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Single-photon ionization in intense, fluctuating pulses
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ABSTRACT
High intensities in laser–matter interaction drive nonlinear processes. Whereas at low frequencies
thereby multi-photon absorption and above-threshold ionization emerges, in the case of high
frequencies single-photon absorption remains prevailing. However, multiple absorption and
emission of photons renders this single-photon ionization sensitive to energy and shape of the laser
pulse. This becomes relevant for intense, fluctuating pulses as generated in existing and upcoming
free-electron laser sources. We study their effect on the ionization of a model atom numerically and
formulate suitable parameters to characterize the evolution from the linear response at low intensity
to the intricate dynamics at high intensities.
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1. Introduction

The interaction of photons with matter is one of a few
fundamental mechanisms to obtain detailed knowledge
about matter. The photo-effect explains quantum me-
chanically, how this interaction works in the linear, i.e.
weak coupling regime, where single-photon processes
dominate. The electrons set free by the photo-effect are
well described by a perturbative treatment of the matter-
light dynamics (1) and the resulting photo-electron spec-
trum for electrons with initial energy E0 reads (we will
use atomic units throughout the paper unless specified
otherwise)

S(E) =
∣∣∣d(E)

∫
dt A(t)e−ı[E0−E]t

∣∣∣
2

with d(E) ≡
∑

α

〈
ϕα(E)

∣∣p̂
∣∣ϕ0

〉
, (1)

where A(t) is the time-dependent vector potential of the
laser pulse and the index α denotes all degenerate states
at energy E. Of course, some matrix elements in the sum
may vanish because of selection rules.

In this contribution we study stochastic or fluctuating
(both terms are used synonymously throughout) laser
pulses. In particular, we consider pulses with a possibly
short, but finite coherence time, which induce an uni-
tary electron dynamics. The photo-effect as described by
(1) remains valid for such laser pulses, as long as the
condition for single-photon processes persists, render-
ing a correlation between the photons irrelevant for the
photo-ionization process. Formally, this is reflected by
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the fact that in Equation (1) the light neither influences
the sumof dipolematrix elements d(E)nor the initial and
final energies E0 and E of the electron. For intense laser
pulses, however, nonlinear photon–electron interactions
must be considered beyond the linear response of (1)
through which stochastic pulses can influence photo-
ionization. Above-threshold ionization, as known from
the low-frequency regime (2), is very unlikely (3) mainly
due to the tiny continuum–continuum matrix elements.

The advent of free-electron lasers (FELs) producing
intense pulses in the high frequency regime (4–6) with
ever shorter pulse durations (7–10) has given a new
incentive to understand the interplay of nonlinear light-
matter coupling and stochastic pulses, since the FELs
create light through self-amplified spontaneous emission
(SASE) with considerable shot-to-shot fluctuations in the
pulse shape (11). At a first glance, one may think that the
applicability of (1) prevails: Single-photon ionization is
by far the dominating process as dipole matrix elements
in the continuum are weak compared to those elements
involving bound states. Yet, this does not prevent non-
linear (multiple) photon coupling which is realized by
virtual emission and absorption of several photons, alter-
ing the states ϕ involved in (1) and their energies.

As a consequence, high frequency intense stochastic
pulses may influence considerably single-photon ioniza-
tion (12, 13). To study their influence systematically is
the subject of this work. We will present numerically
obtained ionization probabilities for a hydrogenic model
atom exposed to stochastic FEL pulses which we generate
with the partial-coherence method (14), which has been
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tested experimentally by measuring the second-order
autocorrelation of SASE pulses at SCSS (15). The impact
of the stochasticity was pointed out a long time ago (16–
18) mainly in connection with multi-photon processes.

2. Theoretical model

In order to facilitate a systematic treatment we use the
well established soft-core 1dmodel atomwith amodified
Coulomb potential

Ĥ = −1
2

∂2

∂x2
+ V(x) + A(t) i

∂

∂x
, (2a)

V(x) = − 1√
x2 + s

. (2b)

With the choice of s = 2 the ground-state energy in the
potential (2b) matches the one of hydrogen E0 = −1/2.

The partial-coherence method (14) for stochastic
pulses proceeds from a Gaussian pulse for the vector
potential

A(t) = A∗G(t)g(t) cos (ωt) (3a)
G(t) = exp

(
− ln2 [t/T]2

)
, (3b)

g(t) = exp
(
− ln2 [t/τ ]2

)
, (3c)

with amplitude A∗ and carrier frequency ω. The two
Gaussian envelope functions with respective widths T
and τ serve different purposes.WhereasG(t)will be used
as masking function in time and thus fixes the typical
pulse duration T , Gaussian g(t) characterizes the time
scale of the fluctuations by means of the coherence time
τ . Thus τ ≪T (or τ ≫T) implies strongly (or weakly)
fluctuating pulses.

For solving the time-dependent Schrödinger equation
by means of a Crank–Nicolson propagator we need the
pulse at certain time instances tk,

Ak = A(tk) = A∗G(tk)g(tk) cos (ωtk), (4)

with k (and all other indices used below) running from
−n to +n. We use an equidistant grid of times tk =
k · δt with arguments in square brackets [ξl] denoting
(ξ−n, ξ−n+1, . . . , ξ+n). The partial coherence method
generates the stochastic pulse according to

Ãk[φl] ≡ A∗G(tk)F−1[eıφlF
[
g(tk′) cos (ωtk′)

]]
, (5)

with a complete set of random phases [φl] uniformly
distributed in the range −π . . . + π . In Equation (5)
F and F−1 are discrete forward and backward Fourier
transforms (FT), i.e. yl = F[xk] means yl = ∑

k eıωl tk xk.
In order to make the pulse real we apply the constraint

φ−l = −φ+l for all l. One easily obtains from (5) that
Ãk = Ak holds in (4) if φl = 0 for all l. In other
words, for identical phases and identical times T and τ

we get the original Gaussian pulse (4) back. Note, that an
overall phase defines the carrier-envelope phase, which is
irrelevant for the many-cycle pulses we consider here.

The pulse constructed according to (5) was shown
(14) to give approximately aGammadistribution of pulse
energies

P[φl] = 1
4 δt

∑

k

∣∣Ãk+1[φl] − Ãk−1[φl]
∣∣2, (6)

which is characterized by the average pulse energy P̄ and
has a single maximum Pmax. This maximal pulse energy
is realized by the original (deterministic) Gaussian (4).
For any other set of phases the pulse energy P is smaller.

In what is presented below, the system is discretized
for x = −200 . . .+200with 2000 steps ofwidth δx = 0.2.
As time step we use δt = 5.722× 10−3 and n = 219. The
carrier frequency is ω = 3/2.

3. From perturbative to non-perturbative
stochastic pulses

In the following, we present systematic numerical re-
sults for ionization by stochastic pulses as a function of
pulse energy P. The six (3 × 2) different parameter sets
cover the transition from the perturbative regime of the
photo-effect (1) to the nonlinear regime for which we
have solved the Schrödinger equation with the Hamilton
operator (2) at two fluctuation scenarios with τ =T/10
and τ =T , respectively.

We define the pre-factor A∗ as

A∗ = 1
ω

√√√√Pmax

P̄

√
1 + [T/τ ]2

2
IP̄
I0

with I0 = 3.51×1016 W/cm2 , (7)

which implies that pulses with P = P̄ have a given
intensity of IP̄ . To show the transition from perturbative
to non-perturbative behaviour we present results for the
three cases IP̄ = 2×1016, 2×1017 and 2×1018W/cm2.

As Figure 1 illustrates, a given pulse energy P has
different implications for the ionization dynamics
depending on the strength of the pulse. For a ‘weak’ pulse
(Figures 1(a) and (d)) the results can be understood in
the framework of the photo-effect, cf. Equation (1). In
this case the ionization probability depends linearly on
the pulse energy as one would expect from perturbation
theory, representedby the grey line inFigure 1(a). Stronger
fluctuations (Figure 1(a)) broaden thedistribution around
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Figure 1. Ionization probability for six sets of 200 pulses each with T = 1 fs andω = 3/2. The time scale for the fluctuations is τ = T/10
(upper row) and τ = T (lower row), respectively. The intensity I increases from left to right. The prediction from perturbation theory (1)
is shown by the grey lines. The three pulses X, Y and Z from the lower right panel are studied in detail below.

the lines since the larger bandwidth uncovers the strong
energy dependence of the matrix elements d(E) in the
photo-electron spectrum. For larger τ (Figure 1(d)) the
distribution is much narrower and follows the perturba-
tive line. For high pulse energies P > 3P̄, the ionization
yields deviate slightly from the perturbative one towards
lower probabilities p.

This deviation becomes more pronounced in the
2nd set with IP̄ = 2×1017 W/cm2 shown in Figure 1(b)
and (e). For even higher intensity IP̄ = 2×1018W/cm2

shown in Figures 1(c) and (f), the ionization yield as-
sumes a shape, qualitatively different from the pertur-
bative result. Indeed, one sees the effect of stabilization
(19, 20), i.e. that pulses with a higher pulse energyP result
in a lower ionization probability p. The fact, that p hardly
exceeds 25%, is due to the rather short pulse duration of
T = 1 fs that was employed.

4. The effect of individual shapes for strongly
fluctuating pulses

In order to understand the behaviour in the case of large
fluctuations of FEL pulses we will consider three

individual pulses inmore detail. These pulses are marked
in Figure 1(f) by coloured squares and letters X, Y and
Z. We have chosen the three pulses such that PX ≈ PY
and such that pY ≈ pZ. Although the pulse energies for
X and Y are approximately the same (P ≈ 0.37P̄), the
ionization probabilities differ by as much as a factor of
2 (pX ≈ 25%, pY ≈ 13%). On the other hand, the two
pulses Y and Z differ in their pulse energy by a factor
larger than 4 (PY ≈ 0.37P̄, PZ ≈ 1.69P̄), but both induce
a similar ionization probability of p ≈ 13%.

The upper row of Figure 2 shows the three pulses in
the time domain. Apparently, pulse Z resembles most
closely the original Gaussian pulse. That is the reason
that it has the largest pulse energy, which can be also seen
from the FT in the 2nd row of Figure 2. It covers not only
the largest area but also looks like a Gaussian, whereas
the other two pulses (X and Y) show a bimodal FT.

Most interestingly—and in strong contrast to pertur-
bation theory—the photo-electron spectra (shown in the
3rd row of Figure 2) differ considerably from the FTs
of the pulses. This cannot be explained by the energy
dependence of the matrix elements d(E). Rather, effects
like stabilization (19, 20) and dynamic interference
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Figure 2.Details for the three pulses specified in Figure 1 with X, Y and Z, respectively. Upper row: time-dependent vector potential A(t),
middle row: FT A(ω) in comparison to a Gaussian pulse (dashed line), lower row: photo-electron signal S(E).

(21, 22) are responsible for the multi-peak structure and
the overall ionization probability. Typically, these effects
are strongest if the maximal vector potential is large, here
for Y and particular for Z. Conversely, an overall small
vector potential will produce spectra with a large single-
peak as in the case X. One may quantify this observation
with the pulse length, that fluctuates from pulse to pulse
and can be calculated as

T̃ ≡
√

8 ln 2
∫
dt t2A2(t)∫
dt A2(t)

. (8)

With this definitionwe get for the original Gaussian pulse
T̃ = 1 fs and for our three pulses T̃X = 1.97 fs, T̃Y = 1.23 fs
and T̃Z = 1.36 fs, respectively. All pulses are longer than
the Fourier limit with X almost twice as long. Pulse Y is
about 1/3 shorter but since it has the same energy it is
considerably stronger, which brings it into the stabiliza-
tion regime and explains the strongly reduced ionization
probability.

To demonstrate the intricate interplay of pulse shape
and pulse energy in the nonlinear single-photon ioniza-
tion regime, we finally present results, which can only be
obtained theoretically: We follow the ionization yield as
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Figure 3. Ionization probability for the two pulses specified in
Figure 1 with X and Y. We fixed the (randomly chosen) phases and
varied the pulse energy by changing the pre-factor A∗ in Equation
(5). For comparison we show the result for Gaussian pulse as well.
The circles mark the pulses shown in Figure 1.

a function of pulse energy for a single given pulse shape
(fixed set of randomly chosen phase parameters [φl]).
This is done in Figure 3 for the two pulses X and Y as
a function of the pulse energy by varying the pre-factor
(7). Additionally we show the corresponding ionization
probability for a Gaussian pulse. For low pulse energies
P < 0.1P̄ one sees the same linear response in all three
cases. Deviations occur at around P ≈ 0.2P̄ but to a
very different extent. As already shown in Figure 1 for
P ≈ 0.37P̄ the ionization probability differs by a fac-
tor of 2. While pulse X behaves for higher energies P
qualitatively as the Gaussian pulse with a slow decay
after the maximum, p for pulse Y only falls off briefly
only to increase afterwards. This leads to the interesting
observation that Y becomesmore efficient in ionizing the
system than X for higher pulse energy.

5. Conclusions

We have explored the interplay of fluctuations and pulse
strength in the regime of high photon frequencies rel-
evant for single-photon ionization. For the ionization
probability as a function of pulse energy p(P), we find a
gradual deviation from the perturbative (linear) increase
with increasing intensity for themean energy. Eventually,
p(P) qualitatively changes its shape at high intensities and
exhibits a large spread revealing a sensitive dependence
on individual pulse shapes. This behaviour reveals conse-
quences of dynamical effects which have been identified
in deterministic pulses, such as stabilization and dynamic
interference. They lead to ionization probabilities which
can differ significantly for two pulses of the same en-
ergy. In future work it may be possible to characterize

the spread of the ionization probability as a function of
pulse energy quantitatively using the properties of the
deterministic dynamical effects.
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