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Ultrashort laser-driven dynamics of massless Dirac electrons
generating valley polarization in graphene
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We identify and describe how intense short light pulses couple to massless Dirac fermions in two-dimensional
systems. The ensuing excitation dynamics exhibits unusual scaling with the wavelength of the light due the linear
dispersion of the band structure and the fact that light coupling is efficient only close to the Dirac points. We
exploit these features to achieve valley polarization of more than 70% with simple pulse shapes. Thereby, we
demonstrate that substantial valley polarization at moderate excitation can be achieved with a suitable linearly
polarized pulse in gapless systems. Quantitative results are given for pristine graphene.
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Electrons in two-dimensional (2D) materials carry pseu-
dospins (of opposite sign) at the minima K and K ′ (valleys)
of the valence band in the first Brillouin zone [1,2]. The long
lifetime of these degrees of freedom has given their manipula-
tion and transport, in short valleytronics, a boost in the search
for usable quantum information encoding [3–5]. Most work
has been devoted to finite-mass fermions in gapped materials
[6–10] or gapless materials under static [11,12] or periodic
[13] fields, which break the equivalence of K and K ′. Breaking
this equivalence in gapless systems by optical pulses seemed
to be impossible [14–16], although rich dynamical behavior
in graphene induced by strong short pulses has been predicted
[17]. Indeed, a carefully chosen pulse form, with two colors
and time-dependent polarization, adapted to the hexagonal
geometry of the band structure and maintaining an electric
field component during the pulse to break the equivalence of K
and K ′ [18] has been recently demonstrated to achieve valley
polarization in pristine graphene.

In the following, we will uncover the general mechanism
of coupling Dirac dynamics to intense laser pulses which is
ruled by (i) the vector potential A0 of the light pulse in units
of the distance � between the Dirac points � = K − K ′ in
momentum space and (ii) by time and momentum scaled with
the square root of the light frequency (or wavelength), τ =√

ωt and Q = q/
√

ω. The scaling emerges from the fact that
coupling to the light only occurs in the vicinity of the Dirac
points with linearized dynamics and dipole matrix elements
about these points exhibiting this scaling. Furthermore, pulses
with A0 ≈ � are most efficient for inducing large valley
polarization since the latter relies on transporting excitation
from valley domain K to K ′ or vice versa where the domain
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separation in momentum space is characterized quantitatively
by �.

This relatively simple mechanism has not been uncovered
so far; most published work with the exception of Ref. [19],
which was submitted after the preprint (arXiv:2109.04249) of
this letter appeared, suggests that it is impossible to achieve
valley polarization in gapless systems such as graphene with
a linearly polarized pulse [16,18,20]. As an application of the
general strong-field coupling mechanism we will demonstrate
the opposite: A conventional half-cycle pulse with linear po-
larization along � can achieve substantial valley polarization
(VP). Including a weaker prepulse (“pedestal”) and thereby
making use of the subtleties of the mechanism can even lead
to almost 100% VP.

To be specific, we will work with pristine graphene in
the usual tight-binding two-band description [2,20] (conduc-
tion and valence band), coupled in dipole approximation to a
classical electromagnetic field with the time-dependent vector
potential

A(t ) = A0e−2 ln 2 t2/T 2
cos(ωt ). (1)

Mostly, we will apply half-cycle pulses [21] with T = Tω/5,
where Tω = 2π/ω is the laser period. Such pulses have be-
come available through multioctave shaping [22,23].

We solve the time-dependent Schrödinger equation for the
time-dependent two-band Hamilton operator

H (q, t ) = Hq+A(t ), (2a)

in the tight-binding form

Hq =
(

0 g(q)
g∗(q) 0

)
, (2b)

with the hopping integral g0 = 3.03 eV in

g(q) = −g0[eiaqx + 2e−iaqx/2 cos(
√

3aqy/2)], (2c)

whereby the C-C distance is a = 1.42 Å [2]. In the eigenbasis
of (2) the time-dependent state is given by ψv,c(t, q). We cal-
culate the excitation probability ρ(q) ≡ |ψc(t→∞, q)|2 with
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FIG. 1. (a) Excitation probability ρ(q) as a function of the initial
crystal momentum q for the half-cycle pulse of (1) with λ = 2.4 μm,
field strength A0 = �, and a pulse length of T = Tω/5. The color
scale is given in Fig. 2. The Dirac points in the centers of the
triangular unit cells are marked by crosses. (b), (c) Time-dependent
crystal momenta q̃y(t ) = qy + A(t ) in the vertical direction and (d),
(e) corresponding excitation probabilities |ψc(t )|2 for two initial con-
ditions q, marked with green circles in (a), respectively.

initially only the valence band occupied. Inclusion of relax-
ation is easily possible by solving the Liouvill–von Neumann
equation for the single-particle density matrix. However, this
is not necessary in the present context due to the short light
pulses. We begin with the excitation induced by a pulse with
T = Tω/5 in Eq. (1), linearly polarized parallel to � = �ey

as this dynamics reveals the ruling principles of intense pulse
coupling to massless Dirac electrons quite clearly. Figure 1(a)
resolves this excitation probability d2P/dqxdqy ≡ ρ(q) with
respect to all initial conditions in the Brillouin zone, discrim-
inated (in blue and red) according to the K and K ′ domain
(lower and upper triangle). One sees interference patterns
along the polarization direction (but not on the � line directly)
with denser fringes in the lower triangle indicating a larger
phase accumulation of the driven electron wave than in the
upper triangle. The very fact of the clean pattern suggests
interference of two amplitudes with a well-defined phase dif-
ference. The underlying momentum space trajectory q̃(t ) =
q + A(t ) for two specific initial conditions in Figs. 1(b) and
1(c) reveals that, indeed, there are two instances of closest
proximity to the K point (and hence two excitation “bursts”)
with q̃y(t ) ≡ qy + Ay(t ) = Ky, one in the rising and one in the
falling part of the pulse (see lower horizontal green-dotted
lines). At both time instants the excitation suddenly changes
[see Figs. 1(d) and 1(e)]. Clearly, it is crucial to come close to
the Dirac point for excitation. This also explains why there
are no excitations for initial conditions with qy < K ′

y since
the corresponding laser-driven trajectories do not visit any
Dirac point. Moreover, the phase difference between the two
bursts for those initial conditions is either close to 4π or 5π

which effects destructive [Fig. 1(d)] or constructive [Fig. 1(e)]
interference, respectively. Since the transition energy along
the trajectory is larger below the K ′ point (compared to the
one between K and K ′ point), the phase accumulated between

(a)

(b)

FIG. 2. (a) Excitation probability ρ as a function of the initial
crystal momentum q for the pulse (1) with a pulse length of T =
Tω/5 and for various wavelengths λ and field strength A0. The Dirac
points in the centers of the triangular unit cells are marked by crosses.
(For a compact representation we have, in contrast to Fig. 1, nested
the unit cells.) The width δqx of the excitation pattern is marked
with a black line at the bottom of each contour plot. It is defined
as the second moment δqx ≡ √

m2/m0 with mk ≡ ∫
	K d2q qk

x ρ(q).
(b) Pattern width δqx as function of the wavelength λ for three
values of A0. The dashed lines show δqx = α/

√
λ, with α fixed at

λ = 10 μm. The color scale at the bottom right is the same as in
Figs. 1(a) and 4(a).

the two excitations is larger there. Consequently, trajectories
starting above K ′ yield denser fringes than those staring above
K, as can be seen in Fig. 1(a).

Having established that intense pulse optical excitation
of massless Dirac electrons occurs only close to the Dirac
points, we next turn to the scaling properties of the excitation
dynamics. To this end we consider excitation with the same
pulse shape as before but at different wavelengths and for
three different A0 of the light for all initial conditions in
the first Brillouin zone, shown in Fig. 2 with a compactified
representation. Note that K ′ points are now located at the left
and right boundaries of the rectangle in the upper half (marked
with little crosses in the figure). One sees that the structures
have the same shape but are “zoomed out” from left to right
for longer wavelengths, most obvious for the two lower rows,
while in the first row additional interference due to the large
excursion of the trajectories masks the underlying similarity
of the pattern.
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Excitation occurring only close to the Dirac points sug-
gests to linearize the dynamics in momentum space and
time close to a Dirac point by Taylor expanding about
it, qK ≡ q − K with K = [2π/3a](1,+1/

√
3)T or qK ′ with

K ′ = [2π/3a](1,−1/
√

3)T. Hence Hq from (2a) may be
approximated close to K by the familiar relativistic Hamil-
tonian for massless spin-1/2 particles HK = vF σ · qK [24]
in terms of the Pauli matrices σ = (σx, σy)T and the speed
of light replaced by the Fermi velocity vF = 3g0a/2. The
eigenvalues of HK are E c,v(qK ) = ±vF|qK | with eigenvec-
tors, often referred to as the Houston basis [25], V v,c(qK ) =
(±[qKx+iqKy]/|qK |, 1)T/

√
2 for the valence (v) and the con-

duction (c) band, respectively.
Within this approximation the time-dependent dipole-

coupled Hamilton operator in the Houston basis can be
expressed as

H (̃q, t ) = vF |̃qK (t )|σz + F(t ) · [ez × q̃K (t )]

2|̃qK (t )|2 σx, (3)

where the second term in H is a real, reduced Berry-
connection matrix [26], from which the diagonal elements
have been omitted as they are the same and shift only the total
energy of H , while the off-diagonal terms couple valence and
conduction band through the electric field F(t ) = d

dt A(t ) of
the light.

From Eq. (3) one sees that only close to the K point, where
|̃qK (t )| is small, transitions to the other band happen through
the dipole coupling. The corresponding time-dependent dy-
namics is governed by the approximate Hamilton operator H
valid close to Dirac points with intriguing scaling properties
regarding the dependence on the light frequency ω: Consider a
trajectory in the vicinity of K, e.g., q̃K (t ) = (bx, cyωt )T, which
passes K at t = 0 at a distance bx and a velocity cyω. This
trajectory corresponds to a linearly polarized pulse along ey

with frequency ω as in Fig. 2, but the following argument
holds for any close encounter of a Dirac point. In terms of
a scaled time τ and a scaled momentum Bx,

τ = √
ωt and Bx = bx/

√
ω, (4)

we get from (3)

H (̃qK , t ) = H (
√

ω Q̃K , τ/
√

ω) = √
ω H (Q̃K , τ ), (5)

with Q̃K (τ ) = (Bx, cyτ )T. Obviously, (5) gives rise to a time-
dependent Schrödinger equation [H (Q̃K , τ ) − i ∂

∂τ
]ψ (τ ) = 0

which is invariant against changes of the frequency ω. It
directly explains the scaling of the widths δqx of the excitation
pattern for different wavelengths, respectively frequencies,
encountered in Fig. 2. This is a universal result for intense
light, dipole-coupled to massless electrons.

As a first application of this result we can formulate simple
laser-pulse shapes to control valley polarization with high
efficiency. The latter can be quantified as η by the relative
excitation probability difference of initial conditions in the K
(red in Figs. 1 and 2) and K ′ domain (blue in Figs. 1 and 2),

η ≡ (PK − PK ′ )/(PK + PK ′ ), (6a)

with

Pκ ≡
∫
	κ

d2q ρ(q)∫
	κ

d2q
, κ = K, K ′, (6b)

integrated over the triangular q domains 	K and 	K ′ around
K and K ′, respectively. Note that our definition of η allows
values between −1 and +1 for polarization of the K or K ′

pseudospin, respectively, while in other definitions [18] the
values of η range from −2 to +2. The experimental readout
of valley polarization can proceed via detecting second har-
monics [27,28], as recently verified [29].

With the half-cycle pulse discussed so far, one can see
already from Fig. 2 that due to the

√
ω scaling a smaller

frequency (larger wavelength) confines the excitation tighter
to the electron excursion q̃(t ) driven by the light pulse and
therefore promises a higher degree of control. Combined with
a laser-driven excursion compatible with the geometry of the
Brillouin zone and particular its scale given by the separation
� of the Dirac points, one can achieve a large asymmetry in
the excitation of the K versus the K ′ domain, manifest in the
dominance of the red pattern in comparison to the blue ones,
most prominent for the right panel in the middle row of Fig. 2
which corresponds to the largest wavelength displayed and the
expected optimum near A0 = �. One sees that for A0 < � the
initial conditions in the K as well as in the K ′ domain are not
exhausted for excitation (lower right panel), while for A0 > �

also initial conditions from the K ′ domain get excited through
the trajectory passing by K (blue intensity in the middle on
the top of the right upper panel) lowering the contrast of
valley polarization. The latter is in general true for shorter
wavelengths (left row in Fig. 2), where initial conditions from
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FIG. 3. (a) Valley polarization η for half-cycle pulses with three
wavelengths as a function of the peak vector potential in units of
the K−K ′ point distance �. For comparison we show results for a
two-color pulse [30] and a half-cycle pulse with a pedestal pulse
according to Eq. (7) with ξ = 8, T = Tω/5, and λ = 2.4 μm. (b) The
corresponding excitation probabilities. At A0 = � the laser intensi-
ties are I = 9.2 × 1013, 1.0 × 1013, and 1.1 × 1012 W/cm2 for λ =
0.8, 2.4, and 7.2 μm, respectively.
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the K and K ′ domain are almost equally excited in the first
Brillouin zone.

Next to the “resonance” condition A0 ≈ � and long
wavelength, the half-cycle nature of the pulse, containing am-
plitude dominantly only in one direction, is of course crucial
since it breaks the equivalence of the K and K ′ points for
the laser-driven dynamics. Longer pulses with amplitudes in
both directions restore this equivalence and diminish valley
polarization. Not necessary, however, is a helicity character
of the pulse (circular polarization, e.g.) which was thought
to enhance or decrease the interaction with the pseudospin
degrees of freedom depending on the direction of rotation.

The simple half-cycle pulse discussed so far is also more
efficient at a wavelength of λ = 7.2 μm with η = 43%, than
a two-color clover-shaped pulse [18] with η = 27%, as can be
seen in Fig. 3(a), where η is shown as a function of A0 for
different pulse forms and different wavelengths for the half-
cycle pulses. Apart from the shortest wavelength (800 nm)
where the blurred fringe pattern leads to excitation delocalized
in q space and therefore to irregular changes of η with increas-
ing A0, all other pulses behave qualitatively similar with the
achieved VP as a function of A0: VP sets in for A0 > �/2
and reaches a maximum around A0 = �. The delayed onset
becomes understandable by realizing that a Dirac point is
located at a distance larger than �/2 from any edge of its
triangular domain. However, only if initial conditions q from
a different Dirac domain reach the K point through a laser-
driven trajectory which crosses the boundary of the triangular
domain of K, can one expect finite VP.

The half-cycle pulse

Aξ (t ) = A0

2

[
e−2 ln 2 t2/T 2 + e−2 ln 2 t2/ξ 2T 2]

, (7)

with a pedestal, another half-cycle pulse that is ξ times longer,
however, stands out as it produces a VP of more than 70%
(dashed line in Fig. 3 with ξ = 8) which may reach close to
100% by optimizing the pulse shape, which we have not done
since here we are interested in the principles of controlling
VP with intense pulses. Note that pulses generating strong VP
typically induce a lower total excitation [Fig. 3(b)], which is
important to avoid radiation damage.

In that respect, it is important to fulfill one more criterion
for efficient excitation when passing a Dirac point at time t∗:
The field strength F (t∗) [cf. Eq. (3)] must be large, otherwise
even a large dipole matrix element does not help. Vice versa,
large field strengths can compensate to some extent small
dipole matrix elements giving rise to “uncontrolled” excita-
tion, further away from the Dirac points. The pulse (7) fulfills
this criterion, as one can see from Figs. 4(b) and 4(c). There,
the initial conditions of the K and K ′ domains and the K- and
K ′-point encounters of the respective light-driven trajectories
are shown in red and blue, respectively. Large VP can only be
achieved if excitation through the K ′ point (blue trajectories)
is also achieved for initial conditions from the K domain (red
area). The times t∗ of the Dirac point encounters for all initial
conditions q in Fig. 4(b) show that this is indeed the case for
the single half-cycle pulse (dashed) as well as for the one with
a pedestal (solid). However, what difference the latter makes
becomes apparent if one looks at which field strengths F (t∗)
these encounters happen, as illustrated in Fig. 4(c): Now it

FIG. 4. (a) Excitation probability as a function of the initial crys-
tal momentum qy for the pedestal pulse from Fig. 3 for A0 = �.
(b) The two times t∗ (rising and falling part of the pulse) when the
“trajectory” q̃(t ) encounters K (red) or K ′ (blue), respectively. The
solid lines show the times for the pulse (7), and the dashed ones
for the corresponding half-cycle pulse without a pedestal. Note that
for qy = − 3

2 · · · − 1
2 � the trajectory never “hits” any K or K ′ point.

(c) Field strengths F at those encounter times; large |F (t∗)| imply
large excitation probabilities.

is clear that with the half-cycle pulse also unfavorable initial
(blue) conditions from the K ′ domain encounter the K ′ point
with large F (dashed blue line in the blue area) and are there-
fore strongly excited, while for the pedestal pulse these initial
conditions encounter K ′ with field strength F (t∗) ≈ 0, leaving
the large field strength encounters with high excitation to
initial conditions from the K domain. This implies an increase
of the VP contrast and leads to the high degree of η = 72%
in Fig. 3(a), as illustrated with the excitation probabilities in
Fig. 4(a).

To summarize, we have formulated the principles of
intense-laser-pulse excitation in gapless 2D materials. The
realization that substantial excitation is only possible close to
the Dirac points suggests a linearization about these points
and in time leading to the familiar relativistic Hamilton op-
erator for massless Dirac fermions, with linear dispersion
augmented by a linearized Berry connection which represents
the dipole coupling to the light. Scaling momenta and time
in this effective time-dependent Hamilton operator renders it
globally proportional to

√
ω, which leads to a time-dependent

Schrödinger equation in the scaled time τ = √
ωt completely

independent of the frequency of the light, provided the pulse
shape function is also formulated as a function of τ .

An obvious application of this insight into the strong-field-
driven dynamics of massless electrons is the control of valley
polarization. As we have demonstrated, it can be achieved
with half-cycle pulses linearly polarized along the vector �

connecting the K and K ′ Dirac points to break their equiva-
lence transiently. A peak amplitude of the pulse A0 ≈ � leads
to the highest VP values. In general the VP contrast can be
enhanced by increasing the wavelength to get more localized
excitation in momentum space according to the scaling. Lo-
calized excitation is also important to minimize the radiation
damage accompanying VP. A third control parameter optimiz-
ing VP is to design the pulse shape in such a way that the
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highest field strength during the pulse is achieved when laser-
driven electron trajectories pass a Dirac point starting with
initial conditions from the domain of the other pseudospin
symmetry.

We expect these principles to also hold for systems with
band gaps small in relation to the strong driving laser field, a
conjecture which is supported by the report of VP with lin-

early polarized short pulses in the gapped hexagonal bornon
nitride (hBN) and MoS2 systems [8] for ponderomotive en-
ergies considerably larger than the band gap. Investigations
of intense pulse dynamics in 2D systems with more exotic
topological properties are underway to explore the limitations
and possible extensions of the universal behavior induced by
the relativistic massless dynamics.

[1] J. Cayssol, Introduction to Dirac materials and topological in-
sulators, C. R. Phys. 14, 760 (2013).

[2] A. J. Leggett, Graphene: Electronic band structure and Dirac
fermions, Technical report, University of Waterloo (unpub-
lished).

[3] P. Hosur and X. Qi, Recent developments in transport phenom-
ena in Weyl semimetals, C. R. Phys. 14, 857 (2013).

[4] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L.
Seyler, W. Yao, and X. Xu, Valleytronics in 2D materials, Nat.
Rev. Mater. 1, 16055 (2016).

[5] S. A. Vitale, D. Nezich, J. O. Varghese, P. Kim, N. Gedik, P.
Jarillo-Herrero, D. Xiao, and M. Rothschild, Valleytronics: Op-
portunities, challenges, and paths forward, Small 14, 1870172
(2018).

[6] E. McCann and M. Koshino, The electronic properties of bi-
layer graphene, Rep. Prog. Phys. 76, 056503 (2013).

[7] F. Langer, C. P. Schmid, S. Schlauderer, M. Gmitra, J. Fabian,
P. Nagler, C. Schüller, T. Korn, P. G. Hawkins, J. T. Steiner,
U. Huttner, S. W. Koch, M. Kira, and R. Huber, Lightwave
valleytronics in a monolayer of tungsten diselenide, Nature
(London) 557, 76 (2018).

[8] Á. Jiménez-Galán, R. E. F. Silva, O. Smirnova, and M.
Ivanov, Sub-cycle valleytronics: control of valley polariza-
tion using few-cycle linearly polarized pulses, Optica 8, 277
(2021).

[9] M. Kondo, M. Ochi, T. Kojima, R. Kurihara, D. Sekine, M.
Matsubara, A. Miyake, M. Tokunaga, K. Kuroki, H. Murakawa,
N. Hanasaki, and H. Sakai, Tunable spin-valley coupling in
layered polar Dirac metals, Commun. Mater. 2, 49 (2021).

[10] Y. Wang, W. Wei, F. Li, X. Lv, B. Huang, and Y. Dai, Valley
polarization caused by crystalline symmetry breaking, Mater.
Horiz. 8, 244 (2021).

[11] J. J. Wang, S. Liu, J. Wang, and J.-F. Liu, Valley filter and valve
effect by strong electrostatic potentials in graphene, Sci. Rep. 7,
10236 (2017).

[12] A. Friedlan and M. M. Dignam, Valley polarization in biased
bilayer graphene using circularly polarized light, Phys. Rev. B
103, 075414 (2021).

[13] A. Kundu, H. Fertig, and B. Seradjeh, Floquet-Engineered
Valleytronics in Dirac Systems, Phys. Rev. Lett. 116, 016802
(2016).

[14] W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics
from inversion symmetry breaking, Phys. Rev. B 77, 235406
(2008).

[15] Y. D. Lensky, J. C. Song, P. Samutpraphoot, and L. S. Levitov,
Topological Valley Currents in Gapped Dirac Materials, Phys.
Rev. Lett. 114, 256601 (2015).

[16] S. A. Oliaei Motlagh, F. Nematollahi, V. Apalkov, and
M. I. Stockman, Topological resonance and single-optical-cycle

valley polarization in gapped graphene, Phys. Rev. B 100,
115431 (2019).

[17] H. K. Kelardeh, V. Apalkov, and M. I. Stockman, Graphene in
ultrafast and superstrong laser fields, Phys. Rev. B 91, 045439
(2015).

[18] M. S. Mrudul, Á. Jiménez-Galán, M. Ivanov, and G. Dixit,
Light-induced valleytronics in pristine graphene, Optica 8, 422
(2021).

[19] M. S. Mrudul and G. Dixit, Controlling valley-polarisation in
graphene via tailored light pulses, J. Phys. B 54, 224001 (2021).

[20] Q. Z. Li, P. Elliott, J. K. Dewhurst, S. Sharma, and S. Shallcross,
Ab initio study of ultrafast charge dynamics in graphene, Phys.
Rev. B 103, L081102 (2021).

[21] It is not obvious that Eq. (1) with T = Tω/5 describes a half-
cycle pulse. However, the width τ 2 ≡ ∫

dtt2A2(t )/
∫

dtA2(t )
for pulse (1) is τ ≈ 0.065Tω, which is indeed rather close to
τ ≈ 0.071Tω for a perfect half-cycle pulse A(t ) = cos2(ωt ) for
|t | < Tω/4 and A(t ) = 0 otherwise.

[22] A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet,
T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer,
V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis,
Synthesized light transients, Science 334, 195 (2011).

[23] P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong,
F. X. Kärtner, and J. Moses, Generation and multi-octave shap-
ing of mid-infrared intense single-cycle pulses, Nat. Photonics
11, 222 (2017).

[24] Indeed, there are three linearized Hamilton operators for each
K and K ′, which differ by a phase factor in front of the nondiag-
onal elements of H . Those phase factors are irrelevant for both
the eigenenergies and the Berry-connection matrix.

[25] W. V. Houston, Acceleration of electrons in a crystal lattice,
Phys. Rev. 57, 184 (1940).

[26] The full Berry-connection matrix in the Houston basis is given
by A jk ≡ V

∗
j + i d

dqV k with j, k = v, c.
[27] L. E. Golub and S. A. Tarasenko, Valley-polarization induced

second-harmonic generation in graphene, Phys. Rev. B 90,
201402(R) (2014).

[28] T. O. Wehling, A. Huber, A. I. Lichtenstein, and M. I.
Katsnelson, Probing of valley polarization in graphene via op-
tical second-harmonic generation, Phys. Rev. B 91, 041404(R)
(2015).

[29] Y. W. Ho, H. G. Rosa, I. Verzhbitskiy, M. J. L. F. Rodrigues, T.
Taniguchi, K. Watanabe, G. Eda, V. M. Pereira, and J. C. Viana-
Gomes, Measuring valley polarization in two-dimensional
materials with second-harmonic spectroscopy, ACS Photonics
7, 925 (2020).

[30] We use the same two-color pulse A(t ) = A0√
8
[ex[cos(ωt ) +

cos(2ωt )] + ey[sin(ωt )− sin(2ωt )]] for λ = 6 μm, that has
been used before [18].

L022014-5

https://doi.org/10.1016/j.crhy.2013.09.012
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1002/smll.201870172
https://doi.org/10.1088/0034-4885/76/5/056503
https://doi.org/10.1038/s41586-018-0013-6
https://doi.org/10.1364/OPTICA.404257
https://doi.org/10.1038/s43246-021-00152-z
https://doi.org/10.1039/D0MH01441A
https://doi.org/10.1038/s41598-017-10460-5
https://doi.org/10.1103/PhysRevB.103.075414
https://doi.org/10.1103/PhysRevLett.116.016802
https://doi.org/10.1103/PhysRevB.77.235406
https://doi.org/10.1103/PhysRevLett.114.256601
https://doi.org/10.1103/PhysRevB.100.115431
https://doi.org/10.1103/PhysRevB.91.045439
https://doi.org/10.1364/OPTICA.418152
https://doi.org/10.1088/1361-6455/ac41ae
https://doi.org/10.1103/PhysRevB.103.L081102
https://doi.org/10.1126/science.1210268
https://doi.org/10.1038/nphoton.2017.34
https://doi.org/10.1103/PhysRev.57.184
https://doi.org/10.1103/PhysRevB.90.201402
https://doi.org/10.1103/PhysRevB.91.041404
https://doi.org/10.1021/acsphotonics.0c00174

