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Abstract. Intense light with frequencies above typical atomic or molecular
ionization potentials as provided by free-electron lasers couples many photons
into extended targets such as clusters and biomolecules. This implies, in contrast
to traditional multi-photon ionization, multiple single-photon absorption.
Thereby many electrons are removed from their bound states and either
released or trapped if the target charge has become sufficiently large. We
develop a simple model for this photo-activation to study electron migration
and interaction. It satisfies scaling relations that help to relate quite different
scenarios. Understanding this multi-electron dynamics on very short time scales
is vital for assessing the radiation damage inflicted and for paving the way to
coherent diffraction imaging of single molecules.
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1. Introduction

The difference between multi-photon ionization at near-infrared frequencies (⇠1.5 eV) and at
extreme ultraviolet (XUV) frequencies or higher (>50 eV) lies in the fact that multi-photon
single-electron ionization is drastically suppressed in the latter case due to the small dipole
matrix elements for continuum–continuum transitions, which typically would be required for
an electron to absorb more than one photon. As a consequence, multi-photon ionization by
XUV or x-ray radiation, as available from novel free-electron laser sources [1]–[3], means
single-photon ionization of many atoms in an extended target such as a cluster or bio-
molecule [4]–[6]. We call this process photo-activation. As other absorption mechanisms, such
as inverse bremsstrahlung, are less important for high laser frequencies, the system is ‘driven’ by
this activation process only. In the following, we will develop a fairly general and simple model,
which we call Coulomb complex (CC). It focuses on the multi-electron dynamics treating the
ions created as a homogeneous and static background charge. The model shares similarities
with the shell model for nuclei or metal clusters [7] with the difference that the electrons are
through photo-activation far above the ground state, which allows us to follow their dynamics
classically.

We will first discuss the initial multi-electron ground state in section 2. The ground state
is the prerequisite for photo-activation, which we specify in section 3 including the setup of
a universal time-dependent photo-activation rate. In section 4 we discuss a powerful scaling
property of the photo-activated CC, which allows one to relate quite different situations in terms
of photo-activation time (duration of the XUV pulse) T , excess energy "⇤ of the electrons after
photo-absorption and size of the target designated by a radius R, to each other. In section 5 we
elaborate on a generic example and discuss relations of the present model to recently measured
electron spectra of xenon clusters [5] exposed to 90 eV photon energy pulses at FLASH [1]. In
the appendix we give an analytical expression for the electron spectrum for the case of sequential
ionization.
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2. The Coulomb complex (CC) before photo-activation

We assume a system with N electrons, which will be eventually photo-activated. They are bound
by positive ions that are assumed to be fixed in space during the relevant electron dynamics.
Moreover, we approximate the ions within the CC as a homogeneously charged sphere, with
total charge Q and radius R, producing a radial potential for the electrons of the form

V (r) =

8
>><

>>:

Q

2R
(r 2/R

2 � 3) for r 6 R,

� Q

r
for r > R.

(1)

The potential, often referred to as jellium potential, is within the CC (r < R) harmonic with the
frequency � = (Q/R

3)1/2 and for r > R of pure Coulomb nature. The jellium radius R is kept
constant as the atomic motion can be neglected on the time scale of some ten femtoseconds
relevant for the electron spectra considered here. The full Hamiltonian of the interacting
electronic system is given by
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with r jk = |r j � rk| and the prime excluding the term j = k. The total ground state energy Egs

may be approximated by considering a homogeneous electron distribution. Then we can replace
the sum over all electrons by an average potential energy vc and an average electron–electron
interaction energy vee, i.e.

Egs =
NX
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V (r j) +
1
2
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2
vee. (3)

This assumption should be valid for sufficiently many electrons N , but applies also for
quite small N as we will see below. Within this approximation the average energy from the
background potential reads

vc = 3
R3

Z
R

0
dr r

2
V (r) = �6

5
Q

R
. (4)

The interaction energy vee cannot be calculated this way, since we have to exclude explicitly the
self-interaction term. Instead we estimate the average energy of an electron " = vc + vee in the
ground state. This energy can be approximated under the assumption that the electron density
is identical to the ion density apart from a ‘hole’ with volume (4⇡/3)R

3/N . The corresponding
potential energy of such a hole is most easily calculated for a sphere (with a radius R/N

1/3) and
gives

" = �3
2

N
1/3

R
. (5)

This single-particle binding energy depends exclusively on the density of the CC. Finally, we
can calculate the average electron–electron repulsion energy

vee = " � vc = �3
2

N
1/3

R
+

6
5

Q

R
, (6)
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Table 1. Comparison of numerical (num.) and analytical (anal.) (cf equations
(5) and (7)), binding (") and ground state (Egs) energies of a CC with N

electrons relaxed in a background potential of equation (1) with Q = N and
radius R = 26 a0 (Bohr radius).

N 7 19 27 57 123 253 461 949 1935

�" (eV) (num.) 2.9 4.1 4.6 5.9 7.7 9.8 12.0 15.3 19.4
(anal.) 3.0 4.2 4.7 6.0 7.8 9.9 12.1 15.3 19.6

�Egs/N (eV) (num.) 6.1 14.4 19.7 39.4 81.9 163.5 296.7 605.1 1226.7
(anal.) 5.9 14.0 19.3 38.8 81.1 163.8 295.5 603.6 1224.9

which leads to the explicit approximation

Egs = Nvc +
N

2
vee = �3

5
N

2

R
� 3

4
N

4/3

R
(7)

for the total energy of equation (3) of a neutral CC with N = Q. Note that due to the nonlinear
dependence of the average electron–electron interaction upon the electron density, Egs does not
scale quadratically with N . Table 1 presents the analytically estimated energies " and Egs from
equations (5) and (7), respectively, in comparison to the numerically obtained values for nine
different values of N , which only for the smallest value N = 7 differ by more than 3%.

The numerical energies were obtained by propagating N electrons with the Hamiltonian (2)
while reducing the particle velocities by a factor of 0.75 every 2.4 fs for N 6 123 and every
0.24 fs for N > 123 to arrive at a minimal energy configuration of the system with corresponding
optimized positions {r̄ j} for the electrons. The binding energies of the N electrons are given by

"i = V (r̄i) +
NX

k=1

0 1
r̄ik

. (8)

Figure 1 shows these binding energies for various CCs with the same radius R but different
electron numbers N . Interestingly, not only the average values " agree quite well with the
analytical estimates (shown by lines in figure 1), but also there is relatively small variation
in the individual numerical electron energies (shown by symbols in figure 1). This applies down
to such small electron numbers as N = 7. In the figure one also clearly recognizes the formation
of electron shells as known from the so-called Coulomb crystals [8].

3. Photo-activation of the CC

In the previous section, we have characterized the electrons of the CC in energy and prepared
them in space to absorb photons. Due to the small dipole matrix elements in the continuum, it
is much more likely that Nph photons of XUV energy from an intense pulse are absorbed by
Nph different bound electrons compared to the situation of multi-photon absorption by a few
electrons. Hence, we have the Nph photons absorbed each by one bound electron. The single-
photon absorption rate is proportional to the intensity I (t) of the pulse,

dn(t)

dt
= Nat�!

I (t)

!
, (9)
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Figure 1. Individual electron energies "i according to equation (8) as a function
of the electron’s distance ri = |ri | from the origin of the CC for R = 26a0

and various electron numbers N . The corresponding approximated average
energies " from equation (5) are shown with lines.

with n(t) being the number of electrons that have absorbed a photon up to time t , while Nat

is the number of atoms and �! the photo-absorption cross section at frequency !. Assuming
for convenience (in fact one can use any pulse shape) a Gaussian pulse with full-width at half-
maximum T , we obtain

n(t) = Nat�! I0

!

Z
t

�1
dt0 exp

�
�4 ln 2(t 0/T )2�

= Nph
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1 + erf

✓
2
p

ln 2
t

T

◆�
, (10)

with Nph = Nat�! I0T (⇡/4 ln 2)1/2/! being the total number of photons absorbed from the pulse.
The expression for Nph requires that each atom is singly ionized by the pulse with the same
cross section �!. We use this special case here only for motivating our model. Indeed, one can
consider combinations of Q and R which correspond to multiple ionization of the individual
cluster atoms [5]. In such a situation, the higher ionization potential of the higher charge
states is approximately accounted for by calculating the full interaction with the ionic potential
(1) and the remaining non-activated electrons. Moreover, inner-shell atomic orbitals may get
predominantly ionized, leading to more than one electron per photon through auto-ionization.

Within our model we account for the photo-absorption by the activation of electrons, which
means that only after a certain time do the electrons take part in the dynamics with an initial
momentum specified below. This implies that each electron j is held fixed at its original position
until its individual time t j of activation. Since the photo-absorption is a statistical process, we
treat the activation process statistically. Therefore, we first calculate Nph random numbers {x j}
between 0 and 1. The activation time t j of electron j is then given by solving the equation
n(t) = x j Nph, which is implicit in t . In order to keep the computational expense as low as
possible, the number of electrons N of the CC is set equal to the final number of activated
electrons and we consider a CC that is initially charge neutral, i.e. we set Q = N .
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We determine the initial momenta p̄ j of the photo-activated electrons under the condition
that activation of a single electron should lead asymptotically (if this electron is removed from
the CC) to the atomic excess energy "⇤. This implies, for the initial kinetic energy for each
activated electron in the complex,

p̄2
j

2
= "⇤ � V (r̄ j) �

NX

k=1

0 1
r̄ jk

. (11)

For large N we can estimate the initial average kinetic energy per electron "kin by averaging
equation (11) over all electrons and obtain with equation (5)

"kin = 1
N

NX

j=1

p̄
2
j
= "⇤ � (vc + vee) = "⇤ +

3
2

N
1/3

R
. (12)

Since the numerical ground state energies for the individual electrons are quite homogeneously
distributed, this also carries over to the kinetic energies p̄2

j
/2 which are close to the average

values "kin. Note that ! appears here only indirectly through determining "⇤ = ! � Eip with the
true atomic ionization potential Eip.

Formally, we can express the activation by means of an activation function4

A⌧ (X, Y, t) = 2(⌧ � t) X + 2(t � ⌧ ) Y (13)

in order to rewrite the original Hamiltonian (2) as

HA =
NX

j=1

✓
At j

(p̄ j , p j , t)2

2
+ V (At j

(r̄ j , r j , t))

◆
+

1
2

NX

j,k=1

0 1��At j
(r̄ j , r j , t) � Atk

(r̄k, rk, t)
�� . (14)

For this Hamiltonian the position of electron j in phase space is kept constant at (r̄ j , p̄ j) until
its activation at time t = t j . One should note that, however, the single-electron energy " j may
change already for times t < t j due to the interaction with previously activated electrons. This is
quite important since in highly charged systems the effects of the surrounding charges (binding,
screening, etc) easily exceed atomic properties by far and may change on a femtosecond time
scale. The calculation of all interactions (including those with the not yet activated electrons) is
therefore crucial.

Note that, although the Hamiltonian HA is time dependent through the activation functions
A, the corresponding total energy E(t) is conserved if one starts the propagation at the initial
point in phase space, i.e. r j(t j) = r̄ j and p j(t j) = p̄ j for j = 1, . . . , N . It is lim�t!0[E(t j + �t) �
E(t j � �t)] = 0 for any j .

4. Scaling in the dynamics of CCs

The CCs including their photo activation are fully determined by a number of external
parameters, namely (Q, R, "⇤, T ). Before we discuss the dynamics of the CC with the initial
conditions of the electrons in phase space (p̄ j , r̄ j), we elaborate on a universal scaling of
activated Coulomb dynamics. It is based on the fact that all potentials (including the ionic

4 The Heaviside step function is 2(t) =
⇢

0 for t < 0
1 for t > 0.
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Figure 2. Electron spectra dP/dE for reference parameters (Q, R [a0],
"⇤ [eV], T [fs]) = (123, 26, 10, 10) (red, full), (123, 13, 20, 3.54) (green, dashed)
and (123, 52, 5, 28. 28) (blue, dotted). The latter two parameters are related to the
former by scaling factors of ⌘ = 2 and ⌘ = 1/2, respectively. (a) The actual elec-
tron spectra dP/dE and (b) the rescaled spectra ⌘ dP(⌘E)/dE that demonstrate
the scaling invariance of the underlying dynamics to within numerical accuracy.

background potential) originate ultimately from the homogeneous Coulomb forces. It will reveal
that the dynamics is the same for parameter sets emerging from an arbitrary reference set
(Q, R, "⇤, T ) by a scaling transformation that we will specify.

The system Hamiltonian equation (2) exhibits a global scaling with scaled variables x̃

according to

(p, r) = (⌘1/2 p̃, ⌘�1 r̃), (E, t) = (⌘ Ẽ, ⌘�3/2
t̃), (15)

which applies to Coulomb systems. Note that the external potential equation (1) belongs to this
class since it is given as the Coulomb potential of an extended charge distribution. These scaling
properties can be used to identify sets of different external parameters that will lead to the same
driven Coulomb explosion dynamics, (Q, R, "⇤, T ) ! (Q, ⌘�1

R, ⌘"⇤, ⌘�3/2
T ). For example,

with ⌘ = (T/T
⇤)2/3 we can map

(Q, R, "⇤, T ) ! (Q, ⌘�1
R, ⌘"⇤, T

⇤), (16)

where T
⇤ is any reasonably chosen reference pulse length. It should be emphasized that the

activation Hamiltonian HA in equation (14) has the same scaling properties, since the step
function 2 does not possess a time scale, i.e. 2(t � ⌧ ) = 2(⌘3/2(t̃ � ⌧̃ )) = 2(t̃ � ⌧̃ ).

We illustrate this scaling property in figure 2 where we have shown the converged electron
spectra dP/dE of three CCs with parameters related by the scaling property equation (16). In
figure 2(a) each spectrum displays the same basic features, mainly a narrow peak near E ⇡ 0
and a broad peak in the negative energy region, resulting from complex dynamics of electron
emission and equilibration of the remaining electron plasma in the activated CC, which we
discuss in section 5. The scaling property becomes manifest in figure 2(b), where the spectra
are rescaled according to ⌘ dP(⌘E)/dE to show that they are indeed identical within numerical
accuracy.
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5. Time-resolved electron spectrum

In order to understand the general features of a double-peaked final electron spectrum for an
activated CC, as shown in the previous section, it is necessary to appreciate that CCs are open
systems and as such are susceptible to electron loss. Indeed, it is the emission of energetic
electrons that facilitates the relaxation of the remaining electrons from the highly excited
activation state. This comes about as the remaining electrons in the CC lose the interaction
energy with respect to emitted electrons, leading to a deeper effective binding potential.

Insight into the formation of the final electron spectrum of a CC is obtained by tracing its
time-resolved evolution from the well-specified initial state described above. This is shown in
figure 3 for parameters (Q, R (a0), "

⇤ (eV), T (fs)) = (1000, 30, 50, 20). In this spectrum all
electrons are considered, activated as well as not yet activated in which case the designated
kinetic energies according to equation (12) are already included. Therefore, the initial spectrum
is mono-energetic with all electrons having a single-particle energy of "⇤.

5.1. Directly emitted electrons

In the early stage of activation, with the rate shown in green in figure 3(a), activated electrons
have a positive energy and they may leave the CC, a process that we call direct electron emission.
With each emitted electron the total charge of the CC increases, thereby deepening the trapping
potential for the subsequently activated electrons, which is visible as a decrease in energy of the
main peak in the time-resolved electron spectrum.

The direct emission process continues until the main peak of mostly still dormant electrons
falls below the threshold of " = 0 and newly activated electrons find themselves bound to the
CC, which they can no longer leave. We refer to this as trapping of electrons [9]–[11] by the now
positively charged CC. In terms of the direct emission rate, which is shown in red in figure 3(a),
this corresponds to a sharp drop-off. We call the time when the emission rate reaches zero the
trapping time ttrap, which here occurs near �10 fs. The process of direct emission of electrons
is identical to the previously described multi-step ionization [12]. It results in the plateau-
shaped spectrum shown in red in figure 3(d). The sequential process is amenable to an analytic
description giving an exact expression for the height of the plateau of purely geometrical origin
as 3R, with 3 ⇡ 0.84 (cf the appendix for details). The number of directly emitted electrons
may therefore be readily approximated as Ndirect ⇡ 3"⇤

R, which here amounts to less than 5%
of the total number of electrons.

5.2. Plasma formation and equilibration

With the onset of trapping at t = ttrap the activated electrons within the CC undergo energy-
exchanging collisions that lead to relaxation. This has two consequences: on the one hand,
the spectral peak undergoes a broadening as a thermalized plasma is formed. On the other
hand, particularly fast electrons in the plasma may leave the complex contributing to a second
emission peak in figure 3(a) and resulting in a continued decrease of the mean energy of the
plasma. Since emitted electrons carry away energy the mean electron energy in the complex is
reduced. This opens a gap in the spectrum that individual electrons need to overcome in order
to leave the cluster. However, the plasma temperature eventually does not suffice to produce fast
enough electrons and the emission decreases. From this time on the spectrum has essentially
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Figure 3. Time evolution of an activated CC with the following parameters:
(Q, R (a0), "

⇤ (eV)], T (fs)]) = (103, 30, 50, 20). (a) Electron emission rate
through direct emission before trapping time ttrap (red) and through thermal
emission from a trapped plasma after ttrap (blue) and activation rate of electrons
(green). (b) Time-resolved electron spectrum of CC including as yet not activated
electrons: (d) final electron spectrum at t = 100 fs, separated by activation time
of electrons before ttrap (direct, red) and after ttrap (thermal, blue) as well as
total spectrum (green). The gray shaded area marks the analytical value for a
sequential spectrum (see the appendix). (c) Mean energy of the electrons in time
from a Maxwell–Boltzmann fit to the kinetic energy spectrum of electrons (see
figure 4(a)) within a sphere of radius 2R (purple) and expressed through the
energy scale Ẽ (see figure 4(b)) from the exponential fit to the spectrum of the
thermally emitted electrons (blue).

assumed its final shape. The peak at negative energy describes the thermalized plasma and
the peak at positive energies contains the electrons emitted early during the activation. The gap
between these two peaks will necessarily approach a value several times the plasma temperature,
which prevents further electron emission.

The kinetic energy distribution of the plasma electrons follows closely a
Maxwell–Boltzmann distribution, as can be seen in figure 4(a). Since the photo-activation
continues at the time for which the distributions are determined, we consider only electrons
activated before t � t�, where t� = 2⇡(R

3/Q)1/2 is the oscillation period within the jellium
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Figure 4. (a) Kinetic energy spectra of plasma electrons dP("kin)/d"kin and fitted
Maxwell–Boltzmann distributions ⇠

p
E/⇡kBT 3 exp(�E/kBT ) at different

times in the evolution of the CC. (b) Spectrum dPthermal/dE of thermally emitted
electrons at various times and exponential fit ⇠ exp(�E/Ẽ).

potential that provides an intrinsic time scale of the electron dynamics. Obviously, this time is
sufficient for the equilibration of newly activated electrons.

The plasma temperature extracted from the Maxwell–Boltzmann fit exhibits a sharp rise
beginning at time ttrap towards a maximum close to the time of maximum activation rate (purple,
figure 3(c)). The rise reflects the increasing depth of the positive background potential allowing
us to trap faster electrons in a hotter plasma. Eventually, the temperature decreases due to
evaporative cooling effects and levels off asymptotically slightly below 25 eV. Note that this
temperature remains consistently below the temperature inferred from the initial kinetic energy
of the electrons, equation (12), which is due to a broadened spatial distribution of the plasma
with respect to the ground state.

5.3. Emission from the plasma

As can be seen in figure 4(b) and as has recently been similarly described elsewhere [13, 14], the
spectrum dPthermal/dE of the electrons emitted by the thermalized plasma forms an exponential
distribution characterized by the energy scale Ẽ ,

dPthermal/dE = Nthermal Ẽ
�1 exp(�E/Ẽ), (17)

where Nthermal is the number of electrons thermally emitted from the plasma. Although
originating from the tail of the equilibrated plasma inside the cluster, the ‘temperature’ Ẽ

of the thermally emitted electrons (blue, figure 3(c)) is considerably lower than kBT of the
trapped plasma (purple, figure 3(c)). One should therefore not take this experimentally directly
accessible energy Ẽ as the internal temperature of the trapped electron plasma. In addition the
internal temperature can be lowered due to expansion of the cluster [14], which is neglected in
our approach.

The exponential distribution equation (17) has been measured recently [5] in an
experiment, where ionization of clusters with 90 eV photons from intense pulses supplied by
FLASH [1] was studied by electron spectroscopy. The electron spectra of irradiated xenon
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clusters exhibit high-energy tails of the photo lines, which extend further with increasing
intensity. These blue wings in the spectra can be related to the formation of an electron plasma
with supra-atomic density, generated due to the large photo-absorption cross section of xenon
at 90 eV. Theoretically, these electrons could be distinguished from those emitted directly at the
beginning of the pulse [5]. Note that electron emission may even occur for photo-activation just
below threshold, "⇤ . 0, as measured recently at SCSS [2] for neon clusters [15]. Whereas direct
emission is not possible, the energy of the excited electrons is redistributed through collisions
with some electrons being emitted.

6. Summary

We have discussed a simple and fairly general scenario for the electron dynamics in dense matter
exposed to short and intense laser pulses of high intensity. It applies to various frequencies
! of the light up to x-rays. The lower limit for ! is set by the condition that single-photon
ionization of many atoms dominates, which we call photo-activation. We have provided a
simple formalization of the photo-activation in time that relates the successive photo-ionization
events to the time-dependent shape of the laser pulse and the total number N of ionized
electrons generated. The process leads inevitably to a CC, a many-particle system of ions and
electrons whose Coulomb interaction dominates all other forces. From this follows a simple
scaling property of Coulomb systems that relates seemingly disparate experimental scenarios
with respect to the size of the system (characterized by the radius R of atomic positions),
the time scale of photo-activation (determined by the pulse width T ) and the electron energy
N (! � Eip) made available through the activation. The latter depends through N on the total
energy contained in the laser pulse.

Furthermore, we have discussed the time evolution of the electrons during and after photo-
activation including the formation of a plasma and its equilibration in detail. Photo-activation
in CCs is not limited to the examples of intense XUV and x-ray pulses illuminating clusters of
almost solid density as discussed here. The very same phenomenon occurs, e.g., in the activation
of ultracold plasmas [16] from atom clouds held in magneto-optical traps at appropriately
adopted time and energy scales.
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Appendix. Electron spectrum for sequential ionization

We derive an analytical expression for the electron spectrum in the case of high excess energy
"⇤ � Q/R and long pulses T ! 1. In these limits, all electrons leave the CC directly upon
activation, without the possibility of exchanging energy with other active electrons, i.e. the
emission occurs sequentially. Furthermore, we assume a homogeneous electron distribution
within r < R of the non-activated electrons, which gives rise to the probability distribution in
the radial coordinate for the electron to be activated next as

dP

dr
= 3r

2

R3
. (A.1)
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40

(a)

(b)

Figure A.1. (a) Probability distribution in energy dP
Q̃
/dE from equation (A.3) of

next activated electron for CC with parameters (Q, R (a0), "
⇤ (au)) = (500, 25,

40) and charge Q̃ = 0, 50, . . . , 500 on the CC. (b) Analytical electron spectrum
dP/dE from equation (A.4) from integration of probability distributions.

Released electrons leave a charged CC behind. This remaining charge, denoted by Q̃,
is within our approximation also homogeneously distributed. It modifies the asymptotic (or
measured) energy E of the next to be activated electron. Therefore the energy depends on the
radial coordinate r ,

E
Q̃
(r) = "⇤ � Q̃

R

✓
3
2

� r
2

2R2

◆
, (A.2)

with the modification given by the potential in equation (1). The dependence on the
instantaneous charge Q̃ is emphasized by the subscript. This expression allows one to obtain
the probability distribution in terms of the energy as

dP
Q̃

dE
= dP

dr

.dE
Q̃

dr

= 3

Q̃

r = 3

Q̃/R

✓
3 � 2

"⇤ � E

Q̃/R

◆1/2

, (A.3)

where the lower line uses the inverse function of equation (A.2). As the radial coordinate is
restricted to 06 r 6 R, so is the energy in equation (A.3), namely �(3/2)Q̃/R 6 E � "⇤ 6
�Q̃/R. The reduction of the energy E � "⇤ is bounded by the potential energy at the center
and the surface. The probability distribution of equation (A.3) is shown for the specific case of
"⇤ = 40 au, R = 25 a0 and various instantaneous charges Q̃ = 0, 50, . . . , 500 in figure A.1(a).
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Figure A.2. Comparison of numerical (symbols) and analytical (lines and
shaded) electron spectra for various parameters. Analytical spectra calculated
according to equation (A.4). A pulse length of T = 10 fs, sufficiently long for
sequential ionization, was used for all three spectra.

The larger the charge on the CC is, the wider the distribution in energy becomes and the further
it moves to lower energy.

As can be seen in figure A.1 only certain values of Q̃ contribute to the spectrum at a given
energy E . These values are given by Q̃1(E)6 Q̃ 6 Q̃2(E) with Q̃1(E) = (2/3)R("⇤ � E) and
Q̃2(E) = min(R("⇤ � E), Q). Remember that Q is the total charge reached after the activation
and removal of all electrons. Thus one obtains by integration

dP

dE
=
Z

Q̃2(E)

Q̃1(E)

dQ̃
dP

Q̃

dE

=
(

3 R for �Q/R 6 E � "⇤ 6 0,

�Q,R(E) for �(3/2)Q/R 6 E � "⇤ 6�Q/R.
(A.4)

Interestingly, the electron spectrum for higher energies is independent of energy E with a
system-independent constant given by 3 = 6[

p
3 arccoth(

p
3) � 1] ⇡ 0.843. Towards lower

energies E it falls off monotonically according to �Q,R(E) = 6R[
p

3 arccoth(
p

3/
p

3 � 2�) �p
3 � 2� ] with � ⌘ ("⇤ � E)R/Q.

The entire analytical spectrum is shown in figure A.1(b) for the specific parameters
Q = 500, R = 25 a0 and "⇤ = 40 au. In particular, the plateau in the region from "⇤ � Q/R

to "⇤ is a characteristic feature of the sequential ionization as seen in an experiment [12] and
numerical simulations [17]. While the height of the spectrum is solely determined by the radius
R, the width of the full spectrum and of the plateau region are given by 3Q/2R and Q/R,
respectively. Note that this implies that in the case of "⇤ < 3Q/2R, trapping of electrons will
occur and the full sequential spectrum is not realized. However, for those electrons emitted
before the onset of trapping the sequential spectrum as derived above is valid.

We compare the analytical spectrum of equation (A.4) with numerical results for three
sets of parameters in figure A.2, in each case with a pulse length of T = 10 fs, which
proves sufficiently long for the CC to exhibit sequential ionization behavior. Indeed, we find
overall excellent agreement between the numerical and the analytical result, in particular as
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pertains to the appearance of an extended plateau region, well described in width, height and
position by equation (A.4). Nevertheless, some minor discrepancies owing to the continuous
approach employed in the analytical calculation can be observed. A narrow peak at "⇤ in the
numerical spectrum arises from the first activated electron with exactly the excess energy "⇤.
Furthermore, in the energy domain �3Q/2R 6 E � "⇤ 6�Q/R, the shell-like structure of the
initial configuration of the CC, as shown in figure 1, leads to a step-like spectrum, as opposed
to the smooth increase in the analytical case.
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