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A simple, semianalytical model is proposed for nonrelativistic Coulomb explosion of a uniformly charged
spheroid. This model allows us to derive the time-dependent particle energy distributions. Simple expressions are
also given for the characteristic explosion time and maximum particle energies in the limits of extreme prolate
and oblate spheroids as well as for the sphere. Results of particle simulations are found to be in remarkably good

agreement with the model.
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I. INTRODUCTION

Coulomb explosion (CE) is an ubiquitous phenomenon in
laser-matter interaction, from laser ablation and micromachin-
ing to particle acceleration [1-12]. CE is the dominant process
of ion acceleration from a cluster irradiated by an intense
laser pulse in the regime of so-called cluster vertical ionization
(CV]) [1-6]. In this regime, the laser pulse is intense enough to
remove all electrons from the cluster before ion motion sets in.
This kind of ion charge state can also be generated by intense
and short pulses of high-energy photons which have become
possible at x-ray free electron lasers [13]. In both cases, the
ion dynamics is governed by CE.

Spherical CE has been thoroughly investigated in the last
years due to its importance for cluster physics. In the case
of a uniformly charged sphere, CE is self-similar and can
be described analytically [1-4]. The dynamics of CE of a
nonuniformly charged sphere is more complex as it involves
multiple flows so that a kinetic description is required [5,6].

In contrast, ellipsoidal and spheroidal (ellipsoidal with a
rotational symmetry) CE has been studied in the context of
accelerator physics, where three-dimensional (3D) envelope
equations are widely used [14,15], or to model space charge
effects in laser-created dense electron beams [16].

Spheroidal clusters have also attracted a lot of attention as
they exhibit characteristic electron momentum distributions
[17], and their optical properties are of great interest in, for
example, nano-optics [18,19]. They may also be produced
in the context of ultracold quasineutral plasma studies [20].
Moreover, spheroidal clusters appear as a natural candidate for
anisotropic ion emission from clusters under intense ultrashort
laser irradiation, which has recently triggered significant
interest [21]. Finally, it has also been shown that, in helium
embedded rare gas clusters, a spheroidal nanoplasma is
generated by illumination with an intense laser pulse leading
to unusual resonant heating [22].

In addition, understanding spheroidal CE is crucial in the
context of ion acceleration from a solid target irradiated by
an intense, relativistic laser pulse. Recent studies have shown
CE of thin multispecies targets as a promising path toward
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high-quality ion beams [7-10]. Apart from the possibility to
use CE as the principal acceleration mechanism, CE of the
accelerated ion bunch itself has been shown to play a dominant
role in angular as well as energy dispersion of ion beams
generated from laser-solid interaction [10,11].

In this paper, we investigate the CE of an initially uniformly
charged spheroid. In order to derive simple estimates for the
particle maximum energies and characteristic explosion time,
we restrict ourselves to nonrelativistic particle velocities. We
then demonstrate that, during CE, both the spheroidal shape
and uniformity of the charge distribution are conserved, but
with time-dependent aspect ratio and charge density. There-
fore, CE of a uniformly charged spheroid can be described
using a simple, semianalytical model for the evolution of the
spheroid radii. This model allows us to derive the temporal
evolution of the particle energy distribution and maximum
energies (along the spheroid principal axes) as a function of the
spheroid initial aspect ratio, charge density, and total charge.
Our theoretical predictions are then compared to 3D molecular
dynamics (MD) and particle-in-cell (PIC) simulations. These
simulation tools are the most widely used methods to model
laser-cluster and laser-plasma interaction. However, they are
known to be computationally costly, so that the results obtained
in this paper are interesting for various applications, from
nonspherical cluster CE to non-neutralized charged particle
beam propagation through a vacuum.

The paper is structured as follows: Section II presents
our semianalytical model. Predictions from the model are
then compared to both MD simulations (Sec. III) and
PIC simulations (Sec. IV). Finally, Sec. V summarizes our
findings.

II. SEMIANALYTICAL MODEL FOR COULOMB
EXPLOSION OF UNIFORMLY CHARGED SPHEROIDS

A. General considerations on uniformly charged spheroids

In this first section, we lay the basis for our simple model
of CE of a uniformly charged spheroid. To do so, let us
first recall the electrostatic potential at a position x = (x,y,z)
inside a uniformly charged ellipsoid centered in x = 0 and
with radii w,, wy, and w, along the directions x, y, and z,
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TABLE I. Limits of the shape functions for the extreme prolate
(cigar-shaped, o < 1) and oblate (disk-shaped, o > 1) spheroids, as
well as for the sphere (o = 1).

oK1 a=1 a>1
Zo(@) In(2/a) 1 /)
&) a?[In(2/a) — 1] 1/3 1
Ci(a) 1/2 1/3 7/(4a)

respectively [23]:

d(x) = ﬂkpcwxwywz

00 2 y? 22 ds
X f (1 - - - ) , (D
0 wits  wi+s  wits/)JYls)
where k = (4mep)™! and p. = Zen is the charge density
(typically Z is the mean ion charge state and n is the ion
density), and ¥ (s) = (w% + s)(wi + s)(w? + 5).

Objects with a rotational symmetry are of particular
importance for many applications such as cluster explosion or
particle acceleration. Hence, we introduce the radial coordinate
r = +/y? + 7% and restrict our study to the case of a spheroid:
wy = wy and wy, = w, = w, so that Y(s) = (wﬁ + s)(wi +
5)2. Finally, one obtains for the electrostatic potential inside
the spheroid:

¢ (x,r) = 2kpe[w] Loler) — g()x® — ¢ (e)r’],  (2)

where we have introduced the spheroid aspect ratio o =

w, /w; and
Sola) = lfoo L 3)
2Jo @+5V1+s
@=2% (" ds @)
b= /O (@ + )1+ 572’
2 [ee)
=2 / s 5)
2 Jo (@4s52JV1+s

In what follows, we refer to these functions as shape functions
because they depend only on the spheroid aspect ratio.
Equations (3)—(5) are here written in their compact, integral
forms. These integrals can, however, be expressed as functions
of inverse trigonometric and hyperbolic functions (see, e.g.,
Ref. [24]). The dependencies of these shape functions on o
are given in Fig. 1. We also give their limits for the extreme
prolate (cigar-shaped, ¢ < 1) and oblate (disk-shaped, @ > 1)
spheroids, as well as for the sphere in Table I.

Equation (2) illustrates the well-known result that the
electrostatic potential inside a uniformly charged spheroid is a
quadratic function of the space coordinates. As for the electric
field inside the uniformly charged spheroid, it can be easily
expressed in cylindrical coordinates:

E(x,r) = Ej(x)X + E (r)f, (6)

where X and T are the longitudinal and radial unit vectors,
respectively, and

Ej(x) = —0:¢(x,r) = 4mkpcLy(a)x, (7
E\(r) = —0,¢(x,r) = 4mkpcs L (a)r. ®)
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FIG. 1. (Color online) (a) Dependence of the shape functions
Zo(a) (solid black curve), ¢;(«) (dashed blue curve), and ¢, () (dot-
dashed red curve) on the aspect ratio «. (b) Prolate (cigar-shaped)
spheroid with « = 0.1 and (c) oblate (disk-shaped) spheroid with
o = 10.

Interestingly, besides the nontrivial dependency on the aspect
ratio «, the longitudinal component of the electric field inside
the spheroid is a linear function of x only, while the transverse
componentis a function of r only. The nonrelativistic equations
of motion in such an electric field for a particle with charge
Ze, mass m, and initial position (x,r() simply read

d2
ﬁf = k(@)X 9
d2
ﬁ}: = k¢ ()F, (10)

where « and « = 4wkp.(Ze/m) depend only on time, and
X = x/x¢and 7 = r/ry. Considering initial conditions X |,—g =
Fli=o = 1 and 0,%|;=0 = 0;7|;=0 = 0, Egs. (9) and (10) are
found to be independent of the initial coordinates xy and ry.
As a consequence, a particle initially located at a position
(x0,r0) will subsequently be at a position (xo&,ro7), where
X and 7 do not depend on the initial position. Therefore, it
is straightforward to obtain that (i) the CE of an initially
uniformly charged spheroid conserves the spheroidal shape
(albeit, as we will see in Sec. II B, with a time-dependent
aspect ratio), and that (ii) the charge distribution inside the
spheroid remains uniform (albeit time dependent).

Although the above calculations have been performed
considering Coulomb interaction in a spheroid, we would like
to stress that similar conclusions can be drawn for the more
general case of an ellipsoid, as well as for any Coulomb-like
force, such as gravitation [25,26].

The above considerations strongly simplify the modeling
of CE of a uniformly charged spheroid. The problem can now
be solved by considering equations for the evolution of the
longitudinal and transverse radii of the spheroid.
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B. Coulomb explosion of uniformly charged spheroids
1. Governing equations

Let us consider a uniformly charged spheroid with initial
radii wyo and w,, and initial ion charge density ny.
Obviously, the total charge Q = (4n/3)wH,0wi0(Zen0) is
conserved during the explosion. The nonrelativistic equations
of motion (9) and (10) are also valid for particles initially
located on the outer shell of the spheroid at (x = w0, =
0) and (x = 0,r = w, o). Then, using Eqgs. (7) and (8), it
is straightforward to derive a system of two second-order
differential equations on the time-dependent longitudinal and
transverse radii w) and w :

d* 5 Wi oW)o (wl)
E oy =200 (), 11
a1 = o0, q w 1D
d? , wiowio  [wy
Zw =t 20 (), 12
T Ty Q(“’) (12

where we have introduced the plasma frequency

wpo = v/ Z%e>no/(€gm). (13)

Let us now normalize the time to a);ol (t = wpot), the
longitudinal radius to wy o (@ = wy/w,0), and the transverse
radius to w, o (W1 = w, /wy o). The system of Egs. (11) and
(12) then reads

d? 1 )

— 0y = — — ), 14
il wiq(aom“) (14)
d* 1 W)
WL =——C0|a— ), (15)
dt wiw) wj

where oy = w, o/wy,0 is the spheroid initial aspect ratio.
Assuming that all particles in the spheroid have initially no
velocity, one has for initial conditions

1])”(1’:0):1, II)J_(‘L'ZO)ZI, (16)

4 (r=0=0 4 (t=0=0 (17)
— ) (t=0=0, —w, (rt=0)=0.
dt I dt +

Note that Eq. (17) also implies that particles have no initial
temperature. For bare ion spheroids, this situation arises
when electron removal is fast enough for ion heating through
electron-ion collisions to be negligible. Under such circum-
stances, the hypothesis of uniform charge density should also
be verified as long as the initial atomic density is uniform.

Before discussing in more details the solution of this
system, we note that, using these normalizations, velocities
in the longitudinal and transverse directions are naturally
expressed in units of wpow)o and wpow, o, respectively.
Correspondingly, energies in the longitudinal and transverse
directions are normalized to &9 = & /ap and &£ o = &y,
respectively, where we have introduced the characteristic
energy

(‘:0 = \/8II$0€L,0 = minwle. (18)

Due to the complex dependency of the shape functions
on the time-dependent aspect ratio, no general (for any «)
analytical solution can be obtained and the system of Egs. (14)
and (15) has to be solved numerically. However, analytical
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solutions of the system can be obtained in the case of the
sphere (where the aspect ratio remains constant in time
W, /W) =ay=1), in the case of an infinitely large disk
(g — 00 and considering ag | /W — o0 for all times),
and in the case of an infinitely long cylinder (oo — 0 and
considering oo, /W — 0 for all times). We present briefly
the analytical solutions for these particular cases (Sec. II B 2)
before discussing in more details the numerical solutions for
arbitrary initial values of oy (Sec. II B 3).

2. Particular cases

a. Coulomb explosion of a uniformly charged sphere.
Spherical CE (¢y = 1) has been widely studied in the context
of many applications (e.g., in cluster physics [1-6]). In this
case, the system of Eqs. (14) and (15) reduces to a single
differential equation on the sphere radius R = W = W :

> 1
dt>  3R*
The first integral of Eq. (19) is obtained after multiplying both

sides by %R and integrating from 0 to 7. Considering that all
particles have initially no velocity, we obtain

LY Z L] 20
E(E ) —§< _E)' G0

This equation describes the transformation of potential energy
[right-hand side (rhs) of Eq. (20)] to kinetic energy [left-hand
side (lhs) of Eq. (20)] for a particle located on the outer shell of
the spheroid. In our normalized units, energies £ are expressed
inunitsof &0 =&,.0=& = mwioRS, where Ry is the initial
radius of the sphere and w, is given by Eq. (13). The final
kinetic energy of an ion of the sphere outer shell is therefore

19)

Es = &E/3. (21)

The autonomous differential equation (20) has a formal

implicit solution
J2 / Ny (22)
T=,/= r.
2 1 r—1

This solution and the temporal evolution of the outer shell
kinetic energy Emax are shown in Fig. 2. On long time
scales (T = wpot > 1), we find R ~ /2/37; that is, most
of the potential energy has been transformed into kinetic
energy and the sphere expands with the constant velocity
V2/3wp0Ro. On shorter time scales we actually observe the
Coulomb explosion; that is, 50% of the potential energy is
transformed into kinetic energy after a time t ~ 2.8, while
80% is transformed after t =~ 7.2. The characteristic time scale
of spherical explosion is therefore the inverse initial plasma
frequency a);ol

Following Refs. [1,2,4], we can derive an analytical expres-
sion for the asymptotic (f — 00) particle energy distribution.
As previously underlined, in our model, the electric field inside
the sphere is a linear function of the radius and particles do
not overtake each other during expansion. The electric field
seen by a particle initially located at 7y < 1 can thus be easily
obtained as a function of the charge ¢(7) inside the sphere
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FIG. 2. Temporal evolution of (a) normalized spheroid radii
(R/Ro, wy/wy0, and w, /w, o), and (b) maximum kinetic energies
(Emax /€0 Elmax /€105 and E1 max/E 1 o) Tor spherical explosion (solid
curves), cylindrical explosion (dashed curves), and planar explosion
(dot-dashed curves), respectively.

with normalized radius 7. The equation of motion for this
particle then reads

— =L 23
drzr 372 23)

Then the first integral simply reads (assuming zero initial

velocity)
1(d_\> ®R(1 1
(£F) =D(==2). (24)
2\dt 3\fy F
This equation once more describes energy conservation and
shows that an ion initially located at a position 7 has obtained,
at the end of the acceleration process, a kinetic energy (7)) =
Fg /3. Now, the normalized radial particle density at initial
position 7 is simply
IN _ 3529 (1 — 7o) (25)
— = Jr, —Tro),
dig 00
where 0y is the Heaviside function, from which we derive the
ion energy distribution at r — o0:
dN dNdry 9 \/T -
— = ——==-V3E0y(1/3 - &). 26
4E " drag 2"V 9 (20)
Hence, one obtains that the particle energy distribution scales
as the square-root of the ion energy up to the maximum energy
EX =1/3.

At this point, we want to stress that this asymptotic energy
distribution can actually be generalized to all times 7. It is
indeed well known that CE of a uniformly charged sphere is
self-similar and that the velocity distribution inside the sphere
increases linearly with distance to its center. From this we

can derive the fraction of particles with energy below £ <
Emax(): N(E) = [E/Emax()1Y/?, Where Epax (¢) is the maximum
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particle energy at time 7. We finally obtain the time-dependent
spectrum:

dN 3 JE
= s L&) — €] 27)
d& 2 &)

b. Coulomb explosion of a uniformly charged, infinitely
long cylinder. In the case of a uniformly charged, infinitely
long cylinder, the system of Egs. (14) and (15) reduces to a
single differential equation for the cylinder radius @ :

d? 1

—W, = ——. 28

d‘L’z Wi 2U~)J_ ( )
Once more, the first integral of Eq. (28) describes energy
conservation:

1/d _\* 1. _
In contrast to the spherical case considered above, the
logarithmic potential on the rhs of Eq. (29) goes to infinity
for increasing W . This unphysical behavior follows from our
choice of an infinitely long (thus with infinite total charge)
cylinder. As a result, the energy of the outer shell formally
diverges.

Again a formal implicit solution can be obtained for the
cylinder radius:

Yo dw
= . 30
‘ /1 VInw 50)

The temporal evolution of @, and the outer shell energy &,
are presented in Fig. 2. Expansion occurs with an increasing
velocity, and no saturation of the kinetic energy is observed.
c. Coulomb explosion of a uniformly charged, infinitely

large disk. In the case of a uniformly charged, infinitely large
disk, the system of Egs. (14) and (15) reduces to a single
differential equation for the disk thickness 0 :

d2

Pw“ =1. (31)
In this case, the disk thickness increases due to a constant
electrostatic field. It simply reads

2

Dy = — + 1. 32
wH ) + ( )
This result is shown in Fig. 2. In this case as well, no stationary

state is obtained and the kinetic energy increases arbitrarily.

3. Numerical solutions for an arbitrary initial aspect ratio

As previously discussed, in the general case (for any initial
aspect ratio «), the system of Eqgs. (14) and (15) must be
solved numerically. In this paper, it is done using a simple
Euler method. Numerical solutions for different values of o
are now discussed.

Figure 3 shows the temporal evolution of the longitudinal
and transverse radii of the spheroid [Figs. 3(a) and 3(b),
respectively] and of the longitudinal and transverse kinetic
energies [Figs. 3(c) and 3(d), respectively]. It is complemented
by Fig. 4 which shows, as a function of the initial aspect
ratio o, the times required for the kinetic energy (for purely
longitudinal or purely transverse motion) to reach 50% or 80%
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FIG. 3. (Color online) Temporal evolution of spheroidal Coulomb
explosion for different values of the initial aspect ratio «p: (a)
longitudinal radius of the spheroid, (b) transverse radius of the
spheroid, (c) energy associated with longitudinal motion, and (d)
energy associated with transverse motion. Color codes are as follows:
Prolate spheroid (thin curves, agp = 1073 solid red, ctg = 1072 dashed
green, and oy = 10! dot-dashed blue). Sphere (solid black curve,
ao = 1). Oblate spheroid (thick curves, ay = 10? solid red, o = 102
dashed green, and oy = 10 dot-dashed blue). The thick solid gray
curves in panels (a) and (b) show analytical predictions for planar
(ap — 00) and cylindrical (o — 0) explosion, respectively. Note
that energies in panels (c) and (d) are normalized to their asymptotic
values at t — oo.

of its maximum value [Fig. 4(a)], the corresponding aspect
ratio of the spheroid at these times [Fig. 4(b)], the final aspect
ratio o [Fig. 4(c)], and the final energies normalized to & o
and & o [Fig. 4(d)].

Let us first address the case of spherical explosion (g = 1).
Numerical solutions allow us to recover the analytical findings
of Sec. II B 2. The radius and energy evolutions (Fig. 3) are in
perfect agreement with what is presented in Fig. 2. It is also
worth pointing out that, for a given initial charge density (i.e.,
for a fixed value of w ), spherical expansion is faster (in terms
of energy conversion) than for any other initial aspect ratio
a. This can be observed in Figs. 3(c) and 3(d), as well as in
Fig. 4(a), where the characteristic time to reach a given fraction
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FIG. 4. (Color online) Dependence on initial aspect ratio o of
(a) time to reach 50% (dashed curves) or 80% (solid curves) of
maximum kinetic energy, (b) corresponding intermediate aspect ratio
oW, /Wy, (c) final aspect ratio o, and (d) final energies 5‘]’" and £9°
normalized to & ¢ and & , respectively. In panels (a), (b), and (d),
thin blue curves account for motion in the longitudinal direction, and
thick red curves account for motion in the transverse direction.

of the final kinetic energy reaches a minimum for oy = 1.
Finally, we recall that the characteristic time for spherical CE
is of the order of w;& and the final velocities of the outer shell
in the longitudinal and transverse directions are vy max(f —
00) = V1 max(t — 00) = \/2/_30);70R0~

In the case of a prolate (cigar-shaped, oy < 1) spheroid,
expansion occurs mainly in the transverse plane. This intuitive
result is illustrated in Figs. 3(a) and 3(b) where the transverse
radius of the spheroid increases much faster than the longitudi-
nal one. Note that, although the transverse radius of the prolate
spheroid evolves initially faster than in the spherical case,
spherical expansion remains faster in terms of conversion from
potential to kinetic energy [Fig. 4(d)]. The quasistationary
state of expansion (i.e., expansion at quasiconstant velocity)
is indeed reached later for oy 7% 1. Note also that saturation
in the kinetic energy arises once the spheroid assumes a
quasispherical shape: when the kinetic energy reaches 80%
of its maximum value, the spheroid aspect ratio is indeed quite
close to unity [Fig. 4(b)]. The final aspect ratio is nevertheless
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much larger than unity as the final transverse velocity is much
larger than the longitudinal one. We also see from Fig. 4(a)
that spheroidal expansion in the limit ¢y < 1 occurs on a time
scale larger than (aoa),,o)’l. Similarly, we see in Fig. 4(d) that
the asymptotic (f — o0) energy for purely longitudinal motion
& does not exceed a3€)0 = o€ while the corresponding
energy for purely transverse motion £° > &/3 (for example,
for 1075 < &y < 1071, we find that E° ranges between & o =
ap& and 7€) o = Tap&p). The final transverse energy is
therefore significantly larger than the longitudinal energy (see
also theoretical predictions in Fig. 6). This is a consequence
of the initial geometry, and it is responsible for the final oblate
shape of the spheroid observed in Fig. 4(b).

Let us now focus on the case of an oblate (disk-shaped,
oo > 1) spheroid which is particularly interesting when
considering laser-generated ion bunches from a solid target.
As expected, expansion initially occurs in the longitudinal di-
rection [Figs. 3(a) and 3(b)]. Transverse expansion eventually
occurs later, once the spheroid longitudinal radius becomes
comparable to its transverse one. At this time, the spheroid
aspect ratio becomes close to unity and a non-negligible
fraction of the potential energy has already been converted
into kinetic energy [Fig. 4(b)]. Finally, one can extract from
the numerical results the characteristic expansion time in the
limit of large initial aspect ratio to be o< /ag/wpo. The asymp-
totic maximum energies can also be easily extracted: £° ~
0.630(05“,0 = 0635() and gjo_o ~ 0.46(€l’()/0(0 = 04650 We
thus obtain that the final energies in the longitudinal and
transverse directions are of the same order. This leads to a
final aspect ratio oo, ~ (530/5““))1/2 =~ (.86, close to unity, as
shown in Fig. 4(c).

C. Energy spectra

Our model for spheroidal CE allows us to derive the
maximum energies for motion along the spheroid principal
axes at time f. As the density inside the spheroid remains
uniform, the velocity distribution along the principal axes has

A/ E€/E).max

dN p— 3 gi,max
E - 5 A/ g/g\l.max 1
gi,max

In the next sections (Secs. III and IV), we compare these
predictions from our model to MD and PIC simulations.

III. MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics [28] simulations of CE of an (initially)
uniformly charged spheroid are now discussed. To initialize
our simulations, N = 5000 particles (here, hydrogen ions;
Z =1, m = 1836m,, where m, is the electron mass) are
randomly placed within a spheroidal volume so that the
initial particle density inside this volume is homogeneous.
Here we chose an atomic density ng = 9.7 x 10?2 cm™3
(correspondingly, the sphere radius is Ry 2~ 2.3 nm), which

S_EJ_ max
— / ' ax < < ax -
EL,max gH.max_gi,max for gJ.,de g g”’mdx
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to be a linear function of spatial coordinates:

v (x) = (X/W))V) maxs (33)
vy (r)= (r/wl)vL,maXa (34)

where w, w, are the spheroid radii, and v| max and v max are
the particle maximum velocities at a given time ¢. Considering
a homogeneous charge density in the spheroid, one can easily
derive the time-dependent normalized energy distribution for
motion along the longitudinal and transverse directions [cf.
Eq. 27)]:

AN 3 J&
— = = —— 0y (& max — &, 35
d€| 25“3,/,121“ u(&), 1 (35)
dN 3 JVEL
— = ——— 0y (& max — €1), 36

where £ max = mvj . /2 and €|y = mv] /2 are time
dependent and derived from our model.

The total energy spectrum can also be derived by consider-
ing equivelocity surfaces as concentric homeoids (spheroidal
surfaces). We obtain from Eqgs. (33) and (34) that these
homeoids are actually similar; that is, they have the same
aspect ratio o, = (W /W) )V, max/V1 max at fixed time ¢ (see
Fig. 5) [27]. This allows us to calculate, for a given energy
&, the fraction N (&) of particles in the spheroid with a lower
energy and finally derive the normalized energy distribution.

For a prolate (cigar-shaped, oy < 1) spheroid, the total
energy spectrum reads

A/ E/E) max
dN 3 E1 max

d& " 2]

SL.mux

for £ < g||,max

gl.max_g
gL,maxfg”,max

for g“,max <&< 5L,max-
(37)

For an oblate (disk-shaped, oy > 1) spheroid, the total energy
spectrum reads

for & < &) max 38)

is characteristic of hydrogen clusters. To avoid unphysically
large contributions to the energy spectrum, we enforce a
minimum interparticle distance (~75% of the average in-
terparticle distance dmin ~ 1, I/ 3). Furthermore, all particles
were taken initially at rest. Then, knowing the initial state
of all particles, we solve Newton’s (nonrelativistic) equations
of motion for each of them using the velocity Verlet scheme
[29,30] and direct calculation of the Coulomb forces between
all ions.

Several simulations were performed only changing the
initial aspect ratio in the range g = 0.1 to 10. Figure 6 shows
the maximum energy for longitudinal and transverse motion
as predicted by our semianalytical model (Sec. II) and as
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FIG. 5. Schematic representation of equivelocity surfaces at fixed
time ¢ during CE of (a) prolate (cigar-shaped, oy < 1) spheroid and (b)
oblate (disk-shaped, oy > 1) spheroid. In this two-dimensional rep-
resentation, equivelocity surfaces correspond to concentric ellipses
with the same aspect ratio.

extracted from MD simulations. We stress that, here, energies
are normalized to the maximum energy £ [Eq. (21)] resulting
from CE of a sphere with similar density and total charge
(in practical units, & =~ 3.1 keV under current conditions).
Figure 6 shows arather good agreement between our simplified
model [solutions of Egs. (14) and (15)] and simulations. Also
note that MD results confirm the theoretical prediction (clearly
shown in Fig. 6) that, for a given total charge and charge density
in the spheroid, the maximum longitudinal (transverse) energy
is obtained for a slightly oblate (prolate) spheroid.

To further investigate MD simulation results, we present in
Fig. 7 the energy spectra obtained at the end of the simulation
[at a time ¢ ~~ 4000);01 (and a);(} ~ 2.4 fs)] and compare
them to theoretical predictions from Eqgs. (27) and (35)—(38).
Distributions in longitudinal (transverse) energy are obtained
by considering particles emitted within an angle 6 = £m/20
around the longitudinal (transverse) direction. Figures 7(a)
and 7(b) correspond to spherical CE (g = 1). In this case,
the energy distribution is in very good agreement with the

1.0}
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w
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§

w
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FIG. 6. (Color online) Dependence of the maximum energy
for the longitudinal and transverse motions (thin blue and thick
red curves, respectively) on the initial aspect ratio «. Solid lines
correspond to semianalytical predictions [Eqgs. (14) and (15)],
circles and squares correspond to the maximum transverse and
longitudinal energies obtained in MD simulation results, and triangles
correspond to PIC simulation results (up-triangles and down-triangles
correspond to longitudinal and transverse energies, respectively).
Note that energies are normalized to the asymptotic energy Es = £y/3
[Eq. (21)] obtained for spherical explosion.
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FIG. 7. (Color online) Energy spectra obtained from MD simu-
lations at ¢t ~ 400a);01: Panels (a) and (b) are for ¢y = 1, panels (c)
and (d) are for oy = 0.1, and panels (e) and (f) are for g = 10. The
left panels (a), (c), and (e) show the directional spectra: the solid blue
curves correspond to particles emitted within an angle £ /20 of the
longitudinal (x) direction, the dashed green curves and dot-dashed
red curves correspond to particles emitted within an angle /20 of
the transverse (z and y) directions. The right panels (b), (d), and (f)
show the total energy spectra (all particles are accounted for). The
thick gray lines show the theoretical predictions from our model.

theoretical prediction from Eq. (27) for energies up to 90%
of the maximum energy. Near the maximum energy, however,
a peak appears in the simulation which is not predicted by our
model.

Figures 7(c), 7(d), and 7(e), 7(f) show similar results for
CE of a prolate (cigar-shaped, oy = 0.1) spheroid and an
oblate (disk-shaped, op = 10) spheroid, respectively. Once
more, a very good agreement is obtained between theoretical
predictions from our model and MD simulations. Only at
the maximum energy is a peak observed for any direction
of emission in the MD spectra, which is absent in the model
spectra.

All the peaks observed at high energies are a consequence
of the discrete nature of particles, which leads to a gradual
decrease in the particle density at the surface of the spheroid.
The thickness of the corresponding surface layer is of the order
of the average interparticle separation. The decreasing density
results in ion wave breaking (or formation of a shock), whose
characteristic signature is a peak in the energy spectrum [5,6,
31,32]. The peak is found to be sensitive to the initial particle
distribution and its magnitude decreases with the increase of
the total number of particles. This behavior is captured by
the MD calculations, which take into account the motion of
discrete ions, but is neglected in our simplified model, which
considers the evolution of a continuous particle density with a
sharp cutoff at the surface.
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IV. PARTICLE-IN-CELL SIMULATIONS

We now present results from simulations of spheroidal CE
obtained using the massively parallel 3D PIC code CALDER
[33]. The PIC simulation technique consists of solving the
Maxwell-Vlasov system and thus offers a mean-field kinetic
description for the plasma dynamics [34]. In PIC codes,
the Vlasov equation is solved by discretizing the particle
distribution functions as a sum of so-called macroparticles and
by solving, for each of these macroparticles, the corresponding
(relativistic) equation of motion in the electromagnetic field.
Then, the Maxwell-Ampere and Maxwell-Faraday equations
are solved on a Yee mesh using the finite-difference time-
domain method [35]. This numerical scheme, coupled to the
standard current and charge deposition algorithm in a PIC
code, does not automatically satisfy the Poisson equation,
which has to be enforced by correcting the electric fields at each
time step. In CALDER, this is done by using the usual technique
proposed by Boris [36]. We stress this point because this
study presents simulations of an initially strongly non-neutral
plasma for which it is of the utmost importance to accurately
correct the electric field at all time steps. This difficulty can,
however, be alleviated by using charge-conserving algorithms
such as the one proposed by Esirkepov [37]. In this case
indeed, the Poisson equation has to be solved only at the first
time-step.

Now we present simulation results of spheroidal CE for
three different values of the initial aspect ratio: og = 0.1, o¢p =
1, and g = 10. All three spheroids consist of fully ionized
carbon ions (Z =6, m = 12 x 1836m,) with density ny =~
9.2 x 10?! cm~3 and total charge Q ~ 19 pC.

We first consider CE of a sphere («p = 1) with initial radius
Ry ~ 80 nm. In this simulation, the mesh size in all three
directions is as small as Ax = Ay = Az = Ry/20, and 200
macroparticles per cell are used. Figures 8(a) and 8(b) display
the temporal evolution of the spheroid radii (normalized to
their initial value Ry) and of the maximum kinetic energy
normalized to the final energy predicted from the model &g
(in practical units £ >~ 12.8 MeV for present parameters),
respectively. Note that these quantities have been extracted
along all three spatial directions (x, y, and z), confirming
that the CE dynamics remains spherical within a ~2% error.
Furthermore, an excellent agreement is found between our
theoretical model and simulations concerning the temporal
evolution of both the maximum energy and sphere radius.
Figure 8(c) shows the carbon energy distribution at time
t 10.6a);01 (for current parameters a);(} 2~ 4.6 fs) and their
comparison to theoretical prediction from Eq. (27). Here again,
a very good agreement is found between our theoretical model
and PIC simulations. It is interesting to see that, also in
these simulations, a peak is present at maximum energy. It
also originates from a smoothly decreasing ion density at the
sphere edge leading to the formation of a shock. In contrast to
MD simulations, however, the decreasing density region is not
here the result of the discrete particle distribution, but of the
projection of the particle density on the mesh. Note also that, at
the end of the simulation (at ¢ ~ 10.6cu;0l ), the maximum ion
energy reaches ~85% of its theoretical maximum value (for
wpot — 00), which is in good agreement with the dynamics
illustrated in Figs. 3(c) and 3(d).
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FIG. 8. (Color online) Results from PIC simulations for oy = 1.
(a) Temporal evolution of the sphere radii. (b) Temporal evolution
of the maximum kinetic energies. (c) Ion energy spectrum at t ~~
10.6w;(}. Quantities in panels (a) and (b) are presented for all three
spatial directions: along the x direction (solid blue), y direction (dot-
dashed red), and z direction (dashed green). The thick gray lines show
theoretical predictions from our model.

Let us now consider the case of a prolate (cigar-shaped,
oo < 1) spheroid with longitudinal radius w) o = 4.6R, and
transverse radii w, o = 0.46R, (corresponding to an initial
aspect ratio ¢p = 0.1). In this simulation, the mesh size is
Ax = Ay = Az = Ro/10 and 500 particles per cell have
been used. Figures 9(a), 9(b), and 9(c) display the temporal
evolution of the normalized spheroid radii and maximum
kinetic energies along all three space dimensions, respectively.
Figure 9(d) shows the energy distributions at the end of
the simulation together with their comparison to theoretical
predictions from Egs. (35), (36), and (37). A fair agreement is
found between PIC simulations and analytical predictions.

Finally, the case of an oblate (disk-shaped, oo > 1)
spheroid with o9 =10 (w0 = Ro/5 and w, o =2Rp) is
presented in Fig. 10. The mesh sizes in this simulation were
set to Ax = Ryp/20 and Ay = Az = Ry/10 and each cell
initially contained 300 particles. The temporal evolution of
the normalized radii and normalized maximum kinetic energy
along the three spatial directions are displayed in Figs. 10(a),
10(b), and 10(c), respectively. Figure 10(d) shows the energy
distributions and their comparison to theoretical predictions
from Eqgs. (35), (36), and (38). A fair agreement between the
PIC simulations and the analytical results is also obtained in
this case.
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FIG. 9. (Color online) Results from PIC simulations for ag =
0.1. Temporal evolution of the spheroid radii: (a) in the longitudinal
direction and (b) in the transverse direction. (c) Temporal evolution
of the maximum energies. (d) Corresponding spectra at r =~ 45.5(1);0' ;
the total spectrum is also shown as a black solid line. Color codes are
chosen as in Fig. 7. The thick gray lines show theoretical predictions

from our model.

These simulations demonstrate that our simple model
correctly describes the CE dynamics of an initially uniformly
charged spheroid. We attribute discrepancies between PIC
simulation and our model predictions to the limited resolution
of the numerical mesh. Due to technical constraints of
our computing facilities, we are currently not able to run
simulations with a higher resolution.

V. CONCLUSION

We have developed a simple, semianalytical model for
CE of a uniformly charged spheroid. In the limit of non-
relativistic particle velocities, this model gives access to
the maximum energy a particle can reach at a given time,
the time-dependent particle energy distributions, and the
characteristic time of CE. All these quantities can be defined
as a function of the spheroid aspect ratio, charge density, and
total charge. Our theoretical predictions are found to be in
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FIG. 10. (Color online) Results from PIC simulations for oy =
10. Temporal evolution of the spheroid radii: (a) in the longitudinal
direction and (b) in the transverse direction. (c) Temporal evolution
of the maximum energies. (d) Corresponding spectra at f ~ 33‘3w;0' ,
the total spectrum is also shown as a black solid line. Color codes are
chosen as in Fig. 7. The thick gray lines show theoretical predictions

from our model.

remarkably good agreement with particle (both MD and PIC)
simulations.

Because 3D kinetic simulations come at a high computa-
tional cost, our results are particularly useful when considering
acceleration of ions in the pure CE regime, originating from
(spherical or nonspherical) clusters or from thin solid targets.
Indeed, our results should be directly applicable in the so-
called CVI regime. This regime where electrons are expelled
from the cluster on a time much shorter than the characteristic
time of ion motion can be accessed by using either ultra-intense
lasers or x-ray pulses.

Moreover, with the recent progress in nanotechnology,
CE of nanostructured targets can be considered. Our results
may thus give us simple design guidelines how to optimize
target properties; for example, for inertial fusion applica-
tions [38] or to maximize ion collision events for neutron
production [39].
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Last but not least, our results can also be helpful
to model laser—solid-target interaction for ion accelera-
tion, which is characterized by the emission of short,
compact, and highly charged ion bunches. Propagation of
these bunches (e.g., through a vacuum) is strongly af-
fected by space charge effects [10,11]. By approximat-
ing the accelerated ion bunches as uniformly charged
spheroids, the results presented here may allow us to de-
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rive the conditions required for limited energy and angular
dispersions.
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