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Photoelectron spectra obtained with intense pulses generated by free-electron lasers through
self-amplified spontaneous emission are intrinsically noisy and vary from shot to shot. We extract the
purified spectrum, corresponding to a Fourier-limited pulse, with the help of a deep neural network. It is
trained on a huge number of spectra, which was made possible by an extremely efficient propagation of the
Schrödinger equation with synthetic Hamilton matrices and random realizations of fluctuating pulses. We
show that the trained network is sufficiently generic such that it can purify atomic or molecular spectra,
dominated by resonant two- or three-photon ionization, nonlinear processes which are particularly sensitive
to pulse fluctuations. This is possible without training on those systems.
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Recent years have seen an avalanchelike increase of
machine-learning applications in physics [1–3], which
roughly fall into three categories: (a) applications within
theory, e.g., for quantum information [1] or to elucidate
intricate many-body properties [4], (b) within experiment to
optimize experimental conditions, e.g., to characterize a
free-electron laser (FEL) pulse [5], and (c) applications that
condition learning algorithms theoretically with the goal to
apply the trained model to experimental data. Our work
falls in category (c). Although in principle far more general,
we choose to be specific and apply the approach we
develop to the purification of noisy photoelectron spectra
as routinely obtained with self-amplified spontaneous
emission (SASE) FELs operating in the desired frequency
range.
Our goal is to train a deep neural network with

sufficiently many noisy spectra and their pure counterparts,
such that the trained network will be able to purify a noisy
spectrum which is not contained in the training data, in
particular an experimental one. With purification, we mean
that upon feeding with a noisy photoelectron spectrum the
network returns a reference spectrum that would be
obtained if the target system would be driven by an ideal
Gaussian laser pulse, which we call the reference pulse,
cf. Fig. 1. This may seem straightforward. Yet, it is
anything but trivial to generate a sufficient amount of
suitable training data with an acceptable effort. This is in

general the bottleneck for machine-learning applications
in theory which requires new ways of thinking. In this
vein, we introduce synthetic Hamilton matrices (SHMs).
Synthetic means that we vary the matrix elements (here in a
random fashion) about base values such that later on the
trained network is able to purify real spectra from either
experiment or theory. The SHMs are constructed to speed
up the generation of training data and we also expect them
to become useful for other dynamical problems for which
neural networks must be trained. Since the SHMs cover a
large range of possible systems we can afford to use for the
base itself explicitly calculated photoionization dynamics
in one dimension which is fast to compute and provides a
suitable anchor point for the SHMs.
Setting up networks with SHMs.—To put our approach to

a credible test we need (i) a physical process, which is
sensitive to the pulse profile, (ii) a realistic way to model
fluctuating pulses and we need to prepare a large set of
spectra suitable for training the network. This involves
(iii) a scheme to efficiently propagate millions of time-
dependent Schrödinger equations, (iv) a broad and uniform

FIG. 1. Sketch of the problem: Photoelectron spectra from
fluctuating pulses are purified using a deep neural network.
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sampling of the generated spectra, and (v) a trainable
parametrization.
(i) As a physical process which is nonlinear in the driving

light and therefore very sensitive to the intensity of the light
pulse and hence its profile in time, we have chosen
quasiresonant few-photon ionization. It can lead to multi-
peak structures in the photoelectron spectrum [6–10].
(ii) Fluctuating pulses from SASE FELs can be modeled

by the so-called partial-coherence method [11,12], an
experimentally verified method, which allows one to create
ensembles of pulses flðtÞ which differ through fluctuations
while the ensemble average converges to a well defined
pulse shape [13]. Those pulses have a characteristic
duration T and a coherence time τ, we use T ¼ 3fs and
τ ¼ 1=2 fs here. Apart from the intrinsic noise the pulses
additionally jitter in their pulse energy. We normalize all
pulses flðtÞ to unit pulse energy. This is also possible in the
experiment as pulse energies can be easily measured shot to
shot with gas monitoring detectors [22].
(iii) In principle numerical codes are available to propa-

gate the time-dependent Schrödinger equation (TDSE) for
one active electron in a strong laser field and calculate the
resulting photoelectron spectrum PðEÞ [23–25]. However,
the creation of a training data set from millions of pulses is
prohibitively expensive, yet essential for successful deep
learning.
To overcome this obstacle we work with Hamilton matri-

ces whose construction is detailed in the Supplemental
Material [13]. The new element, particularly formulated
for the present context, is the generation of nmat Hamilton
matrices with random energies Ek

α, coupling matrix
elements Vk

αβ, and field strengths Ak, corresponding to
intensities (referring to the Fourier-limited pulse) in the
range of 5 × 1015;…; 5 × 1016 W=cm2. Furthermore, for
each Hamilton matrix the coupling to the light is aug-
mented by npul noise realizations flðtÞ with a central
frequency of 21 eV to arrive at

Ek ¼ Ek
αδαβ; Vk ¼ Vk

αβ; ð1aÞ

HklðtÞ ¼ Ek þ AkflðtÞVk; ð1bÞ

whereby k ¼ 1;…; nmat and l¼ 1;…; npul. Boldface sym-
bols in Eqs. (1) describe matrices in terms of field-free
states. It is only through these synthetic Hamilton matrices
that we are able to create a sufficient number of nontrivial
training data. The matrices have been derived varying a
1D Hamilton operator (our base system), but since the
energies Ek and the coupling matrix elements Vk are
chosen randomly, these SHMs can purify real (3D) spectra,
as we will see subsequently.
(iv) We have to create a set of spectra for training,

validation, and testing which should cover to a large extent
the domain of realizable spectra. This step is crucial andmost
expensive numerically, particularly when compared to the

(modest) resources needed to set up and train the network.
To cover the domain of realizable spectra uniformly, we
calculate first 4 × 104 reference spectra [26]. Among those
we select the nmat ¼ 2 × 104 spectra with the largest mutual
difference

Dij ¼
Z

dEjPiðEÞ − PjðEÞj: ð2Þ

For each member of this subset of reference spectra, we
calculate npul ¼ 500 fluctuating spectra from noisy pulses
generated with the partial-coherence method [11,13] with a
different noise realization for each (synthetic) Hamilton
matrix. Hence, we must propagate about nmat × npul ¼ 107

TDSEs, which takes, however, only a few seconds for a
single TDSE thanks to our highly optimized propagation
scheme [13]. It includes prediagonalization of the Hamilton
matrices which saves computing time since one and the
same system is propagated for different pulse realizations.
Finally, we have for each Hamilton matrix (1) one reference
spectrumPref

k ðEÞ andnpul noisy spectraPklðEÞ, i. e., a total of
nmat ×½npul þ 1&spectra.
Instead of the individual PklðEÞ we use partially aver-

aged spectra PkjðEÞ ¼ ð1=mÞ
P

l∈fsjg PklðEÞ for efficient
training. To this end we draw a random subset fsjg
containing m spectra from the npul fluctuating spectra for
each SHM and repeat this procedure n̄pul times to create
j ¼ 1;…; n̄pul averaged spectra. For our application n̄pul ¼
10 and m ¼ 200 is a good compromise between rugged
spectra for smaller m and an increased training effort for
larger m. All spectra are normalized, i.e.,

R
dE PðEÞ ¼ 1.

(v) To complete the final step, the parametrization of the
spectra for training, we represent the resulting averaged
spectra PkjðEÞ in terms of harmonic oscillator eigenfunc-
tions χκ as

PkjðEÞ ¼
!!!!
Xnbas

κ¼1

Cκ
kjχκ−1ðEÞ

!!!!
2

; ð3Þ

with the setC≡ fC1;…; Cnbasg of coefficients. A basis size
of nbas ¼ 60 was necessary for the averaged fluctuating
spectra, while using a similar expression for the noise-free
spectra nbas ¼ 40 was sufficient [13]. The network consists
of mapping the coefficients fCkjg → fCkjg. The training
aims at minimizing the difference between the predicted
Ckj for the noise-free spectrum and the expected reference
spectra Cref

k .
The connection between Hamilton matrices, pulses, and

electron spectra just outlined is summarized schematically
in Fig. 2.
Building and training the network.—With nmat¼2×104

reference spectra and n̄pul ¼ 10 averaged noisy “copies” of
each reference spectrum, we have n≡nmat× n̄pul¼2×105

pairs available for building the network model. Each pair
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consists of an averaged noisy spectrum with its respective
reference spectrum. Note that the network operates exclu-
sively on the electron spectra, cf. Fig. 2. Once trained, it is
therefore directly applicable to the experiment which has
only access to spectra.
The full data set with n pairs of spectra is split in the

ratio 8∶1∶1 between training (ntrain ¼ 0.8n), validation
(nval ¼ 0.1n), and test (ntest ¼ 0.1n) data. Implemented
with the deep-learning library KERAS [27], a fully con-
nected feed-forward neural network is used [13]. The
training success and resulting performance of the network
as a function of the size of the training data is quantified
with the cost function δ, using the basis representation (3)
of the spectra, and a more intuitive error ε

δΩ ≡ 1

nΩ

XnΩ

j;k¼1

½Ckj −Cref
k &2; ð4aÞ

εΩ ≡ 1

nΩ

XnΩ

j;k¼1

Dkj;kref ; ð4bÞ

for training (Ω ¼ train), validation (Ω ¼ val), and test
(Ω ¼ test) data set, respectively. The error εΩ with an
upper limit ε ≤ 2 measures the difference Dkj;kref , see
Eq. (2), between a predicted spectrum PkjðEÞ and its

reference spectrum Pref
k ðEÞ. The maximal error ε ¼ 2

occurs if the two normalized (i.e., unit-area) spectra are
completely disjunct. Both errors (4) decay logarithmically
as a function of the SHM data size n [13].
Purification of spectra from SHMs.—We are finally in a

position to purify noisy spectra and do this first with the
ntest SHM-generated spectra the network was not trained
on. Typical snapshots of these spectra are shown in
Fig. 3(d). To get a realistic picture we have selected spectra,
cf. Figs. 3(a)–3(c), which belong to three groups purified
with different residual errors in increasing order: Only 1%
of the spectra have a purification error better than the one
shown in Fig. 3(a), the prediction in Fig. 3(b) has a median
error ε ¼ ε50% such that half of the spectra have a smaller,
and half of them have a larger prediction error. Finally,
only 1% of the purified spectra have a larger error than the
one shown in Fig. 3(c). The gray-shaded curves provide
the reference spectrum Pref

k ðEÞ in each case. The simple
average (from the test-data set for a specific SHM and field
intensity) set is shown as a dashed line.
One sees that the purification works quite well, even for a

typical “worst case” as in Fig. 3(c), where all peaks
including the fine structure, appear at the correct energies,
despite the fact that none of the features is contained in the
fully averaged spectra PkðEÞ ¼

P
j PkjðEÞ. We also note

that spectra of rather different shapes and details of the
structure, from a smooth single peak [Fig. 3(a)] over a
triple peak [Fig. 3(b)] to a fine-structured multipeak shape
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FIG. 3. Photoelectron spectra from the SHM test-data set. The
full average of fluctuating spectra (green-dashed line) and
prediction from the network (blue) are compared to the reference
(gray and shaded). Panels (a)–(c): Examples with three prediction
errors ε ¼ εp are shown, with p indicating the percentage of
spectra having a smaller error, i.e., 99% of all spectra from the
test-data set have a smaller prediction error than the one shown in
panel (c). Panel (d): Five single-shot spectra for the Hamilton
matrix used in panel (b).

FIG. 2. Building a network with synthetic Hamilton matrices
and noisy pulses (left-hand side, blue) and using it (right-hand
side, red). The setup of nmat SHMs is exemplified with the first
(H1) and kth (Hk) one. With noisy pulse shapes flðtÞ or the
reference pulse shape frefðtÞ the SHMs are amended to H1l and
Hkl, respectively, see Eqs. (1). Noisy spectra as calculated with
the fHklg are averaged over 200 realizations with the same k
resulting for each k ¼ 1;…; nmat SHM in ten different spectra
with coefficients Ckj, j ¼ 1;…; 10. The network is trained on the
predictions Ckj together with the reference Cref

k , i.e., only spectra
are processed by the network as emphasized by the black frame.
The right-hand side (red) sketches how noisy spectra (from either
experiment or theory) to be purified are also averaged over 200
realizations before fed into the trained network to retrieve the
reference spectrum.
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[Fig. 3(c)], can be purified successfully. The rather diverse
spectra PklðEÞ from fluctuating pulses flðtÞ for a specific
SHM, as shown in Fig. 3(d), indicate the strong sensitivity
to the pulse profile which is due to Stark shifts and Autler-
Townes splittings. The complete failure of the fully
averaged spectra in revealing the reference spectrum
Pref
k ðEÞ is striking. This happens despite the fact that the

reference pulse is retrieved by averaging a sufficient
number of fluctuating pulses if created by the partial-
coherence method [11]. The corresponding reference spec-
trum, however, is never obtained by averaging the fluctu-
ating spectra since the underlying ionization dynamics is
nonlinear. The consequence is an intricate mapping
between fluctuating spectra and the reference spectrum,
which is constructed with the deep neural network.
Purification of spectra from physical systems.—So far

the successful purification referred to spectra not known to
the network, but generated through SHMs which were also
used to train the network, only with different parameters. In
the following, we will apply the trained network to photo-
electron spectra for three cases of two different physical
systems: (α) The He atom dominated by 2-photon absorp-
tion [28] and the hydrogen molecule ion H2

þ ionized by (β)
2- and (γ) 3-photon processes. These spectra have been
obtained in full 3D; for technical details see [13]. In case α
[Figs. 4(a)–4(c)] the spectra consist of contributions from
the s and d manifolds, which can be reached by
a 2-photon process, whereby the d channel clearly domi-
nates [cf. Fig. 4(d)]. For H2

þ, aligned along the laser
polarization, either the gerade continuum for case β
[Figs. 4(h)–4(j)], or the ungerade continuum for case γ

[Figs. 4(e)–4(g)], is considered. The central frequencies for
the laser pulse are chosen according to the transition energies
ωα¼E2p−E1s¼20.95eV, ωβ¼E2σu−E1σg¼23.05eV, and
ωγ ¼ E1σu − E1σg ¼ 11.83eV, respectively. Fluctuating
pulses flðtÞ are created as before but we use new random
realizations. As in the training procedure, we have created
ten averaged spectra, which are fed into the trained network.
Each one is composed of 200 fluctuating spectra [26]. The
ten resulting purified spectra from the network are again
averaged to arrive at the network’s estimate of the reference
spectrum.
We show in Fig. 4 results for three different intensities in

the range where few-photon ionization is nonperturbative.
As expected from SHM-generated spectra in Fig. 3, the fully
averaged spectra (green-dashed lines) do not provide sen-
sible information about the reference spectra. The mapping
with the network (blue-solid lines), however, reveals the
respective peak structure of the photoelectron spectra.
Note that the network was neither trained on the spectra

of the 3D helium atom nor on those of the hydrogen
molecule ion, nevertheless these spectra are purified
successfully with the network mapping as shown in
Fig. 4. The training of the network was performed with
synthetic data derived from a representative 1D photoioni-
zation dynamics only, which allowed us to keep the size of
the Hamilton matrices small enough to be able to compute
the 107 TDSEs for a sufficient amount of training data.
Apparently, although generated from the 1D derived ones,
the SHMs represent dynamical systems sufficiently generic
such that also realistic 3D spectra from the three rather
different processes α, β, and γ could be purified with the
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FIG. 4. Photoelectron spectra for the He atom (a)–(d) and the H2
þ molecule (e)–(j). For He we show results for one photon-frequency

ω (case α in the text), for H2
þ for two different ω (cases β and γ in the text), whereby each combination is presented for three different

intensities I (with ω and I are being specified in the panels). As in Fig. 3, fully averaged and predicted spectra are compared to the
reference spectra. Three single-shot spectra for I ¼ 2 × 1016 W=cm2, as used in panel (b), are shown in panel (d), separately for the s
channel (l ¼ 0, orangelike lines) and the d channel (l ¼ 2, violetlike lines), respectively.
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same network. Hence, it should also work on experimental
spectra, which will be slightly different to the extent to
which many-electron effects show up in photoelectron
spectra as compared to the present 3D single-active-electron
calculations. To measure reference spectra in a proof-of-
principle experiment one could either use seeded FELpulses
[29–32] or set up an experiment at a coherent (high-
harmonic) source and generate noisy pulses artificially.
To summarize, we have devised a strategy to purify noisy

photoelectron spectra, typical for SASE FELs with the help
of a deep neural network. While this example was chosen
on purpose to be specific, through its design our approach
is far more general. First, we have checked [13] that other
noise models [33,34] can be used. Second, purification
could be conditioned on any arbitrary reference pulse.
Third, and most importantly, the systematic introduction of
synthetic Hamilton matrices permits one to generate a
training data set of ample size with reasonable computa-
tional effort and renders the trained network applicable for
scenarios where it was not trained for. In the present
example, we applied the network trained on synthetic
dynamics to purify realistic 3D spectra. For future work,
we would like to point out that noisy pulses driving
nonlinear processes are actually advantageous, since they
allow one to obtain the target response over a wide spectral
and dynamic range in a single shot, provided one has tools
to analyze the resulting spectra.

This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG) through the priority pro-
gram 1840 “Quantum Dynamics in Tailored Intense Fields”
and “BiGmax”, the Max Planck Society’s research network
on big-data-driven materials science.
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Supplement “Purifying electron spectra from noisy pulses

with machine learning using synthetic Hamilton matrices”

Sajal K Giri, Ulf Saalmann, and Jan M Rost

Technical details for laser pulses, the propagation of the time-dependent Schrödinger equation
and the training of artificial neural networks are provided. Parameters for the numerical calcu-
lations are specified.

1 Partial-coherence method

In order to create fluctuating pulses we apply the so-called partial-coherence method (PCM), which
has been devised to simulate pulses from free-electron laser (FEL) sources [1]. Thereby a fluctuating
(or noisy) pulse is given by

fl(t) = Nl G(t)F�1
⇥
ei�l (!)F[g(t) cos(!⇤ t)]

⇤
, (S1a)

G(t) = e�2ln2 t
2/T2

and g(t) = e�t
2/⌧2

, (S1b)

with !⇤ the carrier frequency. F and F�1 denotes the Fourier and the inverse Fourier transform,
respectively. The actual noise realization, indicated by the index l, is given by random spectral
phases �l , uniformly distributed in the range of �⇡ . . .+⇡. For �(!)=0 and ⌧!0 we get an ideal
Gaussian pulse — here the reference pulse fref(t). The two Gaussians, defined in Eq. (S1b), appear in
the pulse expression (S1a) inside and outside the Fourier transforms and serve different purposes.
On one hand, g(t) quantifies the time scale of the fluctuations1 by means of the coherence time
⌧. On the other side, G(t) is a masking function in time that fixes the typical pulse duration T ,
which would be otherwise arbitrarily long. Thus ⌧⌧ T implies strongly fluctuating pulses, which
is the typical case at X-ray free-electron laser as, e. g., the European XFEL [2]. The pre-factor Nl

guarantees that the pulse energy of the fluctuating pulse is the same as the one of the reference
pulse:
R

dt fl

2(t) =
R

dt fref
2(t). This “normalization” is the only difference to the standard PCM

[1].
For the propagation of the time-dependent Schrödinger equation, cf. Sect. 3 below, we need the

time dependent vector potential Al(t) at equidistant instants of time t⌘ = ⌘�t with ⌘ = �⌘max . . .+
⌘max. For obtaining Al(t⌘)we have chosen maximum time tmax = �tmin = 3,000 a.u. and⌘max = 216

(thereby �t ⇡ 0.046 a.u.), did a fast Fourier transformation FFT, created 2⌘max random phases �⌘
uniformly between �⇡ and +⇡, and did finally an inverse FFT.

2 Synthetic Hamilton matrices and creation of training/validation data

In order to create a sufficient amount of training data (we calculate 107 time-dependent Schrödinger
equations) we resort to Hamilton matrices based on an 1-dimensional model system. The starting
point is the Hamilton operator

bH(t) = �1
2

d2

dx2
� 1p

x2+1/2
+ A(t) i

d
dx

, (S2)

for which we define numerically on a grid (x j = j�x , with �x = 0.1 a.u. and xmax = 500 a.u.) all
eigenstates bH'↵ = '↵eE↵ with eE↵  Emax ⇡ 48 eV, resulting in 600 eigenstates. By means of these
states, we build the (600⇥600) Hamilton matrix

eH↵� (t) = eE↵ �↵� + A(t) eV↵� with eV↵� ⌘
⌦
'↵
��i d

dx

��'�
↵
. (S3)

1One might consider other functions g(t), e. g. [3], gs(t) = sech(⇡t/
p

2⌧) or ge(t) = exp(�2|t|/⌧). All three have the
same coherence time, but different decay characteristics. We have tested all three noise types. Since they did not show
any qualitative difference in terms of predictability of spectra, we present only results for the Gaussian-type noise (S1b).
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This is a model of a 1-dimensional “helium atom”, since the ground-state energy E0=�24.2 eV is
close to the ionization potential of real helium (24.6 eV).

As we want to train the network for “arbitrary” quantum systems, we create synthetic Hamilton
matrices by randomly changing energies eE↵ and matrix elements eV↵� in the following way

E↵ = 3[⇠1��]eE↵ for eE↵<0, ↵>0, (S4a)

V0↵ = 3⇠2 eV0↵ for eE↵<0, (S4b)

V↵� = 3⇠3 eV↵� for eE↵<0, eE�>0, (S4c)

V↵� = 3⇠4 eV↵� for eE↵>0, eE�>0, (S4d)

with four uniform random numbers ⇠1 = [�1,+1.1], ⇠2 = [�2,+2], and ⇠3,4 = [�1,+1]. Thereby
we modify the bound-state energies (S4a) and the couplings between ground and bound states
(S4b), between bound and free states (S4c) and among free states (S4d), respectively. With �= 0.88
and ⇠1 = 0 the energy difference between ground and excited state is equal to the central laser
frequency !⇤, i. e. E1� E0 =!⇤.

3 Propagation of the time-dependent Schrödinger equation (TDSE)

“1D” systems for training data

Typically the propagation of the TDSE is done in fixed time steps �t over which the Hamilton matrix
is assumed to be constant, i. e. one step is taken by

 ↵(t+�t) =
X

�

U↵� (t+�t, t) � (t), (S5a)

U↵� (t+�t, t) = e�iH↵� (t+�t/2)�t , (S5b)

with U↵� the matrix representation of the (unitary) time-evolution operator.
In order to improve efficiency (considerably) we refrain from using a fixed time step, but rather

discretize the laser pulse with a given step size in the vector potential A(t). With �A the step height,
we can find intervals of time t = t

beg
j

. . .tend
j

for which bA(t)/�Ae= j, with b. . .e denoting the nearest
integer. Now we have variable time steps, in which the assumption of constant values of the vector
potential is a good approximation by construction. Such a discretization perfectly adapts to any
pulse. Figure S1 shows this discretization of the pulse.

Since there could be more than one interval for a given j we pre-diagonalize the matrices

H
j

↵�
= E↵�↵� + j�AV↵� ! E

j

↵, T
j

↵�
(S6)
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Figure S1: Sketch of the discretization of a time-
dependent vector potential A(t) in units of �A. Two
generic time steps t

beg
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. . .tend
j

are indexed. Note that
the step height �A here is rather large for visualiza-
tion purposes.
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and calculate by means of the eigenvalues E
j

↵ and eigenvectors T
j

↵�
the corresponding matrices for

the time evolution operator

U
j

↵�
=
X

�

T
j

�↵e
�iE j

�[tend
j
�t

beg
j
]
T

j

��
(S7)

for all j. Additionally and similarly important in view of efficiency, the pre-calculated E
j

↵ and T
j

↵�
can

be used for all pulses (the fluctuating ones as well as the reference one) for a specific system. Only
by this method we were able to calculate millions of spectra, necessary for training the network.

Physical systems for applications

On one hand, the number of TDSEs to be solved in the 3D case are considerably lower. On the other
hand, a single calculation is more expensive.

He In order to calculate the field-free eigenstates we use an effective potential [4]. For angular
momenta `=0 . . . 4 we calculated the lowest 2250 states in a box of size r=0 . . . 3⇥103a0
with a Numerov step size of �r=0.01 a0.

H
+
2

Field-free states and their couplings are calculated in terms of prolate-spheroidal coordinates
{⇠,⌘}, in which the problem separates [5]. The angular domain �1⇠+1 is described in
terms of Legendre polynomials, the radial domain 1a0⌘  2000 a0 in terms of B-splines. For
the coupling we assume that the molecule is aligned with the laser polarization, the orientation
with the large dipole matrix elements. The internuclear distance is taken as R=2a0.

The propagation in time is achieved by direct computation

 ↵(t+�t) =
kmaxX

k=0

[� i�t]k

k!

X

�1...�k

H↵�k
(t+�t/2, t) . . . H�2�1

(t+�t/2, t) �1
(t), (S8)

with kmax defined by a sufficiently small contribution, i. e.
��P

�1...�k

. . .
��2<10�30. Hereby, kmax may

change from step to step.

4 Photo-electron spectra

From the solution of the time-dependent Schrödinger equation, i. e. by means of the field-free-state
expansion amplitudes a↵(t) for t!1, we get the corresponding photo-electron spectrum as

P(E) =
X

↵

��a↵(+1)
��2 K(E � E↵), (S9)

with the kernel function K(E) = exp(�E
2/�E

2)/
p
⇡�E. We have chosen �E=0.2 eV, which is

slightly smaller than the typical spacing between the field-free states.
Those spectra are fitted by the k first harmonic oscillator eigenfunctions �i(E) according to

P(E) =
���

k�1X

i=0

Ci�i(E)
���
2
. (S10)

Those eigenfunctions (normalized by the pre-factor Ni) are given by

�i(E) = Ni e�⌦⇤[E�E⇤]2/2 Hi

�p
⌦⇤[E�E⇤]
�
, (S11a)

with ⌦⇤ = T0
2/4 ln2 and E⇤ = E0 + 2!⇤, (S11b)

where Hi stands for the ith Hermite polynomial. Hereby, the frequency ⌦⇤ matches the bandwidth
of the pulse and the displacement E⇤ corresponds to the energy reached by a two-photon transition
from the ground state. Thus, a weak Gaussian pulse (in perturbation regime) with a duration T0
and a carrier frequency !⇤ would give a photo-electron spectrum that is very similar to �0(E) as
defined in Eq. (S11).
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5 Artificial neural network

We use a fully connected feed-forward artificial neural network to establish a mapping from noisy
Ck j to noise-free spectra C

ref
k

, cf. Fig. 2 in the main text. In our network Ck j and Ck j are connected
through 7 hidden layers which contain 40 nodes each. They are linked with weights W and have
biases B and activation functions f. This simple network can be described mathematically as

C=W7Y7 + B7, Y7�k = f7�k

�
W6�kY6�k + B6�k

�
with k=0 . . . 6, Y0 = C. (S12)

In the above equations Wk represents weights connecting kth layer neurons with (k+1)th layer
neurons and Bk stands for biases linked to (k+1)th layer neurons. The dimensions of Yk, Wk and Bk

are nk, nk+1⇥nk and nk+1, respectively, where nk is the number of kth layer neurons. (The activation
functions fk+1 are to be understood as nk-dimensional functions.) Note that input and output layer
dimensions are nbas=60 and nbas=40 respectively, the number of basis functions to represent the
photoelectron spectra. The total number of trainable parameters in the network (S12) is 13,920.
We use ReLU [6], i. e. f (x) =max(0, x), as activation function to introduce the non-linearity in the
connection for all hidden layers. Note that this functional value does not saturate for very large
value of x .

For the initial choice of random weights and biases, we use the so-called XAVIER initialization [7],
where random weights are considered from a normal distribution with zero mean and a variance
of 2/[nk+nk+1], where nk is the number of neurons at kth layer. Such an initialization reduces
the possibility to drive the network into saturated states and accelerates convergence. All biases B

are set to 1 initially. The weights and biases of the network (S12) are obtained using the ADAM
optimization algorithm [8], which is very efficient for stochastic optimization that is based on an
adaptive-learning method by which it computes individual learning rates for each weight and the
biases in the network. We use the same values for the parameters �1, �2, ↵, and " as the ones given
in “Algorithm 1” in the original paper on the ADAM method [8].

In order to reduce the computational cost, we applied mini-batch optimization [9]with the batch
size being 500 and introduced early stopping with a patience of 35 (the number of epochs with an
increasing cost function on the validation data). Typically we had to run about 100 epochs in order
to train the network. On a single batch, a forward pass and a backward pass is a single iteration.
Each epoch covers all training samples once. For a total sample size of 1.6⇥105 and a batch size of
500 we need 320 iterations to complete a single epoch. To reduce the complexity of the network
during the training we drop some neurons with a dropping rate 0.1 [10].

Training-data size

The value of the cost function [Eq. (4) in the main text] as well as the average difference [Eq. (5)
Ibid.] decrease logarithmically with the training-data size as shown for validation data set in Fig. S2.
The figure shows also that along with the mean, obtained from several optimization runs for the
network, the standard deviation among those runs decreases.
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Figure S2: Predicted performance by the validation
data measured with the cost function �val [Eq. (4)]
and the absolute error "val [Eq. (5)] as a function of
the size n of pairs of spectra contained in the com-
plete SHM data set.
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