
Massively Parallel Ionization of Extended Atomic Systems

Christian Gnodtke,1 Ulf Saalmann,1,2 and Jan-Michael Rost1,2

1Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
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Massively parallel ionization of many atoms in a cluster or biomolecule is identified as a new

phenomenon of light-matter interaction which becomes feasible through short and intense FEL pulses.

Almost simultaneously emitted from the illuminated target the photo-electrons can have such a high

density that they interact substantially even after photoionization. This interaction results in a character-

istic electron spectrum which can be interpreted as a convolution of a mean-field electron dynamics and

binary electron-electron collisions. We demonstrate that this universal spectrum can be obtained analyti-

cally by summing synthetic two-body Coulomb collision events. Moreover, we propose an experiment

with hydrogen clusters to observe massively parallel ionization.
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Modern light sources such as free-electrons lasers
(FELs) [1,2] couple large numbers of photons into clusters
[3] or biomolecules [4], or more generally, extended sys-
tems. Within femtoseconds many electrons are released
through single-photon absorption and the ions left behind
form a deep background potential. In cases where most
electrons are trapped in this potential, one observes a sharp
transition from continuous equilibration of the photo-
activated electrons [5–8] to a nonequilibrium plasma
executing characteristic oscillations [9] as the pulse length
falls below the relaxation time. If the electrons are acti-
vated with sufficient energy to escape the potential in large
numbers, a similar transition occurs when the pulse length
falls below a critical escape time enabling direct interac-
tion and energy exchange among the electrons even
after photo-ionization, as we will show in the following.
The regime introduced and discussed here is the exact
opposite to the previously investigated case of ‘‘noninter-
acting electrons’’ in sequential emission (also referred
to as multistep ionization [10]), which occurs for long
pulses [7,10,11].

The high energy of the excited electronic system permits
a treatment in terms of classical Coulomb dynamics of ions
and electrons [3,4,12,13]. This is a tremendous simplifica-
tion and allows us to calculate the time evolution of this
many-body system and the photo-electron spectrum (PES)
which results from illumination of the cluster with an
intense high-frequency laser pulse using classical molecu-
lar dynamics with photo-ionization rates for the atomic
ionization within the atomic cluster [12].

We will interpret the PES in two different ways. In terms
of global types of dynamics we will show that massively
parallel ionization can be thought of as a convolution of a
mean-field component and a component typical for binary
collisions. In terms of detailed paths of electrons we will
demonstrate that the electron spectrum can be reproduced
extremely well by approximating each photo-electron’s

final energy through a sum of contributions from synthetic
binary collisions with each of the other electrons.
This twofold interpretation is facilitated by the concept

of Coulomb complexes (CC), which we have introduced
recently [7]. They capture the essentials of electron dy-
namics activated through multiple photo-ionization in a
cluster or biomolecule. To understand massively parallel
ionization, we only need CCs in their simplest version: A
single isolated photo-ionization event from the mother
atom in the cluster leads to an excess energy of E�. If N
photo-electrons are produced by a laser pulse of length T
the ions left behind are assumed to form a smooth back-
ground potential, see Fig. 1. It is Coulombic outside the
(spherical) cluster of radius R, VðrÞ ¼ �N=r for r > R,
and parabolic within the cluster,

VðrÞ ¼ V0½r2=ð3R2Þ � 1�; r < R (1)

with the depth V0 � 3
2N=R. Activated electrons are

propagated under this potential and their mutual
Coulomb repulsion. The overall electronic dynamics of
the CC is completely determined by the four parameters
(N, R, E� ,T). Moreover, CCs are scale invariant, i.e.,

FIG. 1 (color online). Sketch of N-fold photoionization of
atoms in a cluster of radius R, leading to an ionic back ground
potential (blue) with total charge N and depth V0 ¼ 3N=2R
cf. Eq. (1).
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the one-parameter manifold of CC� ¼
fðN;�R; ��1E�; ��3=2TÞj�> 0g leads to the same scaled
dynamics. On the one hand, this renders phenomena which
can be described by CCs quite general and, on the other
hand, facilitates to identify a parameter combination which
can be realized in an experiment.

In Fig. 2 we compare the PES from the full molecular
dynamics calculation (where electrons and ions move clas-
sically according to all Coulomb forces) with the one
obtained using the CC with its static and smooth ionic
background. Obviously, both results agree with each other
quite well demonstrating that CCs are a realistic approxi-
mation for the present scenario. Motivated by the scaling
property of the Coulomb complex, we rescale the energy
by the depth of the ionic background potential � ¼ V0 of
all activated electrons potential. In Fig. 2(b) the PES is
plotted in terms of the scaled energy " ¼ ��1E � E=V0.

The form of the PES exhibits some resemblance to the
mean-field result (dashed lines in Fig. 2) which can be
obtained analytically from the CC: Assuming as before
spherical geometry, the potential for an electron photo-
activated with excess energy E� at radial distance r0 from
the center is Vmfðr0Þ ¼ Vðr0Þ þ Veeðr0Þ, where V is given in
Eq. (1) and Veeðr0Þ ¼ Nr0=r

0 is the repulsive potential of the
charge Nr0 ¼ Nr03=R3 created by all electrons within the
sphere of radius r0. Note that this is not an approximation if
the number of inside electrons remains constant during
expansion which is the case since the potential is mono-
tonic. To escape from the CC the electron has to overcome
Vmf [14] and its final energy is therefore E ¼ E� þ Vmfðr0Þ
or in scaled units

"ðr0Þ ¼ "� � ðr02=R2 � 1Þ: (2)

With the radial electron distribution dP=dr0 ¼ 3r02=R3 and
Eq. (2) we get for dP=d" ¼ ½dP=dr0�½d"=dr0��1

dPð"Þ
d"

¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"� "� þ 1

p
; (3)

within the interval "� � 1 � " � "� which is of length
unity or V0 in unscaled energies. The width V0 of the
PES gives an account of the depth of the potential and
consequently of the charge to extension ratio of the
Coulomb complex. In particular the full width at half
maximum

�E ¼ 3
4V0 ¼ 9

8N=R or �" ¼ 3
4 (4)

of the mean-field spectrum is quite similar to its counter-
part in the full spectrum. In the regime of massively
parallel ionization this result is very useful to estimate
the number of photons absorbed if the cluster size is
known, or vice versa, determine the size of the cluster
illuminated if one can measure how many electrons (their
number equals the number of photons N) have been
released.
Apart from the overall agreement one observes in Fig. 2

that the accurate PES shows a peak just below the excess
energy and is substantially blurred at the boundaries com-
pared to the mean-field spectrum. The peak is a finite-size
effect which vanishes for larger N as will be shown later.
The broadening can be interpreted as the result of a con-
volution with a spectrum governed by binary collisions
induced by a short-range, singular potential, i.e., the exact
opposite of mean-field dynamics, which is generated by
smooth long-range interaction,

dPð"Þ
d"

¼
Z

d �"
dPlongð"Þ

d"

�������� �"

dPshortð"Þ
d"

�������� �"�"�"�
: (5)

For the sake of being specific we model the short-range
interaction of two electrons with a distance r by a Yukawa

potential WshortðrÞ ¼ e�r=s=r and the mean-field interac-
tion by a Coulomb potential whose singularity at the origin

is suppressed, WlongðrÞ ¼ ð1� e�r=sÞ=r. For the screening
parameter we choose s ¼ �r=5, i.e., much smaller than the

initial nearest neighbor distance �r � R=N1=3, which is the
relevant length scale with respect to electron-electron in-
teraction. With this choice the long-range case closely
matches the Coulombic case since Wlongð �rÞ � 1=�r, while

the initial interaction energy for the short-range case van-
ishes Wshortð �rÞ � 0. Consequently, the interelectronic re-
pulsion energy resulting fromWshort cannot compensate the
ionic background potential Eq. (1) anymore and we drop it
therefore. In both cases the initial conditions are chosen as
for the Coulomb case, the positions are identical and the
momenta are defined by the given excess energy "�.
The long-range case gives a final spectrum closely re-

sembling the mean-field PES, albeit already slightly broad-
ened at the edges. The short-range case, on the other hand,
leads to a nearly symmetric spectrum sharply peaked at the
single electron energy "� but with long tails reaching well
beyond energies " ¼ "� � 1. Because of the rapid fall-off
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FIG. 2 (color online). Photo-electron spectrum for sudden
massively parallel ionization. (a) Ar147 with icosahedral geome-
try. Two thirds of the atoms lose an electron from the 3p level
with an excess energy of E� ¼ 0:4 keV. (b) Coulomb complex
with N ¼ 100 and an excess energy of "� ¼ 2. The dashed lines
represent the analytical mean-field result from Eq. (3). The full
widths at half maximum of both distributions, denoted by �E
and �" respectively, are indicated by the thick gray arrows.
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of the short-range potential most electrons do not interact
with each other after photo-absorption. Only if the initial
velocity vectors of two electrons put them onto a colliding
trajectory an exchange of energy among these two elec-
trons is achieved. Because of the high initial kinetic energy
of the order "� only a small subset of initial conditions
leads to electron-pair trajectories with large energy ex-
change. Thereby, in a single binary collision one electron
can transfer all its kinetic energy to its collision partner and
consequently the spectrum in Fig. 2 covers the range " ¼
0 . . . 4 for "� ¼ 2. Since such violent binary collisions are
very rare on the one hand, but lead to the largest energy
exchange on the other hand, they can be viewed as an
additional and largely independent random event, which
augments the mean-field expansion dynamics. If this de-
scription is realistic, the convolution Eq. (5) of the short-
range and long-range spectrum should reproduce the full
spectrum which is indeed the case as shown with the inset
of Fig. 3. A residual interaction effect manifests itself
mostly in slight deviations at low energies: While the
convolution of Eq. (5) ascribes each electron the same
probability that its final energy " gets modified by a violent
binary collisions, this is in reality more likely for slow
electrons. They come from the central, bulklike region of
the cluster and are more likely to suffer multiple collisions
during their escape as compared to surface electrons which
are faster and suffer at most a single collision.

The described construction of the PES from a mean-field
and a binary-interaction component provides an intuitive
physical picture. Yet, despite its approximate character it
offers no computational advantage over the full result,
since all trajectories for Wshort must be obtained numeri-
cally. Surprisingly, it is possible to take into account the
correlation of mean-field and collision dynamics accu-
rately by determining for each electron its pairwise
isolated, binary Coulomb dynamics with all other elec-
trons. This leads to the binary-intercation sum (BIS), a

quasianalytical and very accurate formulation for the PES
which we introduce now.
We consider for electron i the binary collision with

electron j, with initial positions and velocities (denoted
with a prime) as in the Coulomb complex. Within the BIS
approximation, the final energy of electron i is then

"i ¼ "0i þ
XN

jð�iÞ
ð"ij � "0ijÞ (6)

with "0i ¼ "� by construction. "0ij and "ij are the initial and
final energies of electron i due to the interaction or colli-
sion with electron j, respectively, i.e., "0ij ¼ v02

i =2þ 1=r0ij
with v0

i ¼ jv0ij and r0ij � jr0i � r0jj for two electrons with

initial positions r0i, r0j and velocities v0i, v0j. The final energy
"ij can be calculated analytically by means of the con-

served Runge-Lenz vector in the center-of-mass frame
[15]. Therefore, we introduce the relative and center-of-
mass coordinates r0 ¼ r0i � r0j and ~r0 ¼ ðr0i þ r0jÞ=2, re-

spectively. While the center-of-mass velocity is conserved
(~v ¼ ~v0), we obtain an explicit expression for the final
relative velocity v by means of the conserved angular
momentum l � �ðr0 � v0Þ and the Runge-Lenz vector
b � ðv0 � lÞ þ r0=r0, with the reduced mass � ¼ 1=2. It
reads v ¼ �v½vðb� lÞ � b�=ð1þ v2l2Þ, whereby the ab-
solute value v is known from energy conservation v2 ¼
2=�r0 þ v02. Finally, we use "ij ¼ ð~vþ v=2Þ2=2.
The BIS does not explicitly include the influence of the

background potential. However, it is easy to show that the
definition (6) ensures conservation of the total energy E,
which is, on the one hand, given by the left-hand side of
Eq. (6) E ¼ P

i"i. On the other hand, it is
P

N
i�jð"ij�"0ijÞ¼

�P
N
i�j1=rij from which follows that the right-hand side of

Eq. (6) is also equal to E ¼ "0i �
P

N
i�j 1=rij. Note that the

BIS is computationally extremely cheap since it does not
require numerical propagation. Yet, quite a few analytical
binary collision outcomes need to be summed since all
NðN � 1Þ pairwise interactions as well as multiple realiza-
tions of the isotropic velocity distribution need to be taken
into account. Hereby, it is crucial that the direction of an
electron’s velocity for all its N � 1 binary interactions
within one realization of BIS is kept fixed, to ensure the
correct particle-particle correlations of the binary energy
exchanges.
The BIS spectra are shown in Fig. 4, overlayed with the

fully propagated spectra. In all cases we see near perfect
agreement. This agreement extends to specific features,
such as a main peak arising from the residual discrete
nature for the smaller systems with N ¼ 10 and N¼102.
Probably more surprisingly, also the long tails from violent
collisions with very low probability are here reproduced in
great detail (see the logarithmic spectra in the right col-
umn). As long as none of the electrons is trapped the BIS is
found to be an excellent approximation.
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FIG. 3 (color online). (a) Final electron spectra for N ¼ 102

electrons propagated with Wshort (blue, solid) and Wlong (red,

dashed) potential. (b) Final spectrum from propagation with
Coulomb potential (green, solid) and convolution of Yukawa
and anti-Yukawa spectra (black, dashed) according to Eq. (5).
Dotted vertical lines indicate the excess energy "� ¼ 2.
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Although the tails prevail for all system sizes shown, one
sees a clear evolution towards mean-field dominated dy-
namics. Their apparent reduction for larger systems is due
to an increasing energy scale V0 ¼ 3

2N=R. Independently,

the central peak disappears for larger N, where the mean-
field description of a spherical homogenous electron cloud
becomes an increasingly better model. In fact the shoulder
on the left wing for the two smaller systems indicates
roughly the maximum due to mean-field dynamics. The
width of the boxes is chosen to be �" ¼ 3=4 as given in
Eq. (4) for the full-width-at-half-maximum of the model
square-root spectrum. The box height is therefore placed
twice as high as the intersection of the box and the spec-
trum. Indeed, we observe that this height agrees with the
height of shoulders for N ¼ 10; 100 and with the full
spectrum for N ¼ 1000.

For the sake of clarity we have restricted ourselves to
possible single (photo-)ionization of each constituent of
the cluster or large molecule and to sudden photo-
ionization to introduce the phenomenon of massively par-
allel ionization. That this is nevertheless a realistic scenario
is demonstrated in Fig. 5 with the PES for a 2 nm hydrogen
cluster induced by an XUV pulse of 2:5� 1016 W=cm2

peak intensity, a duration of 500 as (full-width-at-half-
maximum bandwidth of 4 eV) and a photon energy of
75 eV. This corresponds to an excess energy of E� ¼
60 eV (dotted vertical line in Fig. 5). Under these condi-
tions, within reach by modern FEL sources, about 10% of
the about 500 molecules in the cluster are ionized. The
spectrum clearly shows the typical features for massively
parallel ionization: a square-root shaped rise for energies
E< E� and a high-energy tail for E> E�; see inset of
Fig. 5. At very low energies one observes a structure due
to electron-impact ionization which would increase for
larger clusters.
To summarize, we have introduced the phenomenon of

massively parallel ionization which is a so far unexplored
variant of multiphoton ionization and should routinely
occur when illuminating larger targets with intense and
short XUV to x-ray pulses. Characteristic for massively
parallel ionization is a photo-electron spectrum which
combines, almost independently, features from mean-field
dynamics with those of violent binary electron collisions.
Thereby, we could demonstrate that one can deduce from
the width of the spectrum the ratio of charging (number of
ionized electrons) to the size (radius) of the systems which
is of great diagnostic value in experiments. Moreover, we
have devised a quasianalytical yet highly accurate method
to calculate the photo-electron spectrum from a sum of
synthetic binary Coulomb collisions for small to large
systems. Clearly, depending on photon energy and target,
Auger-decay processes and multiple photo-ionization of
one atom or small molecule within the cluster can occur
and will modify the results presented here. How the char-
acteristic features of massively parallel ionization will be
changed by such events will be investigated in future work.
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