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The dynamics of ultraslow electrons in the combined potential of an ionic core and a static electric field
is discussed. With state-of-the-art detection it is possible to create such electrons through strong intense-
field photoabsorption and to detect them via high-resolution time-of-flight spectroscopy despite their very
low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same
position for different laser orientations, is derived and could be revealed experimentally with an energy
resolution of the order of 1 meV.
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Extracting excited electrons from an atom, molecule, or
plasma with a constant electric field is an established
technique that can reveal the minimal (Rydberg) excitation
by tracking the electron yield as a function of applied field
strength [1]. In the time domain, very small extraction
fields of about F ¼ 1…10 V=cm (with 5.142 V=cm ¼
10−9 a:u:) and high, pulsed Rydberg excitation lead to
intricate electron dynamics despite the fact that a hydrogenic
problem in an electric field is separable (e.g., in semi-
parabolic coordinates), as we will demonstrate. Clearly,
electrons that are capable to escape under such conditions
must be highly excited and this is achieved in the experiment
by a preceding excitation with a short intense laser pulse [2].
The kind of Stark dynamics discussed here with a focus

on the differential momentum distribution of ionized
electrons has not been investigated before, since ionization
of Rydberg states in static or pulsed weak electric fields has
mainly served the purpose to extract details of Rydberg
states [zero-electron kinetic energy (ZEKE) spectroscopy]
[1,3,4]. Individual classical trajectories and their contribu-
tions to the electron yield, on the other hand, have been
investigated both in the context of astrophysics, where the
same Stark Hamiltonian arises from a combined gravita-
tional and constant driving field [5], and in an atomic
setting. For the latter, the inclusion of phases to account for
the interference effects of the different pathways to a
detector [6–8] even lead beyond a classical treatment.
The results presented here are relevant for all experi-

ments using electric-field extraction techniques, in particu-
lar the cold target recoil ion momentum spectroscopy
(COLTRIMS) [9] technique, nowadays used routinely in
reaction microscopes (REMIs) world wide. At very low
energies, the Stark dynamics described here will modify the
results expected in such setups. Moreover, it adds another
interesting feature to the low-energy kinetic-energy spec-
trum of electrons ionized by an intense laser pulse, a

process that has received a lot of attention [10–14] since the
discovery of the so called low-energy structure [15,16].
Sufficient for our purpose, we will consider a hydrogenic

problem governed by the Hamiltonian (atomic units are
used unless stated otherwise)

H ¼ Hþ r · fðtÞ cosωt ð1Þ

with the Stark Hamiltonian

H ¼ p2

2
−
Q
r
− Fz; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
; ð2Þ

ionic charge Q ¼ 1 (which could assume any, also non-
integer, value) and a constant electric field of strength F
pointing in the negative z direction. The second term in
Eq. (1) describes the interaction with the laser pulse of (a
strong but otherwise arbitrary) envelope fðtÞ, linearly
polarized along or perpendicular to the direction of the
extraction field along the z direction in H. This combina-
tion of fields leads to the “zero-energy” structure observed
in the strong field photoionization spectrum with REMIs
[17]. However, the strong laser pulse only serves to
populate the Rydberg states that form the initial condition
for the unusual Stark dynamics we are going to discuss.
Any other means to create the Rydberg population would
lead to the same result if the Rydberg atoms are placed in a
tiny electric field of the order of 10 V=cm: the photo-
electron spectrum exhibits a peak not at zero energy but
slightly upwards at a field-corrected photoelectron momen-
tum [defined in Eq. (3) below] of π% ¼ −0.6F1=4, with the
asterisk indicating the peak value.
Assuming lz ¼ 0 we eliminate the dynamics in the

cyclic azimuthal angle. This reduction is possible as the
laser-induced dynamics occurs on a length scale (given by
the quiver amplitude, typically a few nanometers), which is
much smaller than the barrier distance (typically a micron)
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of the Stark Hamiltonian (2), and confirmed by the
excellent agreement with full 3D simulations. Since the
momentum of the electron increases underH as pz ∝

ffiffiffi
z

p
or

pz ∝ t, with distance z from the nucleus or time t,
respectively, its value depends on where it is measured.
To avoid such a dependence, the experimental time of flight
tof is used to construct an effective momentum

π≡ pzðtofÞ − Ftof ; ð3Þ

which eliminates the effect of the constant electric field
asymptotically [18]. Consequently, Π does not depend on
the position of the detector if placed sufficiently far beyond
the barrier. This is a convenient procedure since exper-
imentally the time of flight tof and the detector distance
zd are known. Equivalent to Eq. (3), one obtains
π ¼ zd=tof − Ftof=2. Hence, a time delay—due to the
retarded motion across the saddle point in the Stark
geometry—is measured via tof . Nevertheless, in experi-
mental studies using REMIs π is referred to simply as the
momentum component pz of the electron parallel to the
field direction of the spectrometer [9] tacitly assuming that
the electron motion can be split between an interaction
region, where the extraction field can be neglected, and an
asymptotic region, into which the electron is launched with
initial momentum pz. It is this separation that breaks down
for the situation discussed here.
In Fig. 1 we compare classical simulation according toH

given in Eq. (1) with experimental results [17] obtained for

argon atoms in a strong few-cycle pulse with λ ¼ 3200 nm.
Those experiments were the first to report a “zero
peak,” i.e., an extremely narrow contribution of near-zero
momentum electrons [17], subsequently confirmed and
attributed to Rydberg electrons [19]. We use standard
tunnel-ionization probabilities [10,20] and propagate elec-
trons according to the Newton equations of motion for
about 107 trajectories with the Hamiltonian (1), i.e., in the
attractive Coulomb potential, the driving laser pulse
fðtÞ cosωt, and the extraction field F. Hence, the calcu-
lations comprise the formation of Rydberg electrons [2] as
well the subsequent Stark dynamics. The experimental
results [17] shown in Figs. 1(b)–1(d) are symmetrized in π
with respect to π ¼ 0 and show a double peak very close to
π ¼ 0. As one can see, the likewise symmetrized classical
spectra agree extremely well with the experiment.
However, a careful inspection of Fig. 1(a) reveals that
the Rydberg peak is asymmetric with position π% < 0,
pointing into the opposite direction of the extraction field
F, i.e., parallel to the actual electric field.
With a setup where the laser polarization is along the y

axis, i.e., perpendicular to the extraction field along z, we
can prove that the peak and its negative offset in π is
exclusively due to the extraction field F, see Fig. 2. Both
the calculation and the experiment reveal the peak close to
zero and again with a negative shift in the static field
direction, here π⊥. We also note the qualitative agreement
between theory (for argon atoms) and experiment (for N2

molecules), which demonstrates that the laser pulse only
prepares the initial Rydberg distribution for the ensuing

(a)

(b) (c) (d)

FIG. 1. (a) 2D momentum map of photoelectrons from Ar
atoms ionized with a laser pulse fðtÞ ¼ ezfðt=TÞ cosðωtÞ with
T ¼ 64 fs and ω ¼ 0.3875 eV (λ ¼ 3.2 μm) and an extraction
field F ¼ 1.5 V=cm along the z axis. Lower panels: spectra
as obtained by integrating the 2D distributions over
(b) p⊥ ¼ 0…0.35, (c) p⊥ ¼ 0.02…0.06, and (d) p⊥ ¼
0.0…0.02, respectively. Calculations (red lines) are compared
to experimental data (blue, Ref. [17]). Note that these spectra are
symmetrized with respect to π∥.

FIG. 2. Momentum distribution of photoelectrons with
jpxj < 0.01, whereby the extraction field (2.6 V=cm) is
perpendicular to the polarization of the laser pulse (780 nm),
i.e., f⊥ez, which is in contrast to Figs. 1 and 3(b). Upper panel:
calculation for Ar. Lower panel: measurement for N2. Each panel
shows the 2D distribution and the one integrated over the parallel
momentum in the interval jpyj < 0.005.
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Stark-field dynamics. It takes place far away from the
(ionic) core whose exact nature hardly matters.
Backed by these results we concentrate now on the

Hamiltonian (2) classically. Scaled phase-space variables

fx; y; z; rg ¼ F1=2fx; y; z; rg ð4aÞ

fpx; py; pzg ¼ F−1=4fpx; py; pzg ð4bÞ

and time t ¼ F3=4t eliminate the dependence on F in
Eq. (2) with the new Hamiltonian

H ¼ p2

2
−
1

r
− z: ð5Þ

This has two advantages: first, the (experimental) depend-
ence of certain observables on the field strength F can be
immediately predicted, which applies to all momenta
including π ¼ F1=4π with π ¼ pz − t; secondly, the
numerical problem simplifies considerably to that of a
single effective field strength (F ¼ 1) with a reasonable
(effectively an atomic-scale) range for the phase-space
variables.
We immediately conclude that the offset of the peak

position Π% from zero should scale with F1=4 as confirmed
by our experiment, see Fig. 4. While the shift of the peak
position with increasing extraction voltage or extraction
field might have been expected, the very existence of a peak
is not obvious on first glance since one would expect that
the (almost homogeneously) distributed Rydberg popula-
tion is set free by the extraction field in a certain interval
ΔE…0, with the lower bound ΔE given by the barrier
formed by the static field. This should lead to a finite value
of the photoelectron spectrum at zero momentum but not to
a peak, even systematically shifted from zero.
To understand the peak and its position π% we take a

closer look at the classical dynamics of the Stark
Hamiltonian (5). To this end we propagate trajectories
starting at the origin z ¼ ~ϱ ¼ 0, with the “directed” dis-
tance ~ϱ≡&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
from the z axis. The sign is positive

(negative) if the electron has passed the z axis an even (odd)
number of times [21]. The initial distribution is uniform in
energy E and angle cos θinit in accordance with the uniform
occupation of the Rydberg states. It turns out that for E < 0
initial angles where cosðθinitÞ < E2=2 − 1 lead to bound
trajectories, despite the fact that they have an energy above
the barrier Eb ¼ −2. These are the well-known bound states
in the continuum [1], which are a consequence of the
separability of the hydrogen problem in an electric field [5]
and account for 1=3 of all trajectories in the range
E ¼ −2…0. The other 2=3 of the trajectories will escape.
The abundance of the resulting final momenta π and ~pϱ

for those free trajectories are shown as a contour plot

in Fig. 3(a). The final momentum ~pϱ ¼ &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px

2 þ py
2

q

perpendicular to the extraction field oscillates as a function
of π, with decreasing amplitude and period for each fixed
energy E (dashed lines). Amplitudes also decrease at a
fixed momentum ~pϱ for decreasing energy E. This topology
gives rise to a caustic of final momenta around
fπ%; ~p%

ϱg ≈ f−0.6; 0g. Indeed this caustic induces a diver-
gent ridge, which becomes finite upon a finite resolution.
The peculiar structure of the momentum map in Fig. 3(a)

becomes understandable when taking advantage of the
separability of the Stark Hamiltonian in semiparabolic

(a)
(c)

(b)

FIG. 3. Classical momentum spectra generated from a uniform
population of energies E ¼ −2…0 and an isotropic distribution
of cos θinit. (a) Contour plot as a function of the scaled final
momenta π and ~pϱ. The dashed lines show the final momenta for
the four energies indicated in the graph and initial angles in the
range θinit ¼ 0… arccosðE2=2 − 1Þ. The arrows indicate the
location of the zeros ~pϱðπnÞ ¼ 0 for E ¼ 0 according to
Eq. (7). (b) The spectrum as a function of π after integration
over the radial momentum j ~pϱj ≤ 0.1 (solid) and (c) the measured
momentum for N2 molecules ionized with a 780 nm pulse of 45 fs
duration with the laser and extraction field parallel.
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experiment
Π*=−0.6F1/4

experiment
Π*=−0.6F1/4

FIG. 4. Shifting of peak position Π% with the extraction field
strength F for photoionization of N2, cf. Fig. 3(c). The exper-
imental determination is described in the Supplemental Material
[22]. Note that the prefactor in π% ¼ −0.6F1=4 has been obtained
theoretically from Fig. 3 and is not a fitting factor.
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coordinates fu; vg≡ f
ffiffiffiffiffiffiffiffiffiffiffi
rþ z

p
;&

ffiffiffiffiffiffiffiffiffiffi
r − z

p
g. Here, the sign

for v corresponds to the sign of ~ϱ. In these coordinates H
from Eq. (5) assumes the form [22]

pu
2=2 − Eu2 − u4=2 ¼ 1þ β; ð6aÞ

pv
2=2 − Ev2 þ v4=2 ¼ 1 − β; ð6bÞ

where β, the separation constant due to the additional
dynamical symmetry, is fixed by the initial angle (in real
space) according to β ¼ cos θinit as shown in the
Supplemental Material [22]. The separation (6) is con-
nected with a new time τ, related to the real time t
via dt ¼ ðu2 þ v2Þdτ.
The separability allows one to understand the origin of

the oscillating final electron momentum πð ~pϱÞ realizing
that asymptotically for large z or u the Cartesian momenta
are mapped as fpz; ~pϱg → fu; vg [22]. As can be seen from
Eq. (6), the dynamics is that of a bound ðvÞ and inverted ðuÞ
quartic oscillator at an energy 1∓β. The partition of the
effective energy between the two modes is controlled by β.
For β ¼ 1 or cos θinit ¼ 0 all energy is in u leading to the
quickest possible escape with the largest value π for u → ∞
while no energy is left for the bound oscillator, which stays
at the fixed point v ¼ 0. Decreasing β, keeping E fixed,
reduces the effective energy in u and provides in turn some
energy for oscillations in v. Once there is enough energy for
the v oscillator to complete half an oscillation during
escape, the electron will end up again at vðτ → τ∞Þ ¼ 0.
Hereby, τ∞ is the escape time in u, which is finite due to the
quartic term in Eq. 6(a). Hence, we can define a series πn,
for which asymptotically v ¼ 0 and therefore ~pϱ ¼ 0, with
n ¼ 0; 1;… half oscillations in v. Despite the ever increas-
ing momentum due to the acceleration from the electric
field, the πn are finite owing to the definition of π ¼ pz − t,
cf. Eq. (3), which compensates exactly the acceleration.
Analytical quadratures for the quartic oscillator dynam-

ics in the form of combinations of elliptic functions exist
[5], but do not yield simple expressions describing the
prominent features of Fig. 3. Yet, for the highest energy
E ¼ 0 these integrals simplify and permit us to determine
the zeros of ~pϱðπÞ analytically

πn ¼ πj ~pϱ¼0 ¼
2ð1 − 2n2Þ
ð1þ 4n4Þ1=4

ffiffiffi
π

p
Γð3=4Þ

Γð1=4Þ
; ð7Þ

see Ref. [22]. The arrows in Fig. 3(b) indicate the positions
of the πn according to Eq. (7) in good agreement with the
numerical results.
While the πn do not give the exact clustering positions

they follow the same qualitative evolution and provide
analytical insight for the latter: the second clustering near
π2 is much weaker because it takes place at smaller values
of β as compared to π1. For the zero crossings at E ¼ 0 the
corresponding values read βn ¼ ð1 − n4Þ=ð1þ n4Þ. Since

for escape, i.e., over-barrier motion, E2=2 < 1þ β, the
phase-space volume contributing to the caustics decreases
with order n and the corresponding peak in the spectrum
gets weaker.
We have verified with quantum calculations that quasi-

bound states (resonances) cannot be responsible for the
observed structure. This is plausible since the positions and
widths of these resonances do not scale with F as classical
calculations and experimental data do. Yet, the excellent
agreement of our classical calculations with our experi-
mental results raises the question why quantum effects do
not play a role, in particular given the prominent presence
of the potential barrier. The reason is the weakness of the
field, which renders any action very large as can be directly
inferred from the scaling (4). This applies to imaginary
actions of tunneling paths and to real actions appearing as
phases. Their differences scale with F−1=4 and are large for
small fields. Therefore, the interference between different
trajectories is quenched leaving the classical limit as an
excellent approximation.
In summary we have shown that the Stark dynamics of

escaping Rydberg electrons leads to a peak in the spectrum
of the effective momentum π or the time of flight as the
experimental observable, changing its position with the
field strength according to π%ðFÞ ¼ −0.6F1=4. This
explains the occurrence of the “zero-energy structure”
[17]. The universality of the phenomenon is underlined
through the very good agreement with experiments where
the initial Rydberg population was created by laser pulses
of different wavelengths and for different targets (atoms
and molecules). This peak is not only an unexpected and
intricate consequence of the Stark dynamics; it also has
direct implications for the experiment: the peak can be used
to gauge the momentum scale if the field is known or vice
versa, to determine the field strength with a known
momentum scale.

This work was supported by the COST Action XLIC
(CM 1204) and the Marie Curie Initial Training Network
CORINF. The experimental work is supported by DFG.
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We describe in detail how the time-of-flight (tof) corrected momentum peak ⇧

⇤
is determined exper-

imentally. Furthermore, we illustrate how to understand the oscillations in the electron momentum

ep%, perpendicular to the electric field axis, as a function of ⇡, the tof corrected momentum parallel

to the axis. For E = 0 one can determine analytically the values ⇡ for which ep%(⇡) = 0.

A. Experimental determination of peak positions

Three aspects determine the accuracy of the measured
peak position ⇧⇤: (i) calibration of the detector, (ii) cali-
bration accuracy of the origin ⇡

z

= 0, and (iii) statistical
error due to inaccuracy in measurable quantities and ex-
perimental parameters (time-of-flight, distance from tar-
get to the detector, electric field). The calibration of
the detector, corresponding to the stretch of the y-axis
in Fig. 5 of the manuscript, is usually done by fitting
the energy spacing between ATI-peaks, which is known
to be equal to the photon energy (1.59 eV in our case).
The accuracy of this procedure is about 5%. The origin
⇡
z

= 0 was determined using the divergent momentum
structure along ⇡

z

= 0 (see Fig. S1), which is a result
of Coulomb focusing. Namely, the maxima of this struc-
ture were identified at up to six points along the p

y

-axis
by fitting perpendicular Gaussian distributions. The line
connecting these maxima defines ⇡

z

= 0 as shown in
Fig. S1.

The error bars in Fig. 5 correspond to inaccuracies in
the determination of ⇡

z

= 0. The statistical error, i. e.,

FIG. S1: Measured photo-electron spectrum for N2 for an

extraction field of F =2.6V/cm. This corresponds to Fig. 2

of the main paper.

the standard deviation of ⇡
z

(z
d

, t
of

, F ) = z
d

/t
of

�Ft
of

/2
has been estimated using the variance formula

�⇡
z

=

r

h�z
d

t
of

i

2

+
h�F t

of

2

i

2

+
nhF

2
+

z

t
of

2

i

�t
of

o

2

.

From the experimental parameters and their uncertain-
ties z

det

= 390mm, �z
det

= 50µm (laser focus fluctua-
tion), F = 1 . . . 9V/cm, �F = 0.6 . . . 8.7 ⇥ 10�3 V/cm,
t
of

= 70 . . . 260 ns, �t
of

= 0.2 ns, one gets a standard de-
viation of 3 . . . 14 ⇥ 10�3 au. This uncertainty can also
be deduced by comparing the experimentally measured
peak with the theoretical one (Fig. 3 of the manuscript).
The experimental peak is broader by about 5 ⇥ 10�3 au
due to the statistical uncertainty. Despite of this rela-
tively large uncertainty reflected in the peak width, the
central position ⇧⇤ of the peak can be determined with
much higher accuracy by fitting the peak to a Gaussian
function.

B. Transformation to semi-parabolic coordinates

In contrast to Eq. (5) of the main paper, we use scaled
cylindrical coordinates {e%, z} in which the Stark Hamil-
tonian reads

H =
ep
%

2

2
+

p
z

2

2
� 1

r
� z, r =

p

e%2+z2. (1)

Here we have assumed `
z

= 0 and thus ignore the dynam-
ics in the cyclic azimuthal angle �. As already discussed
in the main paper, e% measures the “directed” distance
from the symmetry axis. This allows in an intuitive way
to account for crossings of this axis, which otherwise cor-
respond to jumps of � by 180�.
The Hamiltonian H can be transformed into semi-

parabolic coordinates {u, v}, with s=sign(e%)=±1,

u =
p
r+z, v = s

p
r�z, (2a)

p
u

= s
p
r�z ep

%

+
p
r + z p

z

, (2b)

p
v

=
p
r+z ep

%

� s
p
r�z p

z

, (2c)

where it separates [1], cf. Eq. (6) in the main paper, into



2

E
u

=
p2
u

2
+ V

u

(u), V
u

(u) = �Eu2 � u4

2
(3a)

E
v

=
p2
v

2
+ V

v

(v), V
v

(v) = �Ev2 +
v4

2
(3b)

with the condition E
u

+E
v

=2 or using a separation con-
stant �

E
u

= 1 + �, E
v

= 1� �. (3c)

The {u, v}-motion described by Eqs. (3) has its own time
⌧ , which is related to the original time t according to

dt =
�

u2 + v2
�

d⌧. (4)

For completeness we also give the transformation back to
the coordinates of the original Hamiltonian (1)

e% = uv, z =
�

u2�v2
�

/2, r =
�

u2+v2
�

/2, (5a)

ep
%

=
up

v

+ vp
u

u2 + v2
, p

z

=
up

u

� vp
v

u2 + v2
, (5b)

which will be used below.

C. Trajectories

We are interested in trajectories starting at the Coulomb
singularity e%

init

= z
init

= 0 or equivalently at the origin
u
init

= v
init

= 0. Each trajectory is characterized by its
energy E and the initial angle ✓

init

= arctan
�

pinit
z

, epinit
%

�

.
In the separated system (3) the trajectories are charac-
terized by the energy E, which is now a parameter in
the potentials, and the separation constant �1  �  1,
which is related to the initial angle

� = cos ✓
init

. (6)

The initial momenta can be written as pinit
u

=
2 cos(✓

init

/2) and pinit
v

= 2 sin(✓
init

/2).
The electron can escape if it has su�cient energy to

pass the barrier of height V
u

(u
b

) = E2/2 in u at u
b

=p
�E. From E

u

 2 one sees that this requires at least
E � �2. However, not all trajectories which fulfil this
condition escape. Rather, the angle ✓

init

must be such,
that there is su�cient energy in the u-degree of freedom,
which implies E

u

> E2/2 or

cos ✓
init

> E2/2� 1, (7)

which follows from Eqs. (3c) and (6). Hence, one can
calculate the fraction of electrons which escape over the
Stark barrier

⌘ =
I
�

arccos(E2/2�1)
�

I
�

⇡
� (8a)

I(x) ⌘
Z

0

�2

dE

Z

x

0

d✓
init

sin ✓
init

(8b)

to get ⌘ = 2/3. In Eqs. (8) we have assumed that the
energies E and cos ✓

init

are uniformly distributed.

D. Asymptotic momenta

1. General

For an escaped trajectory (u!1) p
u

2 ! u4 holds, as can
be seen from (3a). Then,

{ep
%

, p
z

} u!1�! {v, u}, (9a)

⇡ = p
z

� t
u!1�! u� t (9b)

follows from Eq. (5b). Here, ⇡ is the e↵ective momentum
accounting for the time of flight as introduced in the main
paper.
Due to the quartic term in (3a) the electron reaches

u ! 1 within a finite time which we call ⌧1,

⌧1 =

Z

⌧1

0

d⌧ =

Z 1

0

du

u̇
, u̇ = du/d⌧ . (10)

Note, that the corresponding real time t, which follows
from integrating Eq. (4),

t
fin

=

Z

tfin

0

dt =

Z

⌧1

0

d⌧ (u2 + v2) , (11)

is infinite.
The time-evolution in v is periodic. Hence, the time,

it takes to reach v
fin

= v(⌧1) in the end, is the number
n of half-periods T plus the final stretch v

fin

,

⌧
n,vfin =

Z

⌧n,vfin

0

d⌧ = nT +

Z

vfin

0

dv

v̇
(12a)

T = 2

Z

vtp

0

dv

v̇
, v̇ = dv/d⌧ , (12b)

where v
tp

is the turning point of the potential V
v

in
Eq. (3b).
Since asymptotically v = ep

%

, cf. Eq. (9a), one can fix a
certain asymptotic momentum ep

%

by defining v
fin

. Set-
ting ⌧1 = ⌧

n,vfin gives multiple solutions for which tra-
jectories characterized by {�

n

, E
n

} lead to a particular
v
fin

and thus to an asymptotic momentum ep
%

.
For asymptotic large times at the detector only the

di↵erence ⇡ ⌘ p
z

� t
fin

will be finite, while t
fin

and p
z

will diverge. One can rewrite Eq. (11) as

t
fin

=

Z 1

0

du
u2

u̇
+

Z

vfin

0

dv
v2

v̇
. (13)

From (9b) one gets with (13) an explicit expression for
the e↵ective momentum at time t

fin

⇡ =

Z 1

0

du
⇣

1�u2

u̇

⌘

�
Z

vfin

0

dv
v2

v̇
. (14)

This fixes the zeros of ep
%

(⇡) = 0, i. e., those pairs of
{E, ✓

init

} for which ep
%

vanishes.
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2. Special case E=0

For trajectories with E = 0 these zeros can be obtained
analytically. For ⌧1 we get with Eqs. (3a) and (10)

⌧E=0

1 = (2 + 2�)�1/4

Z 1

0

dup
1 + u4

=

⇥

2�( 5
4

)
⇤

2

[2 + 2�]1/4
p
⇡

(15)

For the half period (12b) in v we have with v
tp

= 1 in
scaled coordinates

TE=0 = 2[2� 2�]�1/4

Z

1

0

dvp
1� v4

=
2
p
⇡�( 5

4

)

[2� 2�]1/4�( 3
4

)
. (16)

The condition ⌧1 = ⌧
n,0

=nT picks trajectories which
end after n half periods right at v = 0 or equivalently
ep
%

= 0, which is what we are looking for. The corre-
sponding values for � follow from Eqs. (15) and (16)

1� �
n

1 + �
n

= n4



⇡

2

1

�( 5
4

)�( 3
4

)

�

4

= 4n4 . (17)

We can now calculate Eq. (14) for E = 0 similarly as in
(15) and (16) using (17). For the case E = 0, it assumes
the simple form

⇡
n

= (2 + 2�)1/4⇡
u

� 2n(2� 2�)1/4⇡
v

, (18a)

⇡
v

⌘
p
⇡�( 3

4

)

�( 1
4

)
, ⇡

u

⌘
p
2⇡

v

. (18b)

Hence, finally the e↵ective momenta for which E = 0 and
ep
%

= 0 are given as

⇡
n

=
2(1� 2n2)

(1 + 4n4)1/4
⇡
v

(19)

For large n the the corresponding momenta ⇡
n

decrease
linearly with n, ⇡

n!1 = �2
p
2n⇡

v

. The first few values
are ⇡

0

= 1.2, ⇡
1

= �0.80, ⇡
2

= �2.95, ⇡
3

= �4.80, where
⇡
1

is structurally related to the main caustic producing
the peak in the spectrum while ⇡

2

is correspondingly re-
lated to the second, weaker caustic.
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