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Abstract
We derive the semi-classical Lindblad master equation in phase space for both
canonical and non-canonical Poisson brackets using the Wigner–Moyal formal-
ism and the Moyal star-product. The semi-classical limit for canonical dynam-
ical variables, i.e. canonical Poisson brackets, is the Fokker–Planck equation,
as derived before. We generalize this limit and show that it holds also for non-
canonical Poisson brackets. Examples are gyro-Poisson brackets, which occur
in spin ensembles, systems of recent interest in atomic physics and quantum
optics. We show that the equations of motion for the collective spin variables
are given by the Bloch equations of nuclear magnetization with relaxation.
The Bloch and relaxation vectors are expressed in terms of the microscopic
operators: the Hamiltonian and the Lindblad functions in the Wigner–Moyal
formalism.

Keywords: Lindblad master equations, non-canonical variables, Hamiltonian
systems, spin systems, classical and semi-classical limit, thermodynamical limit

(Some figures may appear in colour only in the online journal)

1. Lindblad quantum master equation

Since perfect isolation of a system is an idealization [1, 2], open microscopic systems, which
interact with an environment, are prevalent in nature as well as in experiments. Examples
include superadiance [3, 4], Cooper-pair pumping [5] or non-equilibrium nuclear processes
[6]. In such situations energy can be exchanged between the system and surrounding particles.
The ensuing energy loss leads to dissipation and fluctuation. A description of the dynamics
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which fully accounts for the interactions between the system and its environment often implies
equations which cannot be solved even numerically in a reasonable amount of time.

If the relaxation time of the environment is short compared to the typical timescale of the
system, a Markovian approximation can be used. As a result, the quantum dynamics of the
open microscopic system described by the density matrix ρ̂ is governed by the Lindblad master
equation [1]

∂ρ̂

∂t
= − i

!
[
Ĥ, ρ̂

]
+

1
!

kmax∑

k=1

(
[L̂kρ̂, L̂†

k] + [L̂k, ρ̂L̂†
k]
)

, (1)

where [·, ·] denotes the commutator. Equation (1) has a Hamiltonian part, with the Hamilton
operator Ĥ, and a dissipative part that results from the interactions with the environment with
Lindblad operators L̂k, also referred to as jump operators with arbitrarily large kmax. The Lind-
blad master equation (1) is applied to problems in atomic physics [4, 7], quantum optics [8, 9],
condensed matter [10, 11] quantum information [12, 13] and decoherence [14, 15].

In general, the simulation of equation (1) in the thermodynamic limit takes extremely long
time and is numerically demanding, even with quantum-jump methods [16]. However, some of
the quantum systems, whose dynamics is accurately described by equation (1), exhibit classi-
cal behavior [3, 4]. Classical behavior of quantum systems often facilitates to understand their
quantum dynamics and nonlinear phenomena observed in experiments. For instance, classi-
cal trajectories allow one to identify mechanisms in microscopic systems [17, 18], and the
comparison of classical and quantum solutions with experimental results reveals which effects
observed in experiments are inherently quantum.

A bridge to the classical phenomena can be built with semi-classical master equations
derived from the quantum ones. The former can capture inherent quantum effects in the ther-
modynamic limit and allows us to identify connections between microscopic and macroscopic
scales. For canonical variables, the semi-classical limit of equation (1) has been established
[19]. Here, we formulate the Lindblad master equation (1) in the Wigner–Moyal formalism
[20] and we derive its semi-classical limit for canonical and non-canonical Poisson brackets
using the Moyal star-product.

In sections 1.1 and 1.2, we recall some properties on the Lindblad quantum master
equation (1). In section 2, we formulate the Lindblad master equation (1) in the Wigner–Moyal
formalism for canonical and non-canonical Poisson brackets and we derive its semi-classical
limit. We show that for gyro-Poisson brackets [21], the semi-classical Lindblad equation cor-
responds to the Fokker–Planck equation. This result is consistent with the result obtained for
canonical Poisson brackets [19]. In section 3, as an example, we use the results obtained in
section 2 to derive the Bloch equations from equation (1) and the semi-classical limit of a
model for superradiance and spin squeezing.

1.1. Mean-field equations

We consider a set of quantum operators (Â1, . . . , ÂN) = Â. The time evolution of Â, given by
⟨Â⟩ = tr(ρ̂Â), is governed by

d
dt
⟨Â⟩ =

i
!

〈
[Ĥ, Â]

〉
+

1
!
∑

k

〈
L̂†

k[Â, L̂k] − [Â, L̂†
k]L̂k

〉
. (2)

Equation (2) can be written in the form d⟨Â⟩/dt = ⟨u(Â)⟩, where u is a function of the Hamil-
ton and Lindblad operators. The latter equations does not necessarily provide a set of coupled
ordinary differential equations (ODEs) for the variables ⟨Âk⟩ because of correlation terms of
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the form ⟨Âk . . . Â j⟩. In the mean-field approximation, these terms are assumed to factorize
⟨Âk, . . . , Â j⟩ = ⟨Âk⟩ · · · ⟨Â j⟩ and, as a consequence, equation (2) becomes

d
dt
⟨Â⟩ = u

(
⟨Â⟩

)
. (3)

Equation (3) are referred to as the mean-field equations. They provide a set of coupled ODEs
for the expectation values ⟨Âk⟩ as variables which are no longer operators. Therefore, the mean-
field approximation is often referred to as the classical limit of the quantum master equations
[3, 4]. However, as we will show, the semi-classical limit of the quantum master equation (1)
reveals classical correlations between phase-space functions of the same form as between oper-
ators in equation (1) and therefore contains more information than the mean-field equations.
Under the mean-field approximation as introduced above, quantum and semi-classical master
equations reduce to the same result.

1.2. C-number conjugate Lindblad operators

For later reference, we introduce C-number conjugate Lindblad (CCL) operators which fulfill

L̂†
k = ckL̂k, (4)

with ck ∈ C. Special cases are Hermitian (ck = 1) and skew–Hermitian (ck = −1) Lindblad
operators. In section 2 we will show that for CCL operators, there is no dissipation in the
classical limit. Moreover, the Lindblad quantum master equation (1) takes the form

∂ρ̂

∂t
= − i

!
[
Ĥ, ρ̂

]
+

1
!
∑

k

ck
[[

L̂k, ρ̂
]

, L̂k
]
. (5)

The diffusion term in equation (5) is of the order ! since [Â, B̂] = O(!). This term becomes
zero in the classical limit (! = 0) and therefore we expect no dissipation. In the thermodynamic
limit (1/N = 0 with the number of particles N), the same observation holds if the system’s
effective Planck constant scales as !/N [22], see for instance one of our examples in section 3.
In addition, the semi-classical limit of the commutator [·, ·] is well known (see equation (16)),
and therefore we can easily check from equation (5) that the general semi-classical Lindblad
equation derived in section 2 has the correct form for this specific case.

2. Derivation of the semi-classical Lindblad equation

2.1. Reminder on the Moyal–Wigner formalism and the Moyal star-product

The Moyal–Wigner formalism [20] is an alternative but equivalent formulation of quantum
mechanics based on a non-commutating algebra in a deformed phase space, also referred to as
the deformation quantization of quantum mechanics [23]. In this statistical theory the operators
F̂ become scalar functions F(z) which depend on phase-space variables z = (z1, . . . , zn), which
are either canonical or noncanonical [24]. The state of the system is described by the quasi-
probability distribution ρ(z, t), where ρ(z, t)dnz represents the probability that the system is in
a small volume dnz of phase space around z. For a given ρ(z, t), the expectation value of an
observable F is given by

⟨F(z)⟩ =

∫
ρ(z, t)F(z)dnz. (6)
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Also known as the Wigner quasi-probability distribution, the phase-space density ρ(z, t) can
be viewed as a density matrix ρ̂ in phase space given by the Weyl transform

ρ(r, p, t) =

∫
⟨r + q/2| ρ̂ |r − q/2⟩ exp

(
− i
!q · p

)
dn/2q, (7)

provided that z = (r, p) is composed of canonical dynamical variables r and p. From the evo-
lution of ρ(z, t), one can determine the time evolution of the physical observables (6) and also,
how the quantum state evolves in phase space using, in the canonical case, the inverse transfor-
mation of (7). Details on the Wigner function, and more generally on the way, how to obtain
the Moyal–Wigner functions (also referred to as Wigner functions) from the Weyl transfor-
mation can be found in [25], including their connection with Schrödinger quantum mechanics
and associated operators.

The Moyal–Wigner formalism operates in the Hilbert space of phase-space functions with
a Lie algebra. The corresponding Moyal bracket [[·, ·]] is related to the standard Lie bracket
[·, ·] of quantum operators by

i! [[F, G]] ≡ [F̂, Ĝ]. (8)

Over the Hilbert space of phase-space functions one defines a Moyal star-product denoted
with ⋆, which is associative. In terms of the Moyal star-product, the Moyal bracket between
two observables in phase space F(z) and G(z) reads

i! [[F, G]] = F ⋆ G − G ⋆ F. (9)

The Moyal bracket is also a Lie bracket [23],

[[F, G]] = − [[G, F]] , (10a)

[[F, G ⋆ H]] = [[F, G]] ⋆ H + G ⋆ [[F, H]] , (10b)

[[F, [[G, H]]]] + [[G, [[H, F]]]] + [[H, [[F, G]]]] = 0 (10c)

satisfying the properties of antisymmetry (10a), Leibniz’s rule (10b) and the Jacobi identity
(10c). We note that we can also introduce the Moyal anticommutator i!(|F, G|) ≡ F ⋆ G + G ⋆
F. Together with equation (8) and the relation 2F̂Ĝ = [F̂, Ĝ] + (F̂, Ĝ) (where F̂, Ĝ) denotes the
anticommutator), one can show that a triple product of quantum operators reads in terms of the
Moyal–Wigner functions

F̂ĜĤ ≡ F ⋆ (G ⋆ H) = (F ⋆ G) ⋆ H. (11)

From (11) it is clear that one can express a product of arbitrarily many operators in terms of
the Moyal–Wigner functions.

2.2. Moyal star-product for canonical dynamical variables

The Moyal star-product has been first introduced for canonical phase-space variables [20]
z = (r, p) with n = 2m, where r = (r1, . . . , rm) is, for instance, the position and p =
(p1, . . . , pm) its canonically conjugate momentum. The Moyal star-product ⋆ for canonical
dynamical variables [20, 23, 26, 27] reads

⋆ = exp

⎡

⎣ i!
2

⎛

⎝
←−
∂

∂r
·
−→
∂

∂p
−
←−
∂

∂p
·
−→
∂

∂r

⎞

⎠

⎤

⎦ , (12)
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where ←−· and
−→· refer to application of the partial derivative to the left-hand and the right-

hand side of the star-product, respectively. In addition to being associative, the Moyal star-
product for canonical variables given by equation (12) is commutative to 0th order in !, i.e.
F ⋆ G = FG + O(!) = GF + O(!), and its identity is the unity, i.e. F ⋆ 1 = 1 ⋆ F = F. Up to
2nd order in !, the Moyal bracket corresponds to the canonical Poisson bracket, i.e. [[F, G]] =
{F, G} + O(!2), where

{F, G} =
∂F
∂r

· ∂G
∂p

− ∂F
∂p

· ∂G
∂r

. (13)

2.3. Moyal star-product for non-canonical dynamical variables

As before, we consider a finite-dimensional Hamiltonian system whose (phase-space) variables
are denoted as z = (z1, . . . , zn). It is given by a Hamiltonian H(z) and a general Poisson bracket
[28]

{F, G} =
∂F
∂z

· J(z)
∂G
∂z

, (14)

where J(z) is the Poisson matrix. The Poisson bracket (14) is antisymmetric, therefore
JT = −J, and satisfies the Jacobi identity, cf also equation (10c). If the Poisson matrix is sym-
plectic, it reads J(z) = [!, I;−I, !] and the Poisson bracket is called canonical, otherwise it is
non-canonical. For non-canonical dynamical variables, the Moyal star-product up to 2nd order
in ! is given by [29–31]

⋆ = exp

⎡

⎣ i!
2

←−
∂

∂z
· J(z)

−→
∂

∂z

⎤

⎦ + !2⋆̃ + O(!3), (15)

where ⋆̃ is a higher order star-product, explicitly given before [29–31]. It arises because the
derivatives with respect to the dynamical variables and the Poisson matrix J(z) in the expo-
nential of equation (15) do not commute. It is symmetric, i.e. F⋆̃G = G⋆̃F and vanishes for
constant Poisson matrices, since it depends only on the derivatives of the Poisson matrix but
not on the matrix itself. This is in particular true for the symplectic matrix (corresponding to
the canonical Poisson bracket), for which ⋆̃ and higher-order corrections vanish such that (15)
reduces to (12).

To the best of our knowledge, there is no explicit formula of the star-product for non-
canonical variables at all orders in !. There is, however, a recurrence method [31] to determine
the expression of the correcting terms of the non-canonical Moyal star-product at higher orders
in ! which ensures that the Moyal star-product possesses the right properties (in particular the
associativity) to a given order in !, (F ⋆ G) ⋆ H = F ⋆ (G ⋆ H) + O(!3) [29–31]: at 0th order
in ! it results from the associativity of the multiplication, at 1st order it results from Leibniz’s
rule of the non-canonical Poisson bracket (14), and at 2nd order it results from the Jacobi
identity which is satisfied by the non-canonical Poisson bracket (14). For our derivation of the
semi-classical Lindblad equation, we use the associativity of the star-product up to the 2nd
order in !.

Since the Moyal star-product can easily be expanded in a series of !, it is particularly well-
suited for the derivation of semi-classical equations from quantum master equations. Up to 2nd
order in !, the Moyal bracket reads

[[F, G]] = {F, G} + O(!2). (16)
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The 1st-order term in ! vanishes in (16) due to the antisymmetry of the Poisson matrix.

2.4. The Lindblad master equations in the Wigner–Moyal formalism and their semi-classical
limit

With equation (8), the commutator (9) and equation (11), we can formulate the Lindblad master
equation (1) for the phase-space distribution ρ(z, t) in terms of the Moyal bracket and the Moyal
star-product as

∂ρ

∂t
= [[H, ρ]] + i

∑

k

([[
Lk ⋆ ρ, L∗

k

]]
+
[[

Lk, ρ ⋆ L∗
k

]])
, (17)

where H(z, t) is the Hamiltonian and Lk(z, t) are the Lindblad functions. The scalar func-
tions L∗

k(z, t) are complex conjugate to Lk(z, t). We note that the Hamiltonian and the Lind-
blad functions may depend explicitly on time. Equation (17) is the Lindblad equation in the
Wigner–Moyal formalism for both, canonical and non-canonical phase-space variables. Note
that equation (17) differs from a semi-classical Lindblad equation put forward by Bondar et al
[32]. In our case the triple products, for instance L̂kρ̂L̂∗

k in equation (1), become (Lk ⋆ ρ) ⋆ L∗
k

or equivalently Lk ⋆ (ρ ⋆ L∗
k ) due to the associativity of the star-product, instead of Lk ⋆ ρ ⋆ L∗

k
[32].

Equation (17) is in general an infinite-order partial differential equation, and can be written
in a series of !. In order to obtain the semi-classical limit of the Lindblad quantum master
equation (1), we expand the right-hand side of equation (17) up to 1st order in !. We obtain

∂ρ

∂t
= {H, ρ} + i

∑

k

(
{Lkρ, L∗

k} + {Lk, ρL∗
k}
)

− !
2

∑

k

(
{{Lk, ρ} , L∗

k} + {Lk, {ρ, L∗
k}}

)
+ O(!2). (18)

Equation (18) has the same form as the equation obtained for canonical Poisson brackets [19],
but with the important difference that the Poisson brackets have been replaced by non-canonical
Poisson brackets (14). Two main parts in equation (17) govern the dynamics: A Hamiltonian
part [1st term on the right-hand side of equation (18)] corresponding to the Liouville equation
if Lk = 0 for all k, and a part coming from the dissipative term in equation (1).

The CCL functions corresponding to CCL operators (4) fulfill L∗
k = ckLk. If L∗

k = ckLk for
all k, the 0th order in ! on the right-hand side of equation (18) vanishes due to the antisymmetry
of the Poisson bracket. In addition, if we substitute the Moyal bracket into equation (5) and use
equation (16), it is easy to check that the resulting expression is the same as the one obtained
in equation (18) for L∗

k = ckLk.

2.5. Canonical and gyro-Poisson brackets: the Fokker–Planck equation

In this section, we consider Poisson matrices such that

∂

∂z
· J(z) = 0, (19)

i.e. ∂Ji j(z)/∂zi = 0 for all i and j. This condition is fulfilled for canonical Poisson brackets,
Poisson brackets which do not depend on the phase-space variables, gyro-Poisson brackets
[21] as used in equation (24) below, and Poisson brackets in Nambu systems [33], for instance.
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These brackets can be used for spin systems or particles driven by electromagnetic fields. Using
condition (19) and the antisymmetry of the Poisson matrix, we rewrite equation (18) as

∂

∂t
ρ(z, t) +

∂

∂zi
[ui(z, t)ρ(z, t)] − 1

2
∂2

∂zi∂z j

[
Di j(z, t)ρ(z, t)

]
= 0, (20a)

where the Einstein summation convention has been used. Equation (20a) corresponds to the
Fokker–Planck equation [1, 34]. Therefore, just as for canonical variables [19], the semi-
classical Lindblad equation for non-canonical variables is governed by a Fokker–Planck
equation, provided (19) holds. The drift vector u(z, t) = (u1, . . . , un) and the diffusion matrix
D(z, t) = [Di j] read as a function of the Hamiltonian and the Lindblad functions

ui(z, t) = {zi, H} − i
∑

k

(
Lk {zi, L∗

k} + L∗
k {Lk, zi}

)

− !
2

∑

k

(
{{Lk, zi} , L∗

k} + {{L∗
k , zi} , Lk}

)
+ O(!2), (20b)

Di j(z, t) = !
∑

k

(
{zi, Lk} {z j, L∗

k} + {zi, L∗
k} {z j, Lk}

)
+ O(!2). (20c)

Note that the (non-Hermitian) Lindblad functions Lk contribute to the drift vector also at 1st
order in !. This is true for canonical and noncanonical Poisson brackets as could have been
anticipated since (18) has the same form as the equation obtained for canonical Poisson brack-
ets [19]. Note, however, that this 1st-order -! contribution in ui is missing in [19]. The diffusion
matrix (20c) is real positive semi-definite. The Fokker–Planck equation governs the dynamics
for classical stochastic Markovian systems [1]. The results (20) we obtain from the quantum
master equation are therefore consistent with classical stochastic theory. The 2nd term in the
Fokker–Planck equation (20a) describes a deterministic drift. The 3rd term describes the dif-
fusion of the stochastic variable. The diffusion matrix D(z) is of order !, and as a consequence
the diffusion term in equation (20a) corresponds to quantum fluctuations or quantum noise.
The mean value of an observable F(z) given by equation (6) reads

d
dt

⟨F(z)⟩ =

〈
∂F
∂zi

ui(z, t) +
1
2

∂2F
∂zi∂z j

Di j

〉
. (21)

In particular, the average of the dynamical variables is given by d⟨z⟩/dt = ⟨u(z)⟩.
In the classical limit (! = 0), the diffusion matrix vanishes. In this limit, one gets

dz
dt

= {z, H} − i
∑

k

(
Lk {z, L∗

k} − L∗
k {z, Lk}

)
. (22)

Hence, equation (18) in the classical limit corresponds to a global description of the dynamics
in terms of phase-space densities ρ(z, t) while equation (22) represents a local description of
the dynamics in terms of trajectories z(t). Both are equivalent in the sense that they carry the
same amount of information. Classical dissipation is given by

∂

∂z
· u(z, t) = 2i

∑

k

{L∗
k , Lk}. (23)

For CCL operators (4) and corresponding CCL functions, the 2nd term on the right-hand side
of equation (22) vanishes and equation (22) becomes u(z, t) = {z, H}. Equation (18) becomes
Liouville’s equation. The system is Hamiltonian in the classical limit without dissipation.

7
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3. Examples

In the following, we consider two different examples of spin systems. In both cases, the dynam-
ics of many spins is described by a collective spin variable S [3, 4]. The Poisson bracket is given
by

{F, G} = S ·
(
∂F
∂S

×∂G
∂S

)
, (24)

whose Casimir invariants are functions of the collective spin norm |S|. The Poisson matrix
for this Poisson bracket is given by Ji j = ϵi jkSk, where ϵ is the Levi-Civita symbol. In the first
example, we consider the Lindblad quantum master equation for a model of superradiance and
spin squeezing. We derive the equations for the expectation value of the spin dynamics quantum
mechanically. Then, we derive the equations for the expectation value of the spin dynamics
from our semi-classical equations (see equation (21)), and we show that both sets of equations
are of the same form. In the second example, we consider a general form of the Hamiltonian
and the Lindblad functions. We show that the mean-field equations for the semi-classical spin
dynamics are the Bloch equation with relaxation terms.

3.1. Superradiance and spin squeezing

Superradiance and spin squeezing can be obtained from a system of N spins governed by the
master equation for the reduced density matrix ρ̂ [4]

∂ρ̂

∂t
= − i

!
[
Ĥ, ρ̂

]
+

1
!
([

L̂, ρ̂L̂†] +
[
L̂ρ̂, L̂†]) , (25a)

where the Hamiltonian and the Lindblad operators are

Ĥ = ΩŜx, (25b)

L̂ =

√
Γ

2J

[
Ŝx (cos θ + sin θ) − iŜy (cos θ − sin θ)

]
, (25c)

respectively. The parameter Ω and Γ are the driving amplitude and the quantum-jump rate,
respectively. The operator Ŝ = (Ŝx , Ŝy, Ŝz) is the collective spin operator obeying the commu-
tation relations [Ŝi, Ŝ j] = i!ϵijkŜk. The driving amplitude is Ω and the total angular momentum
is J = N/2.

3.1.1. Mean-field equations computed quantum mechanically. From the equations of motion
of the expectation values of quantum observables (2), we obtain for the quantum Lindblad
master equation (25)

d
dt
⟨Ŝx⟩ = Ωc⟨ŜxŜz⟩ −

Γ!
2J

⟨Ŝx⟩ [1 − sin(2θ)] , (26a)

d
dt
⟨Ŝy⟩ = −Ω⟨Ŝz⟩ + Ωc⟨ŜyŜz⟩ −

Γ!
2J

⟨Ŝy⟩ [1 + sin(2θ)] , (26b)

d
dt
⟨Ŝz⟩ = Ω⟨Ŝy⟩ − Ωc

(
⟨Ŝ2

x⟩ + ⟨Ŝ2
y⟩
)
− Γ!

J
⟨Ŝz⟩, (26c)

8
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where Ωc = Γ cos(2θ)/J. In the mean-field equations [4] one assumes ⟨ŜiŜ j⟩ ≈ ⟨Ŝi⟩⟨Ŝ j⟩. As a
result, we obtain a set of dynamical equations for the expectation value of the spin operators

d
dt
⟨Ŝx⟩ = Ωc⟨Ŝx⟩⟨Ŝz⟩ −

Γ!
2J

⟨Ŝx⟩ [1 − sin(2θ)] , (27a)

d
dt
⟨Ŝy⟩ = −Ω⟨Ŝz⟩ + Ωc⟨Ŝy⟩⟨Ŝz⟩ −

Γ!
2J

⟨Ŝy⟩ [1 + sin(2θ)] , (27b)

d
dt
⟨Ŝz⟩ = Ω⟨Ŝy⟩ − Ωc

(
⟨Ŝx⟩2 + ⟨Ŝy⟩2

)
− Γ!

J
⟨Ŝz⟩. (27c)

3.1.2. Expectation values from the semi-classical Lindblad equation. In the semi-classical
approach, the operators become scalar functions of dynamical phase-space variables. The
Hamiltonian operator Ĥ becomes H(S), and the Lindblad operators L̂ become L(S). In this
case, they read

H(S) = ΩSx, (28a)

L(S) =

√
Γ

2J

[
Sx (cos θ + sin θ) − iSy (cos θ − sin θ)

]
. (28b)

In equation (21), we substitute the gyro-Poisson bracket (24) and we use F = S. We obtain

d
dt
⟨Sx⟩ = Ωc⟨SxSz⟩ −

Γ!
2J

⟨Sx⟩ [1 − sin(2θ)] , (29a)

d
dt
⟨Sy⟩ = −Ω⟨Sz⟩ + Ωc⟨SySz⟩ −

Γ!
2J

⟨Sy⟩ [1 + sin(2θ)] , (29b)

d
dt
⟨Sz⟩ = Ω⟨Sy⟩ − Ωc

(
⟨S2

x⟩ + ⟨S2
y⟩
)
− Γ!

J
⟨Sz⟩, (29c)

which have the same form as equations (26) derived from the quantum-mechanical approach.
Beyond the mean-field equations, our semi-classical approach takes into account the semi-
classical spin correlations ⟨SiS j⟩. Yet the long-time evolution of the expectation values accord-
ing to equations (26) and equations (29) differ due to these correlation terms which involve
operators and functions, respectively. However, in mean-field approximation, these differences
in the correlations is suppressed and quantum as well as semi-classical dynamics is governed by
the same mean-field equations. As illustrated in figure 1, correlations have a significant impact
on the long-time evolution, even in the semiclassical limit. Visible in figure 1 after about 50
a.u., we observe a dephasing between the expectation values of ⟨S(t)⟩ from the mean-field
equations (27), shown with dashed lines, and the ones from the Fokker–Planck equations (20),
shown with solid lines. Considering equations (20) rather than equations (27) allows one to
include all moments of the distribution ρ(z, t) and to study their impact on the measurements
or physical phenomena in terms of trajectories, which are either deterministic in the classi-
cal limit [! = 0, see equation (22)] or stochastic in the semiclassical limit [1st order in !, see
equations (20)].

3.2. Collective spin systems and the Bloch equations of nuclear magnetization

We consider a general form of the Hamiltonian and Lindblad functions, and a collective spin
variable S with a Poisson bracket (24). The expectation value of the collective spin variables

9
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Figure 1. Simulations of the semiclassical limit of the Lindblad master equation (25)
for J = 1000, γ = Ω = 1 and θ = π/8. Panels (a) and (b) show the expectation val-
ues of the collective spin as a function of time. The dotted lines are calculated with the
mean-field equations (27). The solid lines are computed by solving the Fokker–Planck
equations (20), i.e. by taking into account the spin correlations. Panel (c) shows
the density probability function ρ(z, t) projected on the unitary Bloch-sphere solution
of the Fokker–Planck equation at time t = 200 with the initial condition ρ(S, 0) =
exp(−|S − Sc|2/2)/(2π)3/2 and Sc = (J/

√
2, J/2, J/2). The yellow and white spheres

are the corresponding expectation values of the spin at that time. All quantities are in
a.u.

is given by equation (21). In this case, d⟨S⟩/dt = ⟨u(S)⟩, it reads

d
dt
⟨S⟩ =

〈
S ×

[
−∂H

∂S
+ i

∑

k

(
Lk

∂L∗
k

∂S
− L∗

k
∂Lk

∂S

)]

+
!
2

∑

k

({
Lk, S ×∂L∗

k

∂S

}
+

{
L∗

k , S ×∂Lk

∂S

})〉
+ O(!2). (30)

In case of a mean-field scenario, where the correlation function almost vanishes, i.e. for any
function f , ⟨ f(S)⟩ ≈ f(⟨S⟩), the expectation value of the collective spin variable is given by a
Bloch equation with relaxation terms [35]

d
dt
⟨S⟩ = ⟨S⟩ ×B(⟨S⟩) − R(⟨S⟩), (31a)

10
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where B is the Bloch vector and R is the relaxation term. They are related to the Hamiltonian
and the Lindblad functions through

B(S) = − ∂H
∂S

+ i
∑

k

(
Lk

∂L∗
k

∂S
− L∗

k
∂Lk

∂S

)
− !

2

∑

k

[
v(Lk, L∗

k) + v(L∗
k , Lk)

]
, (31b)

R(S) =
!
2

∑

k

[
2S

(
∂Lk

∂S
· ∂L∗

k

∂S

)
− ∂Lk

∂S

(
S · ∂L∗

k

∂S

)
− ∂L∗

k

∂S

(
S · ∂Lk

∂S

)]
, (31c)

where

vi(F, G) = S ·
(

∂2F
∂S∂Si

×∂G
∂S

)
. (31d)

Both, B and R, can depend on the collective spin variable and time through the Hamiltonian
and Lindblad functions. The relaxation term R is of order !, and therefore relaxation is here a
quantum feature. In the classical limit (! = 0), there is no relaxation, and therefore the norm
of the spin variable is conserved, i.e. d|S|/dt = 0. However, dissipation is still possible: if the
Lindblad functions are not CCL functions, there can be attractors in the dynamical system.
The relaxation term also vanishes if ∂Lk/∂S ∝ S, implying that each Lk is a function of the
norm of the spin |S|. In this case, Lk are Casimir invariants and as a consequence the system is
Hamiltonian [no dissipation term in equation (18)].

The model in the first example (see section 3.1) can serve as an application of equation (31a).
We substitute the Hamiltonian (28a) and Lindblad functions (28b) into equations (31b) and
(31c) to obtain

B(S) = −Ωex + ΩcS ×ez, (32a)

R(S) =
Γ!
2J

[
Sx(1 − sin 2θ)ex + Sy(1 + sin 2θ)ey + 2Szez

]
. (32b)

Using these expressions in equation (31a), we obtain the same equations of motion for ⟨S⟩ as
equations (27).

4. Conclusions

To conclude, we have formulated the Lindblad quantum master equation (17) in the
Wigner–Moyal formalism and we have derived its semi-classical limit for canonical and non-
canonical Poisson brackets. We have shown that for Poisson matrices which fulfill condition
(19), the semi-classical limit of the Lindblad quantum master equation is a Fokker–Planck
equation [see equations (20)]. Since condition (19) includes as a special case the canonical
Poisson bracket our results agree with those obtained by Strunz and Percival [19] in the canon-
ical case. Condition (19) is also satisfied by gyro-Poisson brackets, such as the Poisson bracket
(24), which occurs in spin ensembles [4, 7] and for particles in an electromagnetic field [28].

More specifically, we have shown that the semi-classical limit of a spin ensemble whose
dynamics is driven by a Lindblad master equation (1) is related to the Bloch equations with
relaxations (see section 3.2), and we have expressed the Bloch vector and the relaxation vec-
tor of the Bloch equations as a function of the Hamiltonian and Lindblad functions in the
Wigner–Moyal formalism (31b), (31c).
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To illustrate the relation between the mean-field approximation and our semi-classical
approach, we have applied the semi-classical limit of the Lindblad quantum master equation
to spin ensembles with a gyro-Poisson bracket (24). While the mean-field equations obtained
from the quantum-mechanical approach (27) agree with those obtained from the semi-classical
approach, our semi-classical approach without further approximation [see equations (20)] also
provides information on the spin correlation and dissipation, even in its classical limit (! = 0).
This suggests that our semi-classical approach provides more information in the classical limit
than the traditional classical limit of the quantum formulation (3) via mean-field approximation
[3, 4, 36].
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