pulse form, where we put
emphasis on the question how this is possible in the first
place, rather than asking and interpreting effects of specifically
shaped pulses. To be specific, yet paradigmatic, we work with
a pulse form that is routinely used in coherent control experi-
ments [5, 16, 17]. It is generated in the frequency domain by a
modulation of the spectral phase in the vector potential

A(ω’) = NT
F
ω

e−[ω’−ω]2T2/8 ln 2 eia sin(ω’τ+φ) (1)

of a pulse with peak field strength F, carrier frequency ω
and full-width-at-half-maximum duration T . Hereby NT ≡
T/2

√
2π ln 2 ensures the proper amplitude of the cor-

responding pulse. The role of three control parameters
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Figure 1. (a) Sketch of the physical system with the relevant states. (b) and (c) Photo-electron spectra in logarithmic scale from short intense
pulses (I = 1016 W cm−2, T = 1 fs) at two photon frequencies ω.

a, τ and φ, which determine the spectral phase in equation (1),
is more intuitive for the pulse expressed in the time domain, as
given below in equation (3).

We do not aim at a specific control target, e.g., maximizing
or minimizing the population of a specific state. Rather, we
want to identify situations where the NAPI spectrum depends
sensitively on pulse details, in particular the modulation phase
φ. We will see that this requires another discrete state to be
closely coupled, which acts as a ‘catalyzer’ to evoke control-
lability of NAPI. To this end, we study ionization from the
excited 1s2p state of helium. Changing the photon frequency
ω, non-resonant as well as resonant situations are realized by
coupling to a deeper-lying bound state as indicated by the
sketch in figure 1(a). A resonant coupling can strongly enhance
the Stark shift and thereby drive non-adiabatic ionization. We
determine the electron dynamics in a single active-electron
description as detailed in appendix A.

2. Ionization by single Gaussian pulses

To set the stage and put NAPI into perspective, we show the
photo-electron spectra for single Gaussian pulses

A(t) =
F
ω

e−2 ln 2 t2/T2
cos(ωt), (2)

for two different photon frequencies ω in figures 1(b) and (c).
For the smaller one (ω = 15 eV) one can distinguish four
peaks corresponding to the absorption of j = 0 . . . 3 photons
within the energy range shown. For future reference and for
facilitating to address the features in the electron spectrum,
we define energy intervals ∆E j about these peaks with
∆E j = {E| −ω/2 < E −E j < ω/2} with E j ≡ E0 + jω
reached by a photon energy jω from the initial state at E0.
Note, that the final electron states can carry different angular
momentum ℓ in this few-photon scenario, see the sketch in
figure 1(a).

The NAPI channels correspond to ‘zero-photon
absorption’, which refers to the observation of an ampli-
fied ionization at low-energy electrons in the interval ∆E0,
with E > 0, forming the first peak in the spectra of figure 1(b).
In fact, this peak is the result of a two-photon Raman-like
process which excites the low-energy continuum close to
the initial state in a combination of photon absorption and

emission. The next peak around E1 is the biggest one and
corresponds to single-photon ionization into ℓ = 0, 2 con-
tinua. It is structured through dynamic interference as it is
well known [18]. Also clearly visible on the logarithmic scale
are the peaks in the intervals ∆E2 and ∆E3, respectively.
At the higher photon energy of ω = 35 eV, the light–matter
interaction is basically perturbative such that only the (stan-
dard) single-photon ionization peak E1 survives, even on the
logarithmic scale.

With figure 2 we explore the total NAPI probability P,
as defined in equation (A.4), for continuum electrons with
p-character (angular momentum ℓ = 1) for an ultra-short
(T = 1 fs) Gaussian pulse as a function of ω for three differ-
ent laser intensities. The p-state probabilities dominate since
the NAPI process is an effective zero-photon process with a
(small) admixture of an even number of photons. Hence, opti-
cal selection rules do not permit ℓ = 0, 2 final states to be
reached from our initial p-state, and the allowed final f-state
channel (ℓ = 3) is much weaker than the final p-state channel.

Outside resonances, photo-ionization yields typically
decrease with increasing frequency, for large ω proportional
to ω−7/2 [19], which is also the case here. However, in the
frequency range displayed, the spectrum is dominated by
a resonance-like peak between 20 and 25 eV. For increas-
ing intensity, it shifts slightly to larger ω and develops a
preceding dip. This structure is due to the resonance with
the 1s2–1s2p electron transition located (for weak fields)
at E1s2p −E1s2 ≈ 21.1 eV. Despite the strong variation of
the yield around frequencies close to the resonance, the
corresponding NAPI spectra (figures 2(b)–(e)) have remark-
ably similar and structure-less shapes inside and outside the
resonance region, albeit on very different scales.

3. Sensitivity of non-adiabatic photo-ionization to
the modulation phase

One might infer from the quite similar shapes of the NAPI
spectra in figures 2(b)–(e) that it is very difficult to coher-
ently control NAPI with standard shaped pulses. Yet, as it
will turn out, a pulse train with a modulated spectral phase,
routinely used in experimental realizations of pulse shaping
in the frequency domain [5, 16, 17] can achieve controlla-
bility of NAPI. The pulse train is obtained from a Fourier
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Figure 2. (a) Ionization probability for the non-adiabatic channel as a function of the photon frequency ω for a Gaussian pulse with duration
T = 1 fs and various intensities specified in the graph. The dotted line marks the transition energy between the 1s2 and 1s2p state, cf
figure 1. (b)–(e) Photo-electron spectra for selected frequencies specified in the graphs and marked in panel (a) with circles.

Figure 3. (a) Same as figure 2(a) but for a pulse train, given by equation (3), with a = 1, τ = 4 fs. The curves are averages over the phase
parameter φ. (b) Ratios of the probabilities from panel (a) and figure 2(a) as a function of the photon frequency ω. The shadings mark the
enhancement region.

transform A(t) = F [A(+ω′) + A∗(−ω′)]/2 with A(ω′) given in
equation (1) and reads [20]

A(t) =
F
ω

∑

k

Jk(a)e−2 ln 2 [t−kτ ]2/T2
cos(ω[t −kτ ] −kφ), (3)

with Jk denoting Bessel functions. How strongly the orig-
inal Gaussian pulse is distributed over separate pulses in
the train is controlled by a, the amplitude of the phase
oscillation in equation (1). We will choose a = 1, which
results in a train with essentially nine pulses, since J0...4(1) ≈
{0.765, 0.440, 0.115, 0.020, 0.002}. The delay between the
pulses is fixed by τ . The modulation phase φ introduces a dif-
ference φ in the carrier-envelope phase of adjacent pulse mem-
bers of the train, see equation (3), which will become important
later on.

Firstly, we take a look at the ionization probability with this
pulse train as we did in figure 2(a) for single Gaussian pulses.
Figure 3(a) shows the probability P as a function of ω for
the same three intensities I. Note that the separation τ = 4 fs
together with the duration T = 1 fs of the individual pulses in

the train ensures that they do not overlap in time. The bar indi-
cates that we have averaged the spectra over the modulation
phase φ,

p(E) =
1

2π

∫
dφ pφ(E), (4)

with P being the integral over p(E), cf equation (A.4).
Despite the different shapes compared to the single-pulse
yields in figure 2(a), the qualitative behavior is the same: a
monotonic decrease interrupted by a peak in the vicinity of
ω ≈ E1s2p −E1s2 . Interestingly, the total yield can be con-
siderably larger than for the Gaussian pulse, as apparent
from figure 3(b), which shows the ratio of the yields from
figures 3(a) and 2(a). Since NAPI is enhanced by large deriva-
tives of the pulse envelope [15], it is surprising that a longer
pulse, with smaller slopes in the overall envelope, can induce
an order-of-magnitudelarger ionization probability at I = 1016

W cm−2. The enhancement for all three intensities is visualized
by shaded areas in figure 3(b). In contrast, outside the reso-
nance region, for frequencies ω ! 20 eV or ω,", 27 eV, the
ionization probability is strongly suppressed as expected for a
stretched pulse.
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Figure 4. (a) Variance of the photo-electron spectra with respect to the modulation phase φ, defined in equation (5), for pulse trains
according to equation (3) with I = 1016 W cm−2, a = 1, τ = 4 fs as a function of the photon frequency ω. (b)–(e) Representative
photo-electron spectra pφ(E) as a function of φ for selected photon frequencies, marked with circles in figures 3(a) and 4(a), with the color
scale for the electron yield normalized to the maximal yield.

Figure 5. Density of states (DOS) with p-character (ℓ = 1) in logarithmic scale from a dressed-state diagonalization, cf appendix B, as a
function of the photon frequency ω for three laser intensities. The dashed horizontal line marks the energy E1s2p, the dotted sloping line the
energy E1s2 + ω. They cross at resonance.

Secondly, we want to assess how strongly the photo-
electron spectra depend on the phase parameter φ, since a
strong sensitivity could represent a knob for controlling NAPI.
In order to quantify this sensitivity, we compute the variance
of the spectra with respect to the modulation phase φ, defined
as

V2 =
1

P2

∫
dE

∫
dφ

[
pφ(E) −p(E)

]2 (5)

with p(E) from (4) above, and show it in figure 4(a). As already
seen for the probability, the region around the resonance sticks
out and shows a noticeable variance. Below and above the reso-
nance frequency, however, one sees the behavior characteristic
for NAPI, namely that the ionization is determined by the enve-
lope of the pulse only [15], but not by any carrier-oscillation
features. In order to visualize this dependence, we show repre-
sentative photo-electron spectra from different regions appear-
ing in figure 3(a) in parallel to figures 4(b)–(e) now, however,
as a function of electron excess energy and modulation phase
φ. While for a single Gaussian pulse, the photo-electron spec-
tra are not affected by the resonance, the situation is quite
different for the spectra generated with the pulse train: here,
the shape of the spectra varies strongly around the resonance
for different φ.

4. The role of the catalyzing state

Having established that NAPI can be coherently controlled, at
least in the presence of a catalyzing state which can be ener-
getically very far away (here at an energetic distance of ω), we
will elucidate the origin of the sensitivity of NAPI on φ in the
vicinity of the resonance. To this end, we show in figure 5 how
energies of p-state (ℓ = 1) electrons get ‘deformed’, i.e. Stark
shifted and hybridized, due to the coupling to s- and d-states.
The color code of the hybridized DOS marks the strength of
their p-character at energy E (for a specific ω), for details see
appendix B. The color-coded DOS also nicely illustrates the
hybridization of angular momentum character of the DOS near
the avoided crossings: along an adiabatic trace which bends
strongly near the avoided crossing, the character of the elec-
tron density changes, from dominant s-character through the
1s2 + ω dressed state (with a finite slope due to ω) to the
1s2p state with dominant p-character given by a horizontal line
at energy E1s2p which the electron density trace approaches
towards large frequencies from below (and towards small fre-
quencies from above). Note that the background density is
also hybridized, most clearly visible from the area-filling color
shades in figure 5.
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At resonance E1s2p = E1s2 + ω the 1s2p-state shows an
Autler–Townes splitting [21], i.e. structures below and above
the field-free energy of E1s2p = −3.48 eV (dashed line). The
latter is crossed by the dressed state with field-free energy
E1s2 + ω (shown with a dotted line). Note that the actual field-
dressed states are shifted and have their interaction-caused
avoided crossing at higher photon energies than the field-free
states. This results in peaks consistently blue shifted with
respect to the ω = E1s2p −E1s2 resonance energy of 21.1 eV
in figures 2(a)–4(a). This blue shift is another signature of
non-adiabatic ionization, which is in fact a virtual two-photon
process: whereas the coupling from the initial state to the
catalyzing state (‘1st photon’) is symmetric around the
resonance condition, the transition from the catalyzing state
to the continuum (‘2nd photon’) is not. This can be illustrated
in 2nd-order perturbation theory, neglecting for convenience
the dipole-coupling matrix elements. The transition prob-
ability to a continuum state at energy E reads pω(E) ∝
exp(−[[δ1 −ω]2 + [δ2 −ω]2]T2/4 ln 2), with the transition
energies δ1 ≡ E1s2p −E1s2 and δ2 ≡ E −E1s2 , respectively.
This probability does not peak at ω = δ1 but rather at
ω = [δ1 + δ2]/2. Noting that the non-adiabatic photo-
electrons have an energy around E = 1 eV, cf figures 2(b)–(e),
gives for our system an optimal frequency of about
ω ≈ 23.4 eV, in accordance with the numerical results
presented in the previous sections.

5. Summary

We have investigated how NAPI induced by ultra-short XUV
pulses, can be influenced through specific pulse forms to exert
coherent control as well-known for standard photo-ionization.
We have demonstrated that a spectral-phase modulated pulse
train, where individual pulses k in the train have different
carrier-envelope phases kφ, can achieve control provided an
additional catalyzing state is available. A state qualifies as
catalyzing if it forms a resonance with the initial state E0 −
Ecat ≈ ω. Since this kind of pulse trains is routinely used to
shape longer optical pulses in the frequency domain and since
pulse shaping has also been demonstrated for XUV pulses
recently, we expect that controlling NAPI will be possible
experimentally in the future.

Moreover, while illustrated here with the quantitative
example of helium, the control scheme should be applicable to
other targets as well, in particular as it relies on a resonant sit-
uation which usually dominates over other (e.g. multi-electron
effects) in the vicinity of the resonant energy.
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Appendix A. Numerical details

The helium atom is treated in the single-active-electron
approximation. The following effective potential [22]

V(r) = −1 + e−αr

r
(A.1)

with α = 2.1325 has been used. It provides a good approx-
imation for the energies of the relevant states of helium,
namely E1s2 = −24.59 eV and E1s2p = −3.48 eV (with the
values E1s2 = −24.59 eV and E1s2p = −3.37 eV from accurate
two-electron calculations [23]).

The lowest jmax field-free statesϕ jℓ of each angular momen-
tum ℓ = 0 . . . ℓmax are calculated numerically by means of the
Numerov method in a finite box r = 0 . . . rmax with a grid spac-
ing of δr = 0.01a0, which gives highly accurate energies and
states. The box size rmax = 2000a0 is chosen such that the con-
tinuum wave-packet does not reach the box boundary within
the propagation time. We use ℓmax = 4 and jmax = 1500, i.e.
7500 states in total, with the highest ones having an energies
of E ≈ 75 eV.

The time-dependent Schrödinger equation (TDSE) is
solved in velocity form for a linearly-polarized pulse in terms
of the field-free basis

iȧ jℓ(t) =
∑

j′ℓ′

[
E jℓδ j j′δℓℓ′ + A(t)D jℓ j′ℓ′

]
a j′ℓ′(t) (A.2)

with the coupling matrix D jℓ j′ℓ′ ≡ ⟨ϕ jℓ|p̂z|ϕ j′ℓ′ ⟩ and the time-
dependent vector potential A(t) chosen appropriately, cf
equations (2) and (3). As a convergence check we have solved
the TDSE for some selected cases in the length form, whereby
A(t) → F(t) = −d

dt A(t) and D jℓ j′ℓ′ → ⟨ϕ jℓ|z|ϕ j′ℓ′ ⟩, with essen-
tially identical results.

The electron energy spectrum for a certain angular momen-
tum ℓ (here only ℓ = 1, apart from figure 1) is obtained with
wj ≡ |aj,ℓ=1(t →∞)|2 as

p(E) =
1√
π δE

(ℓ=1)∑

j

w j e−[E−E jℓ j ]
2/δE2

, (A.3)

with δE = 0.05 eV. The corresponding non-adiabatic ioniza-
tion probability are obtained from the integration

P =

∫ E1/2

0
dE p(E) (A.4)

with the upper integration limit E1/2 = E0 + ω/2.

Appendix B. Dressed-state description

In order to analyze the role of the catalyzing state, cf section 4,
we build a dressed-state matrix [24]

H jj′(F,ω) = [E j + n jω]δ j j′ +
F/ω

2
D jℓ j j′ℓ j′

, (B.1)

that has a block-diagonal shape, whereby the five blocks are
defined by the ‘photon numbers’ nj = {+1, +1, 0,−1,−1}
and the angular momenta ℓ j = {0, 2, 1, 0, 2}. Field strength F
and photon energy ω are parameters here. Field-free eigenen-
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ergies E j and the coupling-matrix elements D jℓ j j′ℓ j′
are calcu-

lated as described in appendix A.
The eigenstates from the diagonalization of matrix (B.1)

∑

j′

H jj′(F,ω)V j′k(F,ω) = V jk(F,ω)Ek(F,ω) (B.2)

are used to calculate by means of an angular-momentum pro-
jection operator P[ℓ]

j j′ ≡ δℓℓ jδ j j′ weights wk =
∑

j j′V jkP[1]
j j′V j′k

and therewith, according to equation (A.3), the DOS shown
in figure 5.
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