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Abstract. We investigate nonadiabatic dynamics of molecular sodium in two alternative
approximate ways. Firstly, the semiclassical mapping formalism is used to study the decisive
step in resonant two photon ionization of Na2, where the Rabi oscillations of the occupation
probability of the resonantly excited intermediate state are reproduced with a high degree of
accuracy. Secondly, nonadiabatic quantum molecular dynamics is combined with the surface
hopping approach of Tully in order to take into account quantum effects on the nuclear
dynamics in collisionally excited sodium molecular ions. Their importance is demonstrated
by comparing the results with experimental fragment correlations of kinematically complete
experiments.
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1 Introduction

The theoretical description of nonadiabatic processes in complex molecular systems
is still one of the most demanding problems in atomic many-body theory. In princi-
ple it requires the rigoruos numerical solution of the full time-dependent Schrödinger
equation for the coupled nuclear and electronic dynamics, which has been achieved
so far for diatomic (one electron) systems like H+

2 excited by a laser field [1, 2]. Ob-
viously, approximate solutions or methods are required in order to deal with more
complex systems. On the other hand, any approximate approach has its favorite field
of application. Even in simple diatomic molecules, very different types of nuclear wave
packet propagation can occur owing to different electronic excitation mechanisms. In
this contribution, we will put forth two novel and alternative methods to describe
nonadiabatic nuclear wave packet dynamics for laser-driven and collisionally excited
sodium molecules, respectively. Both situations have been studied extensively also in
corresponding experiments [3–5].

In section 2, the semiclassical implementation of the mapping formalism to nonadi-
abatic dynamics [6] is applied to the laser pulse driven Na2 system. The multiphoton
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ionization of this system with a short and intense laser pulse has already been calcu-
lated quantum mechanically for two photon excitation [7]. Here, semiclassical results
for the first step in the excitation process will be compared to numerical quantum re-
sults and to approximate analytical Rosen-Zener results for a range of different pulse
strengths. In section 3, the so-called non-adiabatic quantum molecular dynamics (NA-
QMD) approach [8] is extended, in order to take into account quantum effects on the
nuclear dynamics by combining it with the surface hopping mechanism of Tully [9]. As
a first application of this method, experimental fragment correlations in kinematically
complete experiments of He+Na+

2 collisions are analyzed. It is clearly shown that the
non-adiabatic nuclear wave packet dynamics leads to pronounced structures in the
final fragment distributions. Finally, in section 4, we give conclusions and an outlook
on future activities.

2 Laser induced nonadiabatic dynamics

2.1 Semiclassical mapping formalism

In this section we will focus on the nuclear dynamics on two adiabatic potential energy
surfaces, U1(Q) and U2(Q), which are coupled through ultrashort laser pulses of center
frequency Ω and with a pulse envelope giving a time dependence to the radiative dipole
coupling V (Q, t). Within the rotating wave approximation, the laser field has two
effects. First, it leads to a relative overall shift of h̄Ω of the two surfaces and second
it introduces a coupling of the dynamics on the adiabatic surfaces thus leading to the
coupled channel Schrödinger equations

ih̄Ψ̇1(Q, t) =
[

− h̄2

2µ

∂2

∂Q2
+ U1(Q)

]

Ψ1(Q, t) + V (Q, t)Ψ2(Q, t)

ih̄Ψ̇2(Q, t) =
[

−
h̄2

2µ

∂2

∂Q2
+ U2(Q) − h̄Ω

]

Ψ2(Q, t) + V (Q, t)Ψ1(Q, t)
(1)

with reduced mass µ.
The quantum mechanical 2×2 Hamiltonian matrix corresponding to the system of

equations (1) can now be mapped onto a continuous Hamiltonian [6], whose classical
counter part is of the form

H(x⃗, p⃗, Q, P ) =
P 2

2µ
+ Hel, (2)

with the momentum P of the nuclear degree of freedom and the “electronic” Hamil-
tonian

Hel =
2
∑

i=1

Vii(Q)
1
2
(x2

i + p2
i − 1) +

2
∑

i<j=1

Vij(Q)(xixj + pipj), (3)

where the diagonal matrix elements Vii(Q) are adiabatic (shifted) potential energy
surfaces U1, Ũ2 = U2− h̄Ω and the nonadiabatic coupling is mediated by the time-
dependent offdiagonal matrix element V12(Q, t) = V (Q, t). The vectors {xi}, {pi}
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denote the canonically conjugate phase space variables corresponding to the continuous
harmonic degrees of freedom, representing the discrete two level system.

An approximate solution of the quantum dynamics corresponding to the mapping
Hamiltonian can be obtained by using the semiclassical initial value representation
(IVR) of the propagator of Herman and Kluk [10]. That this is possible also for driven
systems has been shown in a case study on two model potential surfaces (quadratic
and linear) [11]. The classical equations of motion for the nuclear degree of freedom
entering the semiclassical expression are

Q̇ =
P

µ
(4)

Ṗ = −
(

N1
∂U1

∂Q
+ N2

∂Ũ2

∂Q
+ (x1x2+ p1p2)

∂V (t)
∂Q

)

, (5)

with the functions Ni = (x2
i + p2

i − 1)/2 corresponding to the occupation number
operators. Using the quantal conservation of probability, one can obtain alternative
forms of the classical equations of motion, which might turn out to be favorable if
approximations (like the semiclassical IVR methodology) are used. In the simple case
of a quadratic coupled to a linear surface, it was not necessary to use this trick. In the
numerical investigation of coupled Morse oscillator potentials, to be presented in the
following, the equations are highly nonlinear (through the nonlinearity of the Morse
forces in addition to the coupling between the nuclear and “electronic” degrees of
freedom) and it turned out to be favorable to use a modified Hamiltonian.

2.2 Results for Na2 driven with a pulsed 345nm laser

The motivation behind the investigations in this section is the question if the semi-
classical mapping formalism can be applied successfully to a realistic driven molecular
system. In order to answer this question we will concentrate on the two-photon ion-
ization of Na2. The decisive step in the ionization of Na2 from the ground (11Σ+

g )
state to the ionization continuum is the population of an intermediate (21Σ+

u ) state via
irradiation of the system with a laser pulse of central wavelength 345 nm. We therefore
investigate the nonadiabatic dynamics in the ground and intermediate states, which
are modelled by Morse function potentials with parameters taken from the spectro-
scopic data given in Table IV of [12] a. The dipole moment coupling the two states
is taken to be constant (Condon approximation) at a value of 3.7 a.u. Within first
order perturbation theory, the ionization probability can then be extracted from the
wavefunction on the intermediate potential energy surface [7]. We do not perform the
final step in this paper, however.

As the initial state for the dynamics serves the Gaussian approximation to the
nuclear ground state wave function of the ground electronic state. The intensity of the
laser pulse is varied in the range between about 1010and 2 · 1011 W/cm2. Results for
the occupation probability of the intermediate state for three different intensities with

a in the intermediate state only one single minimum corresponding to the inner minimum of the 21Σ+
u

state is considered
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Fig. 1 Comparison of quantum (long dash) Rosen-Zener (short dash) and semiclassical (full
line) results for the transfer of probability to the intermediate potential surface for three
different laser intensities (a) 9.3 · 109W/cm2, b) 5.8 · 1010W/cm2, c) 23.3 · 1010W/cm2). The
(normalized) pulse envelope is indicated by the dotted line.

the same pulse envelope of sech-type and a pulse width of 22 fs are presented in Fig.
1. Here we compare numerical quantum results obtained with the split operator fast
Fourier transform method b (long dash), approximate Rosen-Zener [14] results (short
dash) and semiclassical IVR results (full line). The Rosen-Zener results have been
obtained according to Eq. (18) with the integrand replaced by Eq. (17) in Ref. [15].

The agreement between the semiclassical result (which is normalized, in order
to conserve the total probability) and the quantum result is striking. For higher
intensities, where the probability performs Rabi oscillations, this agreement is even
better than the one which can be achieved with the Rosen-Zener approximation.

3 Collision induced dissociation dynamics

3.1 Tully formalism coupled with NA-QMD

We start by summarizing the equations of motion of the NA-QMD approach [8] which
comprises equations for the time-dependent Kohn-Sham functions ψj(r, t) and Newton
equations for the nuclear coordinates RA. Using basis representations ψj(r, t) =

b using exact diagonalization to form the exponential of the 2×2 potential matrix [13].
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∑

α φα(r, R) aj
α(t) they read

ȧj
α(t) = −

∑

βγ

(

S−1
)

αβ

{

iHβγ +
Nn
∑

A=1

ṘARA
βγ

}

aj
γ(t) (6)

with j = 1 . . .Ne, Ne the number of electrons and

MAR̈A = − ∂

∂RA

Nn
∑

B=1

′ ZAZB

|RA−RB|

−
Ne
∑

j=1

⎧

⎨

⎩

∑

αβ

aj
α

(

∂

∂RA
Hαβ −

〈

φα

∣

∣

∣

∣

∂

∂RA
(Veff−V )

∣

∣

∣

∣

φβ

〉)

aj
β (7)

−
∑

αβγδ

[

aj
αHαβ

(

S−1
)

βγ
RA

γδa
j
δ + c.c.

]

⎫

⎬

⎭

with A = 1 . . .Nn, Nn the number of nuclei and where aj
α is the complex conju-

gate of aj
α. The matrices in Eqs. (6) and (7) are defined as: Sαβ ≡ ⟨φα |φβ ⟩,

Hαβ ≡
〈

φα

∣

∣t̂ + Veff

∣

∣φβ

〉

, and RA
αβ ≡ ⟨φα |∂φβ/∂RA ⟩ with ⟨. . . ⟩ denoting integra-

tion over the single-particle coordinate r. In these equations t̂ is the single particle
kinetic energy operator, V denotes the interaction potential of nuclei and electrons
and Veff is the effective potential of time-dependent density functional theory using
the adiabatic local density approximation [16]. Within the NA-QMD the set of cou-
pled equations (6) and (7) has to be solved simultaneously describing a selfconsistently
coupled electron/nuclear dynamics.

In order to treat the coupled dynamics by a surface hopping approach in the sense of
Tully [9], the forces on the nuclei determined by the electrons in a certain excited state
(potential energy surface) are required. For their determination we use single-particle
excitations in the Kohn-Sham picture which are shown to be well-defined approxima-
tions for the real excitation energies [17]. The corresponding classical equations then
read [8]

MAR̈A = − ∂

∂RA

Nn
∑

B=1

′ ZAZB

|RA−RB|

−
Ne
∑

n=1

fK
n (t)

⎧

⎨

⎩

∑

αβ

Cnα

(

∂

∂RA
Hαβ − εn

∂

∂RA
Sαβ

)

Cβn (8)

−
∑

αβ

Cnα

〈

φα

∣

∣

∣

∣

∂

∂RA
(Veff−V )

∣

∣

∣

∣

φβ

〉

Cβn

⎫

⎬

⎭

with εn and Cβn or φn(r, R) =
∑

β φβ(r, R)Cβn, respectively, the solutions of the
secular equations

∑

β

(

Hαβ − εnSαβ

)

Cβn = 0 at the current positions RA. The set
fK

n of occupation numbers (0, 1, or 2) characterizes the electronic state K. The
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time dependence of these factors (which consists in sudden hoppings K→K′) mimics
electronic transitions. The determination of these hopping points is done in close
analogy to the “fewest switches” procedure by Tully [9].

Let us assume that K is the current electronic state (which governs the classical
dynamics) and the Kohn-Sham equations (6) are solved using (automatically adapted)
time steps δt, i.e. the coefficients aj

α are known for certain times. Then at these times,
we can generate a sequence of values

GK′ =
K′
∑

L=1

BKL

AKK
∆t (9)

with K′ = 1 . . .Ns, where Ns is the number of all possible states accessible by one-
particle excitations from state K. The quantities

AKL := det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

αβ

CnKαSαβaj
β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

αβ

aj
αSαβCβnL

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(10)

BKL := −2 Re
(

AKL

〈

φnK

∣

∣

∣

∣

∂

∂t
φnL

〉)

(11)

are closely related to the ones in Tully’s paper [9, cf. Eqs. (10, 14)]; however, here they
are calculated in terms of determinants of single-particle quantities. Note that BKL

is determined by a one-particle transition φnK → φnL .
Comparing a uniform random number ξ between 0 and 1 to the values of (9) a

transition from the current state K to K′ takes place if GK′−1 < ξ ≤GK′ . These
hopping events are gathered over a classical time step ∆t (usually ∆t ≫ δt) and the
last chosen state determines the force according to Eq. (8). By means of this method
many-particle transitions are realized as subsequent one-particle transitions. In order
to correct for the violation of the energy conservation (by EK −EK′) we rescale the
atomic velocities ṘA along the coupling vectors

RKK′

A :=
∑

nn′

∑

αβ

fK
n Cnα

(

RA
αβCβn′ + Sαβ

∂

∂RA
Cβn′

)

fK′

n′ . (12)

Owing to the relatively high collision energy of 80 eV in the system under consideration
(see next subsection) this is always possible.

The numerical effort of the procedure described above is only slightly higher for the
system Na2

++He as compared to the usual NA-QMD approach [8], Eqs. (6) and (7).
The matrix Cnα is interpolated over a classical time step and thus the time derivative
in Eq. (11) is easily available. The derivative in (12) is done numerically and thus
quite expensive. However, it is only required if a hopping event has occured.

3.2 Results for Na2
++ He

In this section we present studies of Na2
++ He collisions at Ecm = 80 eV based on the

combination of the Tully surface hopping and the NA-QMD approach sketched in the
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20 30

Fig. 2 Ensemble of trajectories of Na2
++ He collisions at Ecm=80eV for the very same

collision geometry (depicted by the spheres) in the centre-of-mass system. The collision axis
is along the z-axis with Na2

+ flying from left to right and He from right to left.

previous section. This represents a first application of this formalism to a system which
has been studied by conventional NA-QMD in detail [4]. Furthermore, experimental
data from kinematically complete correlation experiments [5] are available for direct
comparison.

At the collision energy considered here, two qualitatively different collision induced
dissociation scenarios can been distinguished [4]: In the first case, named impulse
mechanism, the helium atom transfers momentum to one sodium core resulting in
vibrational excitation and subsequent fragmentation. The electronic mechanism, on
the other hand, involves excitation of the molecule into a dissociative electronic state
leading to the fragmentation owing to electron-vibrational coupling. Because we are
interested in nonadiabatic effects, in the following, we concentrate on the latter one.

Firstly, we consider one fixed collision geometry. Figure 2 shows the collision plane
of a central collision Na2

++ He with an initial angle between molecule and collision
axis of about 50◦. Owing to the random hopping formalism, we obtain an ensemble of
trajectories (each one of the 99 calculations gives three lines in Fig. 2) for the very same
initial condition. This is in striking contrast to the conventional NA-QMD approach
which is fully deterministic giving exactly one trajectory for one initial geometry.

Owing to the simplicity of the system, the structure of the trajectory ensemble
(representing a classically sampled wave packet of the dissociation dynamics) can be
understood in detail (see Fig. 2):
(i) Na2

+ is only vibrationally excited due to a (small) momentum transfer to the
sodium cores but it does not dissociate. The different trajectories resulted from occa-
sional electronic excitation and subsequent deexcitations.
(ii) Na2

+ is electronically excited to the 3sσu, the 3pσg, or the 3pπu state leading
to immediate fragmentation. The strong overlap in certain regions can be addressed
to direct excitations to these states. The overall spread of the trajectories is caused
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Fig. 3 Distribution of fragmentation events as a function of the relative energy of the
fragments Erel and the centre-of-mass scattering angle χ for Na2

++He at Ecm=80 eV. Cal-
culations using NA-QMD (left) and the combination of NA-QMD and Tully surface hopping
formalism (middle) are compared with the intensity plot (right) from kinematically complete
experiments [5].

by excitation at different times and thus at different distances of the sodium atoms.
Furthermore, multi-step excitations/deexcitations are not unlikely, resulting in a com-
plicated hopping dynamics.

In order to compare with experimental data we have extended the analysis to
randomly selected molecule orientations and all relevant impact parameters. Figure 3
shows the relative energy of the fragments Erel and the centre-of-mass scattering angle
χ of the projectile for all collision events that lead to fragmentation of the molecule
(∼4 000 in the region shown out of 30 000 calculated collisions).

We restrict ourselves to the electronic dissociation events which can be found at
small scattering angles χ <

∼ 10◦. Whereas the NA-QMD calculations (left panel of
Fig. 3) show one broad peak in this region the surface hopping approach (middle
panel) clearly exhibits two peaks around Erel = 0 and 0.7 eV in perfect agreement
with the measurements (right panel). The scattering angle χ is almost the same in
both calculations, see also the almost negligible impact of the hopping on the deflection
of the (lightweight) He in Fig. 2. Obviously, quantum effects on the nuclear motion
have only minor influence on the collision dynamics (at these impact energies) but can
have dramatic implications on the relaxation (fragmentation) dynamics.

4 Summary and outlook

We have presented two approximate theories of wavepacket propagation. Evidently,
both metods do have their favorite fields of application as well as inherent limitations.
Molecular dynamics combined with surface hopping is, in particular, appropriate to
describe situations where a large number of surfaces are coupled and therefore they
must be calculated “on the fly”. Interference effects, however, are neglected in this
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method. In contrast, semiclassical wavepacket propagation includes these effects, but
its application to realistic systems is still restricted to situations where a limited num-
ber of well defined and previously calculated surfaces play a role.

One goal of future developments would be to combine the advantages of both
methods, i.e. by including interference effects in molecular dynamics approaches as
well as through the extension of semiclassical theories by calculating potential surfaces
on the fly.
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