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Full counting statistics of a nonadiabatic electron pump
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Nonadiabatic charge pumping through a single-level quantum dot with periodically modulated parameters is
studied theoretically. By means of a quantum-master-equation approach the full counting statistics of the system
is obtained. We find a trinomial-probability distribution of the charge transfer, which adequately describes the
reversal of the pumping current by sweeping the driving frequency. Further, we derive equations of motion for
current and noise and solve those numerically for two different driving schemes. Both show interesting features,
which can be fully analyzed due to the simple and generic model studied.
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I. INTRODUCTION

Pumping of electrons through nanodevices by a time-
dependent modulation of device parameters has received a lot
of interest over the past years. Such pumps are interesting
for many applications, but they are particularly useful in
metrology [1,2]. In this context, experimental and technolog-
ical progress has lead to both high-frequency (in the GHz
regime) [3–6] and high-accuracy charge pumping [7] and
opened the path for on-demand single-electron sources [8,9].
For a review see Ref. [10].

Moreover, pumping is also interesting for addressing fun-
damental questions connected with the transport of quantum
particles. Knowledge about the full counting statistics (FCS)
of the pumped electrons allows a detailed understanding
of relaxation and quantum effects [11]. FCS for Coulomb-
blockade systems has been studied theoretically in the context
of stationary [12–14], driven [15–17], and nanoelectromechan-
ical [18–20] systems. In particular, understanding the noise of
the pumping current is relevant for high-accuracy pumping.
Accordingly, the noise in different setups of driven devices
has been investigated theoretically [21–23] and measured, for
example, in a charge pump [24].

While adiabatic pumping is very well studied [25–32],
the description of nonadiabatic effects remains challenging.
In view of the experimental developments toward higher
frequencies, this regime becomes increasingly relevant [10].
Moreover, nonadiabatic driving can lead to interesting ef-
fects [29,33], like the possibility to reverse the pumping current
by sweeping the driving frequency [34]. In order to exploit such
effects a better understanding of the FCS for fast pumping is
necessary.

In this article we consider an electron pump modeled by a
single-level quantum dot at zero bias. In a previous study [34]
we focused on the pumped charge per cycle in the nonadiabatic
regime. We showed that the pumping current vanishes for
a certain driving frequency, but to identify the underlying
mechanism one has to go beyond current calculations. Based
on the formalism given before [18] we calculate the cumulant-
generating function at zero temperature and for arbitrary
driving schemes. We show that in the adiabatic regime,
the probability distribution for pumping electrons is always
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binomial, which implies that the pumping can be regarded
as being unidirectional. In the nonadiabatic regime we obtain
a trinomial distribution, which also explains the occurrence
of the current reversal [34]. We show that fluctuations at
the reversal may show either a minimum or a maximum,
depending on the driving scheme.

The outline of the article is as follows. In the next section
we derive the FCS for a quantum-dot electron pump. We also
discuss the calculation of the pumping-current noise. In Sec. III
we consider a specific time-dependence of the tunneling rates
and the dot energy and compare the numerical results for this
model to the analytic expressions obtained in Sec. II. Finally,
we conclude with a summary and a discussion.

II. THEORY

We consider a resonant-level model [34] characterized by
a time-dependent energy level ε(t) and time-dependent cou-
plings to the left and right reservoirs given by tunneling rates
�L(t) and �R(t), respectively. As indicated, these parameters
explicitly depend on time. The actual time dependence will
be specified below. In the following we focus on the fully
spin-polarized case, which is easier to analyze. The more
general case is treated in the Appendix. The results are found to
be qualitatively similar to the spinless situation and therefore
it is sufficient do discuss the simpler case.

In order to obtain the FCS we consider the number of
electrons N tunneling through the left barrier. Note that, in
general, this number is different for the right barrier. However,
time-averaged quantities in the steady-state regime do not
depend on the barrier (left or right) they are calculated for. The
statistics of N can be found from the characteristic function
�(χ,t) ≡ 〈exp[iχN ]〉, where χ is the counting variable.
Knowing �(χ,t), one can deduce the moments 〈Nm(t)〉 by
differentiation.

We are interested in a regime, where the Coulomb blockade
picture is valid and Kondo physics is not relevant. This implies
that the coupling-rate to the leads (�) is smaller than the single-
level spacing (δ) and smaller than the charging energy (U ); the
temperature (T ) has to be larger than the Kondo temperature
(TK). In the present case, the driving amplitude ε1 gives rise to
another energy scale, which is larger than � and smaller than
U and δ.

Under those conditions, which imply short reservoir
correlation-time and Coulomb blockade, the characteristic
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function for the present model can be determined from the following equation [12]:

∂

∂t

(
p0(χ,t)

p1(χ,t)

)
= −Lχ (t)

(
p0(χ,t)

p1(χ,t)

)
, with Lχ (t) ≡

{
f (t)�(t) −f̄ (t)

[
e−iχ�L(t)+�R(t)

]
−f (t)[eiχ�L(t)+�R(t)] f̄ (t)�(t)

}
, (1a)

where we have used

f (t) ≡ 1

1 + exp(ε(t)/kBT )
, f̄ (t) ≡ 1 − f (t), (1b)

�(t) ≡ �L(t) + �R(t). (1c)

Note that the counting field χ “measures” tunneling from
and to the left reservoir only. For χ = 0, Eq. (1) reduces to the
usual (Markovian) master equation for the diagonal elements
of the reduced density matrix [35]. In this case, the components
of the vector p = (p0,p1)t correspond to p0(t) = 1 − n(t) and
p1(t) = n(t) with n(t) the average occupation of the level at
time t . The characteristic function is given in terms of the
solution p of Eq. (1)

�(χ,t) = q p(χ,t) with q = (1,1). (2)

The product is to be understood as a scalar product of two
two-component vectors.

Provided, that all external parameters change periodically
with frequency �, we can substitute φ = �t to get [18]

∂

∂φ
p(χ,φ) = − 1

�
Lχ (φ)p(χ,φ), (3)

with Lχ defined in Eq. (1). The solution after one cycle can be
written as p(χ,φ + 2π ) = Ap(χ,φ) with the matrix

A ≡ T exp

[
− 1

�

∫ 2π

0
dφ Lχ (φ)

]
, (4)

where T denotes the time-order prescription.
Assuming that the counting fields can be switched on and

off adiabatically, the generating function for k counting cycles
is obtained from [12,18]

�k = qAk p̃, (5)

where p̃ is the steady-state solution for χ = 0. For a large
number of cycles k the characteristic function is determined
by the largest eigenvalue [12,18] of A.

A. Current and noise

For many applications it is sufficient to know the first
two moments, Q = 〈N〉 and �Q2 = 〈�N2〉, of the pumped
charge. The moments are given in units of e and e2. In the
following, we will first derive a set of equations that allow
the calculation of both moments for arbitrary frequencies and
temperatures. Since we assumed the counting to occur in
the left reservoir, all time-dependent quantities refer to that
reservoir and the label is suppressed.

As will be shown, it is more convenient to consider the time-
derivatives, I (t) = ∂t 〈N〉 and S(t) = ∂t 〈�N2〉. Starting from

the definition of the current, one gets the following expression:

I (t) = ∂

∂t
〈N〉 = q

∂

∂t

∂

∂(iχ )
p

∣∣∣∣χ=0 = −q
∂Lχ

∂(iχ )
p

∣∣∣∣
χ=0

= �L(t)[f (t) − n(t)], (6)

where we have used Eq. (1) and qLχ=0 = (0,0). Similarly,
one finds

S(t) = ∂

∂t
[〈N2〉 − 〈N〉2] = q

[
∂

∂t

∂2

∂(iχ )2
− 2I

∂

∂(iχ )

]
p

∣∣∣∣
χ=0

= −q
[

∂2Lχ

∂(iχ )2
+ 2

∂Lχ

∂(iχ )

∂

∂(iχ )
+ 2I

∂

∂(iχ )

]
p

∣∣∣∣
χ=0

= −2�L(t)r(t) + �L(t)[f̄ (t)n(t) + f (t)n̄(t)], (7)

where

r(t) ≡ p′
1(t) − n(t)[p′

0(t) + p′
1(t)], (8a)

p′
j (t) ≡ ∂pj (χ,t)

∂(iχ )

∣∣∣∣
χ=0

for j = 0,1. (8b)

To calculate I and S, the time evolution of the occupation
n and the newly defined quantity r are needed. Both of them
can be obtained from Eq. (1). For n(t) one can use the lower
component of Eq. (1a) for χ→0. For r(t) one needs the
time derivative of p′ = (p′

0,p
′
1)t, which is obtained from the

derivative of Eq. (1a) with respect to χ in the limit χ→0,
i. e., ∂

∂t
p′(t) = −L′

0(t)p(0,t) − L0(t)p′(t). The corresponding
equations are

∂

∂t
n(t) = �(t)[f (t)−n(t)], (9a)

∂

∂t
r(t) = −�(t)r(t) + �L(t)[f (t)f̄ (t) + [f (t)−n(t)]2]. (9b)

Equations (9) can be solved numerically in a straightfor-
ward way. The moments Q and �Q2 are found by integrating
I and S over one period, respectively. For low frequencies and
finite temperatures, one can obtain analytical expressions for
both quantities. This case is discussed in Sec. II C below.

B. FCS at zero temperature

In the following section we calculate the generating
function at zero temperature, i.e., when the Fermi function
only attains the values 0 and 1. To this end we assume that
for 0 � φ < π the level is charged (f = 1, f̄ = 0) and for
π � φ < 2π it is decharged (f = 0, f̄ = 1). In this case, the
solutions to Eq. (1) at the end of the respective half-periods
can be obtained analytically. Overall, we get for one period

p(χ,2π ) = A0(χ )p(χ,0), with A0(χ ) ≡
(

1−βL−βR + (e−iχγL+γR)(eiχβL+βR) e−iχγL+γR

(1−γL−γR)(eiχβL+βR) 1−γL−γR

)
, (10a)
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and the abbreviations

βα ≡
∫ π

0
dφ

�α(φ)

�
exp

[
− 1

�

∫ φ

0
dφ′ �(φ′)

]
,

γα ≡
∫ 2π

π

dφ
�α(φ)

�
exp

[
− 1

�

∫ φ

π

dφ′ �(φ′)
]
. (10b)

Note that βα and γα are completely determined by the
time-dependence of the rates �α . They define probabilities
for charging or decharging the level either from the left or the
right reservoir, respectively. Obviously, βα, γα > 0. Further,
we note that

βL + βR = 1 − exp

(
− 1

�

∫ π

0
dφ′ �(φ′)

)
< 1. (11)

Since both quantities, βL and βR, are positive it follows from
Eq. (11) that βL, βR < 1. Similar arguments hold for γL and
γR. In order to simplify the notation, in the following we use
the definitions

β̄ ≡ 1 − βL − βR, γ̄ ≡ 1 − γL − γR. (12)

Finally, the eigenvalues of the zero-temperature matrix A0(χ ),
which is defined in Eq. (10a), are given by

λ± = 1
2 [g(χ ) ±

√
g2(χ ) − 4β̄γ̄ ], (13a)

g(χ ) ≡ β̄+γ̄ + (e−iχγL+γR)(eiχβL+βR), (13b)

from which the current and noise can be obtained by differen-
tiation. The eigenvalue with the largest absolute value is λ+.
This expression is exact under the assumptions stated above
and can be used to obtain the FCS of the pumped charge.

To gain further insight about the nature of the statistics, it
is useful to consider limiting cases. If β̄, γ̄ � 1 one can write
down the following generating function:

(�k)1/k ≈ γLβRe−iχ + βLγReiχ

+ (β̄ + γ̄ + βLγL + βRγR). (14)

This limit describes the situation where the level is almost fully
charged in the first half cycle and correspondingly decharged
in the second half cycle. Note that the expression in Eq. (14)
yields �k ≈ 1 for χ = 0 only to first order in β̄, γ̄ .

Equation (14) characterizes a trinomial probability distri-
bution. Accordingly, there are three relevant probabilities,

p− = γLβR, p+ = βLγR, and p0 = 1 − p− − p+, (15)

which describe a process of an electron being transferred to the
left reservoir, to the right reservoir, or no transfer, respectively.
It follows that the average charge and noise per period are

Q = p+ − p−, (16a)

�Q2 = p+(1−p+) + p−(1−p−) + 2p+p−. (16b)

For p+ = p− one finds that the pumped charge vanishes,
Q = 0, while the noise remains finite, �Q2 = 2p+ for
p+>0. At the vicinity of this point one obtains a current
reversal [33,34].

In the opposite limit, β̄, γ̄ ≈ 1, where the energy level
is nearly empty during one cycle, one can approximate the

generating function by

(�k)1/k = c +
√

(e−iχγL+γR)(eiχβL+βR). (17)

Here, c is independent of χ and guarantees �k|χ=0 = 1.
Equation (17) describes in general a complicated probability
distribution. However, if one barrier is dominating the charging
and the other one dominates the decharging, one obtains a
binomial distribution for a half-charge transfer. For example,
if βR ≈ γL ≈ 0 one gets

(�k)1/k ≈ c′ + eiχ/2βLγR. (18)

This “fractional” behavior has been discussed previously in the
context of charge pumping [36] and nanoelectromechanical
charge shuttles [18]. It reflects the fact that the cycles are no
longer independent of each other. For many counting cycles,
however, the behavior can effectively be described by the
independent transfer of fractional charges. For later reference
we note that the charge per cycle can be obtained from Eq. (17)
to read

Q = βLγR − βRγL

2
√

(βL+βR)(γL+γR)
. (19)

C. Noise for low frequencies and finite temperatures

At low frequencies, it is sufficient to consider the instanta-
neous contribution from Eqs. (9), as done similarly before [30].
Consequently, the time-derivatives are set to zero and one
obtains

n(t) = f (t), �(t)r(t) = �L(t)f (t)f̄ (t). (20)

The instantaneous current and noise become

I (t) = 0, S(t) = 2f (t)f̄ (t)

1/�L(t) + 1/�R(t)
. (21)

Not surprisingly, the current is zero, since the level is at all
times in equilibrium with the reservoirs. The noise is nonzero
and is called equilibrium, or Nyquist-Johnson noise [37]. It is
caused by the statistical nature of the electron occupation in the
reservoirs characterized by the Fermi distribution. Using the
property f f̄ = −kBT

∂f

∂ε
the expression for the noise becomes

S(t) = −2kBT
1

1/�L(t) + 1/�R(t)

∂f

∂ε
. (22)

The noise per period is obtained from integrating over one
period,

�Q2 = −2
kBT

�

∫ 2π

0
dφ

[∂ε(φ)/∂φ]−1[∂f (φ)/∂φ]

1/�L(φ) + 1/�R(φ)
. (23)

The integral gives a value that is independent of � but depends
on the details of the external driving, i.e., the time-dependent
level and tunneling rates. Consequently, the noise per period
will be proportional to kBT/�.

III. RESULTS

We study the first two cycle-averaged moments of the
FCS: the charge Q and its fluctuations �Q2 for an electron
pump that shows current reversal and rectification effect in the
nonadiabatic regime [34]. They are obtained by integrating
I (t) and S(t), as given by Eqs. (6) and (7), respectively, over
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one cycle under steady-state conditions, i.e., p̃(φ) = A p̃(φ)
with A defined in Eq. (4).

A. Exponential modulation

To this end, Eq. (9) has been integrated numerically with
the following pumping parameters:

ε(t) = 20� cos(�t), (24a)

�L(t) = [�/2] exp(6[cos(�t − δ) − 1]), (24b)

�R(t) = [�/2] exp(6[cos(�t) − 1]). (24c)

The same parameters have been used before [34]. They
allow for the exponential dependence of tunneling rates due
to oscillatory gate voltages as used in the experiments of
Refs. [5,6]. The pumping is characterized by two parameters,
the driving frequency � and the time or phase delay δ of the left
barrier with respect to the right one. The latter one is locked
to the level ε, which oscillates around the Fermi energy of
both reservoirs μL = μR = 0. If not specified differently, the
temperature in the contacts is kBT = �/100.

Figure 1 gives an overview of the results. We have varied
the frequency � in a rather large range (10−5... 10 �) in order
to cover the asymptotic adiabatic and nonadiabatic behavior
for low and high frequencies, respectively. One can clearly
see [Fig. 1(a)] that the direction of the charge transport does
not only depend on the phase delay δ, which controls the
oscillation of the left barrier with respect to the right one.
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FIG. 1. Pumped charge Q and fluctuations �Q2 as a function
of phase delay δ and driving frequency � as obtained with the set
of Eqs. (6)–(9) for the time dependence of quantum-dot level ε and
couplings �R,L given in Eqs. (24).

Rather the frequency � is equally important and may be used to
cause a current reversal as was discussed in detail before [34].

The charge fluctuations [Fig. 1(b)] show a similar pattern as
the average charge, albeit somehow inverted. Not surprisingly
they vanish [white areas in Fig. 1(b)], when the charge
transport is quantized either to the left [blue areas marked
with A in Fig. 1(a)] or to the right [red areas marked with B in
Fig. 1(a)] direction. In regions, however, where this is not the
case the fluctuations are finite, reaching sometimes a value of
�Q2 = 1/2.

One maybe tempted to explain the charge fluctuations with
the well-known expression for a binomial distribution [38],

�Q2 = p (1 − p), (25)

with p the probability to transfer one charge per cycle. It
is p = |Q| = |p+−p−| with p± defined in Eq. (15). The
binomial distribution is expected to work if there are only two
possibilities for the transport, e.g., transport in one direction
or no transport. As we will see this binomial description is
only applicable for finite values of Q. It fails in regions where
the current changes direction, i. e., where Q= 0. To account
for the reversal, a trinomial description is required. The charge
can be transferred from left to right or right to left or no
transfer can occur. The charge per cycle vanishes when the
pumping currents in either direction compensate each other.
However, the fluctuations �Q2 remain nonzero, since there
is still transfer of charges. There are two exceptions where Q

and �Q2 vanishes simultaneously. One is the region marked
with C in Fig. 1 and the other one is the high-frequency regime
where � 
 �. We will discuss all regions in the following. To
be more quantitative we have plotted the charge fluctuations
for selected phase delays of δ=−3π/4, δ = 0, and δ = +π/2,
respectively, in Fig. 2.

For δ = −3π/4 there is a current reversal at � ≈ 5×10−3�

[cf. upper panel in Fig. 2(a)]. Along with the result from the
rate equations (Fig. 1 and thick gray line in Fig. 2) we show
the binomial expression Eq. (25) and the trinomial expression
from Eq. (16b). The values of p+ and p− in the latter case have
been calculated numerically. Note that this is an approximation
since we have assumed kBT = 0 in defining p±. Both shot-
noise models agree qualitatively with the numerical result.
However, at the current reversal (Q= 0) charge fluctuations
�Q2 are on the order of 1/10, i. e., they do not vanish as
predicted by Eq. (25). The trinomial description Eq. (16b)
captures this behavior even quantitatively as Fig. 2(a) shows.
Thus, the fluctuations reveal that the vanishing net transfer is
not due to the fact that there is no transfer at all. Rather transfer
to the right and to the left do cancel each other exactly.

The discrepancy between binomial and trinomial descrip-
tion becomes even more obvious for δ = 0, which is shown in
Fig. 2(b). Due to symmetry (p+ = p−) the charge Q vanishes
for all frequencies � and so does the binomial expression
Eq. (25). In contrast, the trinomial expression, which simplifies
to �Q2 = 2p+ = 2p−, describes the fluctuations for all
frequencies even quantitatively. Compared to the frequency-
driven current reversal in Fig. 2(a) the fluctuations are even
larger here.

The case δ = +π/2, shown in Fig. 2(c), is characterized
by a quantized and thus fluctuation-free transfer over a wide
range of frequencies (� ≈ 10−5 . . . 10−1�).
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FIG. 2. Charge fluctuations Eq. (7) obtained from the rate equations [Eqs. (9)] for three selected phase delays δ and kBT = �/100. They are
compared to those obtained for a trinomial probability distribution Eq. (16) with p− = γLβR, p+ = βLγR and a binomial distribution function
Eq. (25) with p ≡ |p+ − p−|.

It remains to discuss the case where Q and �Q2 vanish
simultaneously. For large frequencies this is rather obvious,
p+ and p− become small for � 
 � since the transfer to
either side can be neglected. It is less clear for the region
marked with C. It can be traced back to the coupling to right
contact: both βR and γR, as defined in Eq. (10b), do vanish.
If the level can neither be charged from the right (βR) nor
decharged to the right (γR), the probabilities of transfer from
(p+) and to (p−) the right contact do vanish as well.

Careful inspection shows that for all three cases the fluctua-
tions increase above the values predicted by the two shot-noise
models. The reason is that thermal or Nyquist-Johnson noise
�Q2

therm starts to become larger than the shot noise. This is
shown in Fig. 3, where thermal contribution according to
Eq. (23) is shown separately with dashed lines. Clearly this
occurs for larger temperatures kBT at higher frequencies �.
The frequency, at which this takeover occurs, depends on the
phase delay δ, as the three panels of Fig. 3 show. Above
this critical frequency the noise spectrum is temperature-
independent and well described by the zero temperature case
considered in Sec. II B.

B. Harmonic modulation

Taking, instead of Eqs. (24b) and (24c),

�α(t) = �0 + �1 cos(�t + π/2 − δα), (26)

yields a harmonic variation of the coupling rates, which is
frequently used for modeling electron pumps. The same setup
has been investigated in view of a current reversal before [34].
Using the same approach as in the last section, we calculate
Q and �Q2 for �0 = �1 = �/20, δR = 0, and δL = δ. The
results for a temperature of kBT = �/1000 are shown in Fig. 4.

In all three cases, the fluctuations obtained from the
trinomial probability distribution Eq. (16) agree very well with
the results of the rate equations [Eqs. (9)]. Comparing to Fig. 2
one sees that the results are qualitatively similar for δ = 0
and δ = π/2. In the latter case and for harmonic modulation
the fluctuations do not become zero in the adiabatic regime
since the pumped charge is not quantized [cf. upper panel in
Fig. 4(c)] in contrast to the exponential driving [cf. upper panel
in Fig. 2(c)].

The biggest qualitative difference is observed for δ =
−3π/4. For harmonic modulation the charge fluctuations
display a single maximum, which is attained in the vicinity
of the current reversal. This is in contrast to the exponential
modulation, where the fluctuations were found to have a
minimum. This difference is connected with the behavior
of the left and right probabilities p± in the vicinity of the
reversal frequency �∗. It turns out that the slopes have the same
magnitude but different signs. The curvatures may be different.
Therefore, we consider the following simple �-dependence:

p±(�) = p∗ ± p′
∗[� − �∗] + p′′

∗±[� − �∗]2, (27)
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FIG. 3. Charge fluctuations as shown in Fig. 2, here with a double-logarithmic plot and for two additional temperatures kBT = �/1000
and kBT = �/10, respectively. The dashed lines show thermal noise according to Eq. (23).
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FIG. 4. Charge fluctuations Eq. (7) for harmonic modulation Eq. (26) of the tunneling rates obtained from the rate equations [Eqs. (9)] for
three selected phase delays δ and kBT = �/1000. They are compared to those obtained for a trinomial probability distribution Eq. (16) with
p− = γLβR, p+ = βLγR, and a binomial distribution function Eq. (25) with p ≡ |p+ − p−|.

with p∗ = p±(�∗) and Q(�∗) = 0. For such a parametrization
the noise Eq. (16b) becomes up to second order,

�Q2(�) ≈ 2p∗ − [4p′
∗
2 − p′′

∗][� − �∗]2, (28)

where the abbreviation p′′
∗ ≡ p′′

∗++p′′
∗− was used. The noise

has an extremum at �∗, which can be a minimum or maximum
depending on the relation of 4p′

∗
2 and p′′

∗ . Whereas in the
harmonic case the curvatures of p± at �∗ have different
signs but similar magnitudes, and thus p′′

∗ ≈ 0, the situation
in the exponential case is different. Here one finds a nonlinear
increase or decrease of p± with p′′

∗ 
 4p′
∗
2. Correspondingly,

close to the reversal we observe a maximum and a minimum
of �Q2(�), respectively.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the counting statistics
for nonadiabatic pumping of electrons through a single-level
quantum dot. For zero temperature we derived an analytic
expression for the generating function [Eq. (13)] in terms of
the probabilities for charging or decharging the level during
one pump cycle. In the case where those probabilities are
large (the level is almost completely filled and emptied),
we found a trinomial probability distribution for the charge
transfer. The associated elementary processes correspond to

an electron being transferred to the left reservoir, to the right
reservoir, or no transfer. This has the important consequence
that the transferred charge per cycle can vanish while the
charge fluctuations remain finite. It also shows that the current-
reversal does not rely on interference effects.

Our findings are corroborated by numerical simulations of
the first two moments, Q and �Q2, for two driving schemes
(exponential and harmonic). To this end we derived a set of
ordinary differential equations, valid for arbitrary time de-
pendencies, which were solved numerically. Those equations
may also be used in connection with pulse-shaping techniques,
which allow for optimizing the pumping accuracy [7].

Our calculations show that the driving frequency and the
phase delay are important parameters, both of which influence
the statistics of the pumping charge. This demonstrates that
the ability to control the phase delays potentially provides an
additional knob to improve the performance of electron pumps.

APPENDIX: COULOMB-BLOCKADE

For a Coulomb-blockade system, where the energy level
can be occupied by an electron with spin-up or spin-down, the
matrix Lχ becomes

Lχ (t) ≡

⎛
⎜⎝

f (t)�(t) −ξ↑f̄ (t)[e−iχ�L(t)+�R(t)] −ξ↓f̄ (t)[e−iχ�L(t)+�R(t)]

−ξ↑f (t)[eiχ�L(t)+�R(t)] ξ↑f̄ (t)�(t) 0

−ξ↓f (t)[eiχ�L(t)+�R(t)] 0 ξ↓f̄ (t)�(t)

⎞
⎟⎠. (A1)

Here the coupling of the respective spin to the contacts is given
by

ξ↑↓ = 1 ± ξ

2
, (A2)

and can be controlled by means of the parameter ξ =
−1 . . . + 1. The cases ξ = −1 or ξ = +1 refer to the fully
polarized situation discussed in the main text, the case ξ = 0
means unpolarized pumping. Now, p has three components
p = (n0,n↑,n↓)t and q = (1,1,1). It is convenient to introduce

the following notation:

ns(t) ≡ n↑(t) + n↓(t), δn(t) ≡ n↑(t) − n↓(t). (A3)

Analogously to the procedure presented in Sec. II A, one finds
from Eqs. (6) and (7) for the current and the noise

I (t) = �L(t)

2
[f (t)[2 − ns(t) + ξ δn(t)] − [ns(t) + ξ δn(t)]],

(A4)
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FIG. 5. Same quantities as in Fig. 2 for the model given by Eqs. (24) and kBT = �/100. The curves for different values of the parameter ξ

are obtained with the Eqs. (A4)–(A7). Note that ξ↑↓ = {1,0} for ξ = 1 and ξ↑↓ = {1/2,1/2} for ξ = 0, respectively.

S(t) = �L(t)

2
[f (t)[2 − 3ns(t) − 2r(t) − ξ δn(t)

× [1 − 2r(t)/ns(t)]] + [ns(t) − 2r(t)]

× [1 + ξ δn(t)/ns(t)]], (A5)

where we have used an auxiliary quantity r(t) ≡ p′
↑(t) +

p′
↓(t) − n(t)[p′

0(t) + p′
↑(t) + p′

↓(t)], which is the gener-
alized version of Eqs. (8). The corresponding equa-
tions of motion for the occupation and the polarization
read

∂

∂t
ns(t) = �(t)

2
[f (t)[2 − ns(t) + ξ δn(t)]

− [ns(t) + ξ δn(t)]], (A6a)

∂

∂t
δn(t) = �(t)

2
[f (t)[δn(t) + ξ [2 − ns(t)]]

− [δn(t) + ξ ns(t)]]. (A6b)

To close the set of equations of motion we need an equation
for r(t), which reads

∂

∂t
r(t) = �L(t)

2
(f (t){2 − ns(t)[4 − ns(t) + ξ δn(t)]

+ ns(t)[ns(t) + ξ δn(t)]})
− �(t)

2
r(t){[f (t) + 1] + ξ f̄ (t)δn(t)/ns(t)}. (A7)

This is the generalized set of equations describing the time-
dependent current and noise and the respective quantities like
level occupations and polarization.

It can easily be checked that for ξ = ±1 the above set of
equations reduces to those give in Sec. II A, with ns replaced
by n↑↓ and δn replaced by ±n↑↓, respectively.

For the unpolarized case ξ = 0, one gets

I (t) = �L(t)

2
{f (t)[2 − ns(t)] − ns(t)}, (A8)

S(t) = �L(t)

2
{2[f (t) − ns(t)] + 3f̄ (t)ns(t) − 2[1 + f (t)]r(t)},

(A9)

with

∂

∂t
ns(t) = −�(t)

2
{ns(t) − f [2 − ns(t)]}, (A10a)

∂

∂t
r(t) = �L(t)

2

(
ns

2(t) + f (t){2 − ns(t)[4 − ns(t)]}
)

− �(t)

2
r(t)[1 + f (t)]. (A10b)

Note that δn(t) → 0 in this case.
The instantaneous solutions, i.e., assuming that all time

derivatives vanish, read

ns(t) = 2f (t)

1 + f (t)
, (A11a)

δn(t) = 0, (A11b)

r(t) = �L(t)

�(t)

2f (t)f̄ (t)

[1 + f (t)]2
, (A11c)

which turn out to be independent of ξ . It follows for the noise
that

S(t) = �L(t)�R(t)

�(t)

2f (t)f̄ (t)

1 + f (t)
. (A12)

Comparing the expressions for ns and S with the ones given in
Sec. II C, one sees that the main difference is the factor 1 + f

in the denominator. The noise per period can be obtained
analogous to Eq. (23). In particular the proportionality to
kBT/� remains valid.

In Fig. 5 a comparison of the results described in Sec. III for
exponential modulation (ξ = 1) and results for the unpolarized
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case (ξ = 0) are shown. One finds that the results are
qualitatively very similar. For δ �= 0 the curves Q(�) and

�Q2(�) in the unpolarized case are shifted toward smaller
frequencies compared to the polarized case.
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