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We develop general quantitative criteria for dynamic interference, a manifestation of a double-slit
interference in time which should be realizable with brilliant state-of-the-art high-frequency laser sources.
Our analysis reveals that the observation of dynamic interference hinges upon maximizing the difference
between the dynamic polarization of the initial bound and the final continuum states of the electron during
the light pulse while keeping depletion of the initial state small. These two properties, Stark shift and
depletion, can be determined from electronic structure calculations avoiding expensive propagation in time.
Confirmed by numerical results, we predict that this is impossible for the hydrogen ground state but
feasible for excited states; this has been exemplified for the case of the hydrogen 2p state.
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Interference is a basic concept ruling optical as well as
quantum mechanical wave phenomena, most prominently
realized through variations of the double-slit scenario,
by means of photoelectron spectroscopy with short-
wavelength radiation even on an atomic level [1–4]. The
advent of intense laser pulses with a finite pulse length has
contributed a new natural double-slit scenario in the time
domain: A wave packet that is launched for some dynamic
reason at a certain time of the raising part of the pulse, in
principle, encounters the same laser envelope amplitude at
a certain time during the falling part of the pulse, con-
stituting a double slit in time. If the source for the wave
packet has not changed between the two “slits,” interfer-
ence of both wave packets with maximal possible contrast
results, depending on the time interval between the slits.
This scenario was experimentally seen [5] and theoretically
described [6] early on for bound-state population transfer
with low-frequency pulses. It was touched upon in the
context of stabilization study with the high-frequency
Floquet theory for above-threshold ionization [7,8] to
finally become topical under the name dynamic interfer-
ence in the soft x-ray domain for femtosecond pulses
[9,10]. Indeed, the breathtaking development of intense
light sources towards attosecond pulse lengths [11] and
x-ray frequencies [12] has tremendously broadened the
parameter range available for light-matter interaction and,
consequently, for the fundamental phenomenon of dynamic
interference.
In order to trigger experiments and gain an understand-

ing of the general phenomenon of dynamic interference, in
the following, we will work out the parameter windows
where dynamic interference is prominent on very different
scales of time and energy. Formulating the relevant proper-
ties of the laser pulse and the target electron leads us to the
appropriate theoretical framework for dynamic interfer-
ence. Making use of the minimal analytical model
described before [10], we will show that only its version

in the (reduced) velocity gauge can be safely used. As it
turns out, the same is true for numerical implementations of
dynamic interference, although for different reasons.
Surprisingly and in contrast to previous claims, we also
find that ionization of hydrogen from its ground state does
not exhibit dynamic interference, whereas ionization from
an excited state does indeed result in dynamic interference.
The soft x-ray regime we will be mainly concerned with

here (electron excess energies below 100 eV) is challenging
from a theoretical point of view, since single-photon
ionization in the vacuum ultraviolet regime cannot be
taken as the indication for a standard perturbative light-
matter coupling: First, there may be substantial depletion of
the ionized state during the pulse, and second, multiphoton
processes can be involved as indicated by appreciable
dynamic Stark shifts (also referred to as ac Stark shifts) of
energies. However, due to the weak transitions in the
continuum, multiphoton interaction does not lead to sub-
stantial multiphoton ionization, in contrast to infrared or
optical pulses [13].
For this intermediate regime of light-matter coupling,

which is neither fully perturbative nor does it lead to
multiphoton ionization, we will identify the two dimen-
sionless parameters δ and γ accounting for the dynamic
Stark shift and depletion of the initial state, respectively.
The appearance of dynamic interference depends on a
suitable ratio of these two parameters.
We start from the standard minimal-coupling

Hamiltonian written in the velocity gauge:

Ĥvel ¼ 1

2
½p̂þAðtÞ&2 þ Vðr̂Þ; ð1aÞ

where V is some external potential and

AðtÞ ¼ A0gðtÞ cosðωtÞ ð1bÞ
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is the vector potential of the laser pulse with a Gaussian
envelope gðtÞ ¼ expð−t2=T2Þ. We use atomic units
throughout the text unless noted otherwise. We represent
solutions jψðtÞi of the time-dependent Schrödinger equa-
tion for (1) with an expansion into field-free (bound and
continuum) states φα:

jψðtÞi ¼ e−ði=2Þ
R

t dt0A2ðt0ÞX
Z

α

jφαie−iEαtaαðtÞ; ð2Þ

where the exponential prefactor transforms away 1
2A

2ðtÞ
appearing in (1a). We will call this new gauge the reduced
velocity gauge. The index α comprises all quantum
numbers defining the eigenstate, which in the case of
continuum states are the energy E and the symmetry κ. The
standard 1st-order time-dependent perturbation theory
predicts the amplitude (of continuum states at energy E)

aE;κ ¼ −ipE;κ

Z
dtAðtÞei½E−Ein&tainðtÞ ð3Þ

for ionization to a final energy E from initial energy Ein.
The dipole matrix elements pE;κ ≡ hφE;κjp̂jφini connect the
initial state φin to continuum states φE;κ of energy E.
Because of selection rules, only some of the matrix
elements are nonzero. For the photoeffect, implying weak
perturbations AðtÞ, Eq. (3) allows for an explicit solution,
since one may assume that ainðtÞ ¼ 1 for all times.
For dynamic interference, however, the dynamic Stark

shift and the depletion of the initial state become relevant.
As long as the laser envelope varies slowly compared to the
laser cycle, the system remains in an adiabatic regime
where one may average the response of the system to the
laser field over the laser cycle to arrive at a formulation
solely expressed in terms of the laser envelope gðtÞ.
Incorporated into (3), one obtains a modified coefficient
ainðtÞ which still allows for a solution (at least in terms of a
stationary-phase approximation) as before [9,10]. Hereby,
the phase of ain becomes time dependent:

ainðtÞ ¼ e−iϕ
δγ
in ðtÞ ð4aÞ

ϕδγ
in ðtÞ ¼ ½δ − iγ=2&EpTGðtÞ; ð4bÞ

with the ponderomotive energy Ep and the dimensionless
function G, respectively, defined by pulse parameters

Ep ≡A2
0

4
¼ I

4ω2
; ð4cÞ

GðtÞ≡ 1

T

Z
t
dt0g2ðt0Þ: ð4dÞ

The derivative dϕδγ
in=dt can be interpreted as the com-

plex, frequency-dependent energy of the initial state in the

laser pulse, proportional to the (peak) ponderomotive
energy Ep. Thereby, δ accounts for the Stark shift Δ [the
Stark shift is indeed the time derivative of the phase ΔðtÞ ¼
δEpTðd=dtÞGðtÞ ¼ δEpðtÞ with EpðtÞ ¼ Epg2ðtÞ], and the
decay width γ accounts for the depletion. Both constants
depend on the laser frequency ω and can be derived from
the 2nd-order time-independent perturbation theory (see
Sec. 1 of Supplemental Material [14]) or equally extracted
from a numerical propagation [10]. Obviously, the minimal
description (4) is valid only as long as the Stark shift and
decay width are linear in Ep.
In Eq. (4), the dynamic Stark shift has been introduced

only to the initial state but not to the final state in the
continuum. This is legitimate only in the reduced velocity
gauge, where each state has just an intrinsic dynamic Stark
shift as shown in Fig. 1(a), with the one for the continuum
being in general negligible. This also applies to the velocity
gauge [Fig. 1(b)], where all states have an additive ponder-
omotive shift, which can be easily removed by a global
phase in the wave function as done in Eq. (2). By contrast,
in the length gauge the ponderomotive shift cannot be
easily separated, as indicated in Fig. 1(c). There, to a good
approximation [17], the Stark shift of continuum electrons
is given by the ponderomotive energy. Consequently, the
intrinsic Stark shift of any continuum state in the reduced
velocity gauge is rather small and negligible, rendering the
description with Eq. (4) adequate.
As just emphasized, in the length gauge the (trivial)

ponderomotive shift cannot be split off the initial or final
states and therefore has to be covered by any convergent
numerical calculation, which is typically much more
demanding than in the velocity gauge (e.g., many more
partial waves are required). This is the reason why it has
been noted in long-wavelength strong-field physics that the
velocity gauge is preferable for numerical calculations
[18,19].
From Fig. 1, one obtains an intuitive understanding

regarding the mechanism behind dynamic interference
independent of the gauge: The initial-state energy increased

(a) (b) (c)

FIG. 1. Sketch showing the relation of the dynamic Stark shifts
ΔðtÞ of both the initial bound and final continuum states for (a) the
reduced velocity gauge Ĥred ¼ 1

2 p̂
2 þAðtÞp̂þ Vðr̂Þ, (b) the

velocity gauge Ĥvel ¼ 1
2 ½p̂þAðtÞ&2 þ Vðr̂Þ, and (c) the length

gauge Ĥlen ¼ 1
2 p̂

2 þ Vðr̂Þ − d
dtAðtÞ · r̂, respectively. See also

Sec. 2 of Supplemental Material [14].
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by ω for single-photon absorption may intersect the energy
E of the final state at two points (in time). These time
instants are stationary-phase points where the time deriva-
tive of the phase in the integral (3) vanishes; hence, the
amplitudes at these two dominate the integral constituting
the two-slit scenario. Dynamic interference will be most
pronounced if the Stark shifts of initial and final states are
very different. Quantitative details as well as the possibility
for dynamic interference in the first place depend, of
course, on the parameters entering the phase, namely,
the electronic response properties δðωÞ and γðωÞ in con-
nection with the pulse properties Ep and T, which we will
analyze next.
From the minimal model (4), it is easy to see that two

conditions must be fulfilled for dynamic interference:
(i) The Stark shift must be larger than the bandwidth of
the pulse with length T in order to be energetically
resolved, and (ii) depletion should be sufficiently weak
in order to have ionization in the rising and falling wings of
the pulse. In order to quantify these conditions, we note
that the bandwidth of the pulse (1b) is

ffiffiffi
2

p
=T and that

Gð0Þ ¼
ffiffiffiffiffiffiffiffi
π=2

p
. Thus, on one hand, condition (i) is satisfied

if

δEp >
ffiffiffi
2

p
=T or EpT >

ffiffiffi
2

p

δ
: ð5Þ

On the other hand, condition (ii) is fulfilled if

γ
2
EpTGð0Þ < 1 or EpT <

ffiffiffiffiffiffiffiffi
2=π

p

γ
: ð6Þ

These two conditions give lower and upper limits for the
product EpT. Apparently, they can be met simultaneously
—thus allowing for dynamic interference—only if

δ >
ffiffiffi
π

p
γ; ð7Þ

which implies that in the competition between the Stark
shift and depletion the former should dominate. This
condition holds for any atom or molecule. As a conse-
quence, we can predict the laser parameters for which one
will observe dynamic interference, provided the response
parameters δðωÞ and γðωÞ are known. They are shown in
Fig. 2(b) for the ground state of hydrogen as an example.
Having condition (7) in mind, one sees from Fig. 2(b)

that this requires frequencies larger than ~ω ¼ 265 eV [21],
where γð ~ωÞ ¼ δð ~ωÞ holds. This is confirmed by the
numerical photoabsorption spectra in Fig. 2(a) determined
by the direct propagation of the time-dependent
Schrödinger equation in the (reduced) velocity gauge for
the photon frequency ω marked by the green arrow in
Fig. 2(b). Numerical details are given in Sec. 3 of
Supplemental Material [14]; the parameters used are
lmax ¼ 4, rmax ¼ 3000a0, n ¼ 3000, and Emax ≈ 134 eV.
As one can see from Fig. 2(a), the spectrum has a single
photoelectron peak which gets Stark-shifted and broadened
for increasing intensities while keeping the pulse length
fixed at T ¼ 10 fs. The results have been confirmed with
two other packages [22,23] for the numerical propagation
of the time-dependent Schrödinger equation.
In contradiction to these results, dynamic interference has

been reported for the hydrogen ground state [9,10,24,25].
Even more puzzling, the numerical findings (obtained in the
length gauge) seem to be supported by corresponding results
from the minimal model in the length gauge appearing in
the same papers. It is very rare and unfortunate that two
independent mistakes, both related to a faulty usage of the
length gauge, one in the model and one in the numerical
calculation, should lead to agreeing results, seemingly
reassuring the findings regarding dynamic interference [26].
The analytical mistake is easy to identify and originates

from using the minimal model (4) in the length gauge
but leaving out the Stark shift in the continuum state [see
Fig. 1(c)]. Thereby, the difference between the time-
dependent energies of initial and final states is artificially
increased, leading to the appearance of stationary-phase
points of the integrand in (4) at the wrong intensities. The
numerical calculations were carried out in the length gauge
with a limited number of partial waves, not enough to
properly describe the ponderomotive motion of the elec-
tron. This parallels the mistake in the analytical model,
where the ponderomotive energy dependence was left out
and therefore leads to the accidental agreement of numeri-
cal and analytical calculations in those papers [9,10,24,25].
A detailed comparison of numerical calculations in the
length and velocity gauges for different maximal angular
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FIG. 2. (a) Photoelectron spectra for 1s hydrogen exposed to
10 fs pulses with a carrier frequency of ω ¼ 53.60 eV for
intensities Ik ¼ 10k=4 × 1015 W=cm2 with k ¼ 0; 1;…; 8. The
dashed line marks the energy Eω ¼ E1s þ ω ¼ 40 eV. The result
of the minimal model (4) is shown for two intensities by dot-
dashed lines. (b) Dimensionless parameters δðωÞ and γðωÞ for the
hydrogen 1s state as introduced in Eq. (4) and defined in detail in
Sec. 1 of Supplemental Material [14]. The asymptotic behavior of
them for ω → ∞ is given for both [20]. The green arrow marks
the frequency ω ¼ 53.6 eV used in the left panel and in previous
publications [9,10].
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momenta can be found in Sec. 3 of Supplemental
Material [14].
Extrapolating from the conditions for dynamic interfer-

ence in ionizing hydrogen, it seems very difficult to realize
this phenomenon with state-of-the art laser systems. Yet,
this can be easily achieved starting from the 2p excited
state, which at the same time highlights the relevance of
considering the proper Stark shifts. Starting from 2p and
choosing appropriate intensities and frequencies of the
laser, we can prepare an effective initial state which has no
Stark shift in the length gauge (or a large negative Stark
shift in the reduced velocity gauge). This implies a large
difference in the Stark shifts between the continuum and
initial bound states and therefore offers excellent conditions
for dynamic interference.
At a frequency of ω ¼ 12 eV, the dynamic Stark shift of

the 2p state vanishes (in the length and velocity gauges) and
is therefore given by ΔðtÞ ¼ −EpðtÞ in the reduced velocity
gauge, as can be seen in Fig. 3(c). At this frequency, the
coupling to the 1s state fully compensates the coupling to all
other states such that the polarizability and the Stark shift
vanish. We have performed a propagation with the same
parameters as before and obtained the spectra shown in
Figs. 3(a) and 3(b); cf. details in Sec. 2 of Supplemental
Material [14]. Since we start from a p state, photoelectrons
are emitted into s andd channels,where the yield for the latter
is larger due to the larger dipole matrix element. However,
qualitatively, both angular momentum channels exhibit the
samebehavior for increasing intensities I. For low intensities,
the spectrum is Gaussian-shaped and slightly redshifted with
respect to Eω ¼ E2p þ ω. This shift increases with larger I,
and for I ≳ 5 × 1014 W=cm2 one clearly sees dynamic

interference in both channels. We note in passing that,
according to earlier publications [9,10], one would not
expect any dynamic interference at all here. Moreover, in
contrast to the blueshift predicted previously, we observe a
redshift increasingwith intensitywhich followsdirectly from
ΔðtÞ < 0 mentioned above.
In summary, by formulating single-photon ionization in

the 1st-order time-dependent perturbation theory with
phases obtained from the 2nd order, we have derived
quantitative conditions under which dynamic interference
can occur. The approach is tailored towards the dynamic
regime of nonperturbative single-photon ionization, char-
acteristic of interactions with intense soft x rays, and has
allowed for the separation of the frequency-dependent
response of the electronic system in terms of Stark shift
δðωÞ and depletion γðωÞ and the time-dependent laser pulse
envelope. This separation facilitates the determination of
the electronic response by electronic structure calculations
and helps to accurately assess experimental conditions for
dynamic interference.
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Supplement for “Essential conditions for dynamic interference”
Mehrdad Baghery, Ulf Saalmann & Jan M. Rost

A detailed derivation of some (largely known) basic analytical expressions is provided. Firstly, we
give explicit expressions for the two dimensionless parameters � and � describing respectively the
dynamic Stark shift and the depletion of some state in a high-frequency laser pulse, followed by
their asymptotic behaviour. Secondly, we show how the Stark shifts in different gauges are related.
Thirdly, we outline the numerical procedure for propagation of the TDSE, and stress convergence
problems in the length gauge by comparing the results of a few systematic simulations (with an
increasing number of partial waves included in the propagation) in the velocity and length gauges.

1 Stark shift and depletion in single-photon ionization

In order to explain the notation used in the text�, in this section we will describe the Stark shift
and the depletion of an initial state upon irradiation with a high-frequency laser pulse. The ideas
presented here largely follow those presented before [1], followed by further definitions and a
general discussion.

The wavefunction evolving according to the time-dependent Schrödinger equation

i

@

@t

�� (t)
↵
=

ˆH(t)
�� (t)

↵
with ˆH(t) =

1

2

⇥
ˆp+A(t)

⇤
2

+ V (

ˆr)

and A(t) = A
0

g(t) cos(!t) (S1)

can be expanded in terms of field-free states, cf. ansatz (2) in the text. The amplitude of the initially
occupied state '

in

, and all the bound/continuum states '↵ having a non-vanishing coupling
p↵ = h'↵|ˆp|'in

i with the initial state respectively reads

i

d

dt
a
in

(t) = g(t)
XZ

↵

A
0

· p↵
⇤

2

X

±
e

i[Ein±!�E↵]ta↵(t), (S2a)

i

d

dt
a↵(t) = g(t)A

0

· p↵

2

X

±
e

i[E↵±!�Ein]ta
in

(t). (S2b)

Assuming that the envelope changes slowly, i. e. d

dtg(t) ⇡ 0, which implies d

dtain(t) ⇡ 0, one can
solve Eq. (S2b) approximately to get

a↵(t) ⇡ �g(t)A
0

· p↵

2

X

±

e

i[E↵�Ein±!]t

E↵ � E
in

± !
a
in

(t). (S3)

This can be in turn used in Eq. (S2a) to get the following equation for the amplitude of the initially
occupied state

d

dt
a
in

(t) = �iE
p

(t)
⇥
� � i�/2

⇤
a
in

(t) with E
p

(t) ⌘ A
0

2

4

g2(t), (S4a)

�Here and in the following we use “text” when referring to the text of main manuscript.
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where terms with e

±i2!t have been neglected and the following definitions have been used

� ⌘ �
XZ

↵

X

±

ep↵2

E↵ � E
in

± !
=

XZ

↵

ep↵2
2[E↵�E

in

]

!2 � [E↵�E
in

]

2

(S4b)

� ⌘ 2⇡

Z
dE↵ �

�
E↵ � [E

in

+!]
�
ep↵2 = 2⇡ ep!2 with E! = E

in

+ ! (S4c)

ep↵ ⌘ A
0

|A
0

| · p↵, (S4d)

with the integral part of Eq. (S4b) being understood as Cauchy principal value.
Such equations have been derived before [1], but here � and � are defined slightly differently

such that they are solely determined by the system (and the frequency). In particular, we have
taken out the instantaneous ponderomotive energy E

p

(t) which depends on time through the
pulse envelope g(t) as defined in Eq. (S4a).

1.1 Asymptotic behavior and condition for dynamic interference

The asymptotic behavior of � and � at large frequencies ! is given by

� ⇡ 2

X

↵

[E↵�E
in

] ep↵2

!2

⇠ !�2 (S5a)

� ⇠
p
!
h
!

8

p
2!

[1 + 2!]3

i
2

⇠ !�5/2. (S5b)

where in the first step of Eq. (S5a) we have restricted the sum to bound states since their coupling
matrix elements are much larger than those of the continuum states. In the second step we have
assumed E↵�E

in

⌧ !. In order to get Eq. (S5b), we note that at high frequencies ! (and thus high
energies E↵) the electron can be considered free and therefore its radial wavefunction becomes
'↵ ⇠ [2E↵]

1/4j
1

(

p
2E↵r) ⇡ [2!]1/4j

1

(

p
2!r), with j

1

being the 1st-order spherical Bessel function.
This allows for an easy analytical integration with the result shown above. The asymptotic behavior
(S5) has been derived by means of high-frequency Floquet theory before [2].

As becomes clear from these considerations, one always ends up with� < � in the limit of!!1
regardless of the system. In other words, for any system there is always a crossover frequency
e!, however large, above which �(!) < �(!). Thus — in principle — dynamic interference can be
observed for appropriate laser parameters.

Considering a hydrogen-like atom with nuclear charge Z, one gets related quantities

�Z(!) = Z�4 �(Z2!), �Z(!) = Z�4 �(Z2!) (S6)

by simple scaling arguments. Visibly the transition to �Z(!) >
p
⇡ �Z(!) occurs for Z > 1 at a

Z2–times larger frequency and is connected with a Z4–times larger product E
p

T , cf. Eqs. (5) and
(6) in the text.

2 Dynamic Stark shift

We summarize formulas for the dynamic Stark shift (often referred to as �� Stark shift) and discuss
the Stark of the ground and an excited state of the hydrogen atom.
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2.1 Length vs. velocity gauge

Given the three Hamiltonians [3]

ˆHred

=

1

2

ˆp2

+A(t)ˆp+ V (

ˆr) (S7a)

ˆHvel

=

1

2

⇥
ˆp+A(t)

⇤
2

+ V (

ˆr) (S7b)
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1

2

ˆp2

+ V (

ˆr)� d

dt
A(t) · ˆr (S7c)

and the initial conditions
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↵
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↵
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(�1)

↵
, the solutions of the time-

dependent Schrödinger equation for ⇠ = len, vel, red
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(S8)

are connected by
�� vel

(t)
↵
= e

� i
2

R t
dt0A2

(t0)
�� red

(t)
↵
, (S9a)

�� len

(t)
↵
= e

+iA(t)·ˆr�� vel

(t)
↵
. (S9b)

Note that
�� len

(t⇤)
↵
=

�� vel

(t⇤)
↵

every time when A(t⇤) = 0, i.e. both states agree periodically.�� vel

(t)
↵

and
�� red

(t)
↵

differ only by a trivial phase e

� i
2

R t
dt0A2

(t0) introduced in Eq. (2) of the text.
By means of the 2nd-order perturbation theory one can calculate the Stark shift of an eigenstate

'⇤ in terms of all (bound and continuum) eigenstates in the three cases as follows [3], cf. also
Eq. (S4b) above,

�

red

(t) = E
p

(t)
XZ

↵

��⌦'↵

��
ˆp
��'⇤

↵��2 2E↵⇤
!2 � E↵⇤2

, (S10a)

�

vel

(t) = �

red

(t) + E
p

(t), (S10b)

�

len

(t) = E
p

(t)
XZ

↵

��⌦'↵

��
ˆr
��'⇤

↵��2 2E↵⇤
1� E↵⇤2/!2

. (S10c)

where the abbreviationE↵⇤ ⌘ E↵�E⇤ is used. As above,E
p

(t) is the instantaneous ponderomotive
energy which changes in time because of the pulse envelope g(t).

By means of the identity h'↵|ˆp|'⇤i = iE↵⇤h'↵|ˆr|'⇤i for the matrix elements and the TRK sum
rule [4], 1 = 2

P
↵E⇤↵|h'↵|ˆr|'⇤i|2, it is easy to show that �

vel

= �

len. It turns out, the Stark
shift in the length gauge always contains (in a non-separable way) the ponderomotive shift E

p

(t),
whereas in the velocity gauge the ponderomotive shift can be easily taken out simply by neglecting
1

2

A2

(t) in the Hamiltonian (S7b) and using (S7a) instead. All three expressions (S10) are shown
schematically in Fig. 1 of the text.

The Stark shifts in the various gauges are written in (S10) in a form that suggests

�

⇠
(t) = �⇠ E

p

(t), (S11)

where again ⇠ = len, vel, red, and �⇠ are the dimensionless parameters introduced in Sec. 1 above
and used throughout the text.
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2.2 Hydrogen atom

The dynamic Stark shift of the hydrogen ground-state is typically positive at large frequencies
! > |E⇤| with E⇤ being the ground-state energy. This can be easily seen in Eqs. (S10) where
the dominating states (those with E↵ ⇡ E⇤ which also happen to have the largest dipole matrix
elements) have a positive denominator as well as a positive numerator, whereas contributions
from states with a negative denominator (E↵

>⇠E⇤ + !) are suppressed in two ways: firstly these
states have small dipole matrix elements, and secondly they are largely canceled out by those with
E↵

<⇠E⇤+!. Therefore the sketch shown in Fig. 1 of the text does not just apply to hydrogen in the
1s-state but is typically for any ground-state atom.

The 2p-state has a negative term in the sum from the coupling to the 1s-state for frequencies
! > E

2p

� E
1s

(negative numerator and positive denominator). Depending on how close ! is
to the 1s-2p transition energy, the total sum (and thus the observed dynamic Stark shift) can be
negative or positive. This allows one, by choosing!=12 eV, to have �len= �vel=0 and consequently
�

len

(t)=�

vel

(t)= 0. Hence, the effective Stark shift is �red = �1, and therefore �

red

(t) = �E
p

(t),
cf. (S10b). This means that in this case the (negative) Stark shift increases the transition energy from
the 2p to any continuum state by the instantaneous ponderomotive energy E

p

(t). This explains
the red-shift observed while increasing the intensity as seen in Fig. 3 of the text.
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Figure S1: Sketch, analogous to Fig. 1
in the text, showing the relation be-
tween the dynamic Stark shift of
the initial and final states in either
reduced velocity, velocity or length
gauge for a state with vanishing Stark
shift (e. g. for the 2p-state of hydrogen
at ! = 12 eV, where �red

in

⇡�1, �red
fin

⇡0,
�len
in

⇡0 and �len
fin

⇡+1).

3 Time-dependent Schrödinger equation

In this section we will give details of the numerical calculations presented in the text.

3.1 Numerical propagation and spectra

The lowest n field-free states of each angular momentum `=0 . . . `
max

are calculated numerically
by means of the Numerov method in a finite box r=0 . . . r

max

of grid spacing �r=0.01 a
0

. The size
of the box r

max

is chosen such that the continuum wave-packet does not reach the box boundary
within the propagation time (r

max

⇡ 2000 . . . 4000 a
0

). The energy of the highest state for each
angular momentum can be estimated as E

max

⇡ n2⇡2/2r
max

2 (e. g. for n = 3000 and r
max

= 3000 a
0

it is E
max

⇡ 134 eV).
The dipole coupling matrix between states j and j0, where |`j�`j0 | = 1, with radial functions 'j

and'j0 is calculated as pjj0 = i[Ej�Ej0 ]
`p

4`2�1

h'j |r|'j0iwith ` = max(`j , `j0). The time-dependent
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Schrödinger equation can be written in terms of these couplings as

iȧj(t) =
X

j0

⇥
Ej�jj0 +A(t) pjj0

⇤
aj0(t), (S12)

whereby the numerical propagation is facilitated by the fact that the matrix pjj0 has a block
structure.

The electron energy spectrum for a certain channel, i.e. a certain angular momentum, is obtained
using the sum

P`(E) =

1p
⇡ �E

X

j(2`)

��aj(t
fin

)

��2
e

�[E�Ej ]
2/�E2 (S13)

where typically t
fin

= 3T and �E = 0.025 eV. The sum over j is restricted to all states with the same
angular momentum `.

3.2 Velocity vs. length gauge

For comparison one can perform calculations in the length gauge by means of a similar method.
The equations to be solved are

iȧj(t) =
X

j0

⇥
Ej�jj0 � d

dtA(t) djj0
⇤
aj0(t), (S14)

where djj0 =
`p

4`2�1

h'j |r|'j0i with ` = max(`j , `j0).
Figure S2 shows results of simulations with the largest partial wave `

max

included going well
above what has been used before [1, 5–7]. It can be seen that even for `

max

= 32 the spectrum is
not converged in the length gauge, while it only requires `

max

= 1 for convergence in the velocity
gauge. One also recognizes the false dynamic interference appearing for low `

max

in the length
gauge which is an artifact of the non-converged results. These non-converged results effectively
mimic the behaviour of a system in which the continuum states undergo no stark shift; a direct
consequence of the lack of enough partial waves required for accommodating the dependence of
the stark shift of the continuum states on the ponderomotive energy in the length gauge. Obviously
the effective Stark shift calculated using these results is wrong or more specifically it is exaggerated.
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Figure S2: Comparison of photo-
electron spectra obtained in the ve-
locity and the length gauges for
T = 3 fs, I = 5⇥10

16W/cm2 and
! = 53.6 eV.
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