
Floquet Hamiltonian approach for dynamics
in short and intense laser pulses

Lukas Medišauskas , Ulf Saalmann and Jan-Michael Rost

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden,
Germany

E-mail: medisauskas@pks.mpg.de

Received 22 April 2018, revised 19 October 2018
Accepted for publication 7 November 2018
Published 5 December 2018

Abstract
We present a time-dependent Floquet method for short pulses and arbitrary laser frequencies that
uses the cycle-averaged Kramers–Henneberger basis. By means of a particular plane-wave
expansion we arrive at a time-dependent Schrödinger equation governed by a Floquet
Hamiltonian, which consists of convolutions of momentum and Fourier components. A
dedicated numerical treatment of these convolutions, based on Toeplitz matrices and fast Fourier
transformations, allows for an efficient time-propagation of large Floquet expansions. Three
illustrative cases of ionization with different photon energies are analyzed, where the envelope of
a short and intense pulse is crucial to the underlying dynamics.

Keywords: Kramers–Henneberger, Floquet Hamiltonian, high frequency, envelope Hamiltonian,
short pulse, Toeplitz
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1. Introduction

Non-perturbative laser-matter interaction provides a rich yet
challenging area for theoretical studies. While numerical
methods have to deal with large energy bandwidths required
to fully account for the dynamics, analytical methods are
faced with the challenge of finding an appropriate description
of non-perturbative light–matter interaction.

A successful analytical approach to non-perturbative
laser-matter interaction is the Kramers–Henneberger (KH)
approximation [1, 2]. It describes the dynamics in the KH
reference frame co-moving with the laser-driven electron(s).
Traditionally, the time-dependence of the problem is elimi-
nated by using a Hamiltonian, averaged over one optical
cycle. The corresponding potential and eigenenergies are
often referred to as the KH approach or the KH ‘atom.’ For
sufficiently large field strengths and high frequencies, the
cycle-averaged Hamiltonian ( ) largely determines the
properties of the coupled light-matter system, while all

higher-order corrections remain small and can be treated
perturbatively.

Since its introduction, the KH approach was thoroughly
examined and the properties of are very well known [3, 4].
It was applied to a large variety of problems in atomic,
molecular [5] and solid state physics [6, 7] and in particular,
was indispensable in the study of ionization suppression
phenomena for atoms in strong and high-frequency fields.
Nevertheless, most of the theoretical predictions were not
tested experimentally (see [8–10] for application for Rydberg
state ionization) because high-intensity and high-frequency
lasers were not available at that time. Evidence of the exis-
tence of ‘KH atoms’ were found recently in experiments
using low-frequency laser fields [11, 12].

The situation has, however, changed due to the free-elec-
tron lasers (FEL) [13] that are already able to provide pulses of
sufficiently high-frequency and intensity to enable the obser-
vation of non-perturbative phenomena. The first experimental
studies of Raman processes in the VUV and XUV frequency
range, which require coherent multiple photon absorption/
emission, have been carried out [14]. It can be expected that
FELs will soon reveal high-frequency non-perturbative phe-
nomena which were proposed theoretically, such as adiabatic
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stabilization [3], dynamic interferences [15–19], Rabi oscilla-
tions between core-hole states [20], to name a few.

The KH approach is ideally suited to describe strong-field
high-frequency physics to be realized in FEL facilities apart
from one crucial aspect: studies so far were mostly limited to
continuous-wave laser radiation. Indeed, for a continuous-wave
field, a perturbative expansion into Floquet states can be readily
developed. On the other hand, for short (FEL) pulses Floquet
theory cannot be straightforwardly applied. Clearly, the time-
dependent aspect is crucial since the short pulses created by
FEL sources can lead to additional dynamics driven by the
pulse envelope as was recently predicted [21, 22], or be
necessary to account for phenomena like impulsive Raman
scattering [23]. Hence, in order to apply the KH approach to the
dynamics involving intense and short pulses, a formulation
different from the ones so far known appears to be necessary.

Here we propose a numerical approach for short-pulse
non-perturbative laser-matter interaction that is based on a
time-dependent Floquet formalism in the KH reference frame.
It uses  ( )t which depends on the instantaneous intensity of
the laser pulse and relies on time-propagation using the full
Floquet Hamiltonian, which is performed with an efficient
fast-Fourier-transformation (FFT) based algorithm. Combin-
ing these two approaches allows us to obtain both a qualita-
tive and quantitative understanding of the light–matter
interaction during the laser pulse, despite treating short laser
pulses produced by FEL facilities non-perturbatively.

In section 2 we will present the time-dependent Floquet
Hamiltonian approach, followed in section 3 by the intro-
duction of the novel algorithm to solve the Floquet problem in
momentum space. The approach is illustrated in section 4,
where the role of the envelope of a short and intense laser
pulse is investigated for the ionization in 1D potential. By
varying the laser frequency, while keeping  ( )t invariant,
three parameter ranges are explored: high, intermediate, and
low-frequency regimes. We show in section 4.2 that  ( )t
provides an excellent approximation of the laser-driven
dynamics for frequencies higher than the binding energy of
the potential. For intermediate frequencies close to the
ionization threshold, discussed in section 4.3, the pulse
envelope plays a crucial role in determining the channels
involved in the ionization. Finally, the low-frequency regime
is discussed in section 4.4; in this case, the photon energy is
much smaller than the binding energy of the field-free
potential and several hundred Floquet channels are required to
fully account for the dynamics. We show that the population
is rapidly distributed over many excited states of  ( )t during
the rising part of the laser pulse, which has to be considered if
one wants to use the KH approach for low-frequency fields.

2. Time-dependent Kramers–Henneberger–Floquet
approach in momentum representation

The time-dependent Floquet Hamiltonian approach we will
formulate in the following is a generalization of the Envelope
Hamiltonian introduced in [21] geared towards efficient num-
erical implementation. The formalism allows one to explore the

transformation of the wave function from the field-free to the
‘field-dressed’ picture while still fully accounting for the effects
of a finiteness of a (short) laser pulse.

2.1. Kramers–Henneberger transformation

The time-dependent Schrödinger equation (TDSE) within the
single active electron approximation in the KH reference
frame acquires the form [1, 2, 24] (in the following, atomic
units will be used, unless stated otherwise)
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where the coupling with the laser field is reduced to the time-
dependent shift a( )t of the binding potential a+( ( ))V tr .
For simplicity we assume this shift to be of the form

òa at t w f= - = +-( ) ( ) ( ) ( ) ( )t c t tA d cos 2
t

1
0

corresponding to the classical trajectory of a charged particle
in a laser field with vector potential ( )tA .

The KH transformation describes the laser-atom inter-
action in a frame of reference, where the electron can be
considered to be ‘stationary,’ while the binding potential of
the ‘atom’ is time-dependent. In other words, the electron
‘sees the nucleus oscillating back and forth’. The oscillating
potential a+( ( ))V tr , assuming a fixeda0, can be integrated
over a single cycle Tω of the oscillation a( )t to obtain the
averaged potential
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which is also called the ‘KH potential’ and the corresponding
cycle-averaged Hamiltonian
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0 0

which has been used to describe the properties of atoms in
strong and high-frequency laser fields [5, 25]. The average
potential strongly depends on the electron excursion lengtha0,
as illustrated in figure 1, and, for sufficiently large a0, trans-
forms from a single-well to a double-well shape. The cycle-
averaged potential still depending on the time-variationa ( )t0 of
the laser pulse envelope, will be central in our exact time-
dependent Floquet Hamiltonian formulation of the TDSE.

2.2. Time-dependent Floquet Hamiltonian approach for short
laser pulses

The time-independent KH potential and its properties are
analyzed in great detail in the literature using a variety of
methods [24–33]. In practice, however, one needs to deal with
finite and often short pulses and considering a static KH
potential is not sufficient. Here, we consider a cycle-averaged
potential that adjusts to the laser pulse envelope, while still
providing an exact description of the dynamics. At first glance
it looks cumbersome to perform for each instance of time a
full cycle average. However, when switching to momentum
space one arrives at a compact and distinct form of the TDSE
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(see equation (8) below), as we will show briefly here and in
detail in appendix A.

The potential in the KH reference frame can be written in
a plane-wave expansion
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with integer m, anticipating that the potential oscillates with
frequency ω. In order to efficiently treat short pulses we will
extract the envelope of the laser pulse. This is done by
splitting the electron displacement a( )t into the non-periodic
envelope a ( )t0 and the periodic oscillation w f¢ +( )tcos .
Thereby, the KH potential becomes a ‘two-time potential’

a w f¢ = + ¢ +( ) ( ( ) ( )) ( )V t t V t tr r, , cos , 50

which can be used straightaway in expansion (4) to give

òåa+ = ~ w- +( ( )) ( ) ( )·V t k V tr kd , e e . 6
m

m
m t k r3 i i

The components i ( )V tk,m depend on time through the pulse
envelope and, by means of a translation in space and the
Jacobi–Anger expansion, can be rewritten as products (see
appendix A and [29] for the derivation)

a=~ ~ f-( ) ( ) ( · ( )) ( )∣ ∣ ∣ ∣V t V J tk k k, i e , 7m
m

m
m

0
i

where i ( )V k is the field-free potential and with Jm denoting the
ordinary Bessel functions of the 1st kind.

Having rewritten the potential as a sum of products we use
a similar expansion for the wave function. This allows one to
derive an equation for the kth plane-wave and mth Fourier
component yi ( )tk,m of the wave function (see appendix A for
details)
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Equation (8) is the main equation used in this work and pro-
vides an exact description of the laser driven dynamics in the
KH reference frame.

The accuracy of its numerical implementation is limited
only by the basis and propagation routines, see section 3.1 for
more extended discussion. The momentum representation,
although not frequently used for solving TDSEs, has some
advantages over position space approaches, see e.g. [34].
Here it is used because it reduces (i) time-averaging of the KH
potential to multiplication by appropriate factors as in
equation (7) and (ii) the TDSE to a convenient form that
allows one to use efficient numerical propagation methods, as
described in section 3.

There are other approaches that adopt two times [35–39].
Here the two times are used to straightforwardly derive
expansion (6), which turn out to be very convenient for short
pulses. In contrast to the other approaches, we do not use a
Floquet ansatz for the wavefunction or solve the TDSE for two
time variables. Instead, we use the Floquet Hamiltonian defined
by (8) and solve the TDSE for a general wavefunction.
Nevertheless, the Floquet modes associated with the instanta-
neous field intensity can be obtained by calculating eigenstates
of the Hamiltonian. This Floquet Hamiltonian method is similar
to the one used for vibrational dynamics of the +H2 molecule
[40]. Our approach, however, utilizes the cycle-averaged
potential, which is particularly suited in connection with intense
laser fields and is accurate even for very short pulses.

2.3. Physical interpretation of the wave function in the Fourier
basis

The physical significance of the index m becomes apparent, if
we consider an isolated Fourier subspace m, i.e. ignore the
coupling between the wave function coefficients yi ( )tk,m

with different m. In such a case, the only remaining potential
coupling terms in (8)

ò
ò a
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( )
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T
t V t t

k k

r

d e

1
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9T

k r3
0 0
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0
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describe the cycle-averaged potential. Therefore, considering
a single Fourier subspace in isolation is similar to the original
KH approach [1], where only the cycle-averaged potential is

Figure 1. Cycle-averaged soft-core atomic potential (see
equations (3a) and (14)) for different excursion lengths a0. The
shaded area indicates the binding part of the potential.
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considered. The eigenstates of this potential within the Flo-
quet theory correspond to the Floquet states in the infinite-
frequency limit [41].

The components i ( )V tk,m with >∣ ∣m 0 couple different
Fourier subspaces and lead to transitions between the states of
the cycle-averaged Hamiltonian  ( )t . The index m can be
interpreted as the number of absorbed/emitted photons [42].
For example, population initially created in the m=0 sub-
space and ending up in the m=n subspace after the pulse
represents n-photon absorption. We will refer to the nth
Fourier subspace also as Floquet channel. Our numerical
implementation will allow to include enough Floquet chan-
nels to achieve numerical convergence so that fields of arbi-
trary frequency can be considered.

3. Numerical implementation

To numerically solve the TDSE in (8) we first rewrite it for a
discrete momentum k grid, yielding
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where for D dimensions the field-free potential and the wave
function are renormalized according to = Di i ( ) ( )V V kk D

k and
y y= Di i( ) ( )( )t t kk,m m

D
k

2 implying a box discretization
with a box of size p= D( )L k2D D. The right-hand side of
(10) can be split into two parts. The first part, which using
matrix notation is defined by
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is diagonal and can be easily computed numerically. The
computation of the sum
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requires the main numerical effort as it is associated with the
non-diagonal elements of V. In the field-free case (a = 00 ),
the part (12) describes a convolution between momentum
components k of the wave function and the potential. If the
laser field is present (a ¹ 00 ), additional terms proportional
to a- ¢- ¢ (( ) · ( ))∣ ∣J tk km m 0 enter the sum (12). They couple
different Floquet channels m and also modify the coupling
between momentum components k. Nevertheless, the con-
volution form of the matrix V in (12) is preserved, since the
couplings depend only on the differences - ¢k k and

- ¢m m . Note, that V and y depend on time, which will be
kept implicit for the brevity of notation.

The convolution form of the matrix V allows one to
apply the convolution theorem and to replace the convolution
between potential and wave function, described by (12), by
their product in the Fourier domain. This greatly increases the

speed of computation, in particular if a FFT algorithm is used
to convert to and from the Fourier domain.

The convolution theorem strictly holds only for infinite
or periodic vectors, which implies an expansion in k and m to
infinite order. In practical numerical calculations, the neces-
sity to use a finite size basis will normally violate the con-
ditions for validity of the convolution theorem, consequently
causing numerical errors. Therefore, we use an alternative
approach that is based on the theory of Toeplitz matrices [43].
It takes advantage of the convolution form of the matrix V
and allows one to use the FFT algorithm to accelerate the
calculations. However, unlike the direct application of con-
volution theorem, the method based on the Toeplitz matrix
theory is exact for vectors of finite size. This approach is
particularly useful to study Floquet systems, as it allows one
to truncate the basis to only a few Floquet channels.

1. Description of the algorithm
For a single Floquet channel, e.g. = ¢m m , the elements

along the diagonal of the matrix V in (12) are equal, which
follows directly from the momentum representation. Such a
matrix is called a Toeplitz matrix and its properties are well
known in the literature, see, e.g. [43]. It can be fully described
by a single row and column only. Furthermore, a product of a
finite Toeplitz matrix with any vector can be performed
exactly using the FFT algorithm.

The algorithm to multiply a Toeplitz matrix V with a
vector y is as follows (see appendix B.1 for a more detailed
description):

1. A circulant vector c is formed from the first column and
the first row of the matrix V.

2. Zeros are appended to the vector y to match the length
of c.

3. A Fourier transformation of both the circulant vector c
and the extended coefficient vector y is performed.

4. The two transformed vectors are multiplied and an
inverse Fourier transformation is applied to the product.

The first half of the final vector now stores the matrix-vector
multiplication result, while the second half is discarded.

If the couplings between different Floquet channels are
considered, i.e. - ¢ ¹m m 0, then the matrix V is of block
form with all equal blocks on the same diagonal. Addition-
ally, each block is of Toeplitz form. Such a matrix is called a
Block Toeplitz matrix with Toeplitz Blocks (BTTB). The
product of a BTTB matrix and any vector can be performed
using a two-dimensional Fourier transformation algorithm in
a similar way as a Toeplitz matrix-vector product, see
appendix B.2 for a detailed description. The approach can be
further extended to an arbitrary number of dimensions.

The algorithm to calculate the Toeplitz matrix-vector
product can be considered as generalization of the well-
known split operator technique (transformation to Fourier
domain, multiplication and inverse transformation), see, e.g.
[44], which is widely used to solve the TDSE. On the other
hand, the algorithm presented here cannot be used to directly
evaluate the product of a vector with a function of Toeplitz
matrix, e.g. y- D( )tVexp i . Nevertheless, the Toeplitz
matrix-vector multiplication algorithm allows us to reduce the
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number of Fourier and plane-wave components required to
achieve high numerical accuracy and allows it to outperform
the traditional split-operator technique.

2. Time propagation
Many different numerical methods to solve (10) could be

used, for example explicit Runge–Kutta or Arnoldi–Krylov
algorithms. However, to take advantage of the BTTB sym-
metry of the potential matrix V, the matrix-vector multi-
plications involving V must be implemented using efficient
FFT routines with the method described above. In this work
the Taylor expansion propagator is used. This method relies
on the expansion of the propagator over a discrete time-step
Dt in a Taylor series up to the desired order, so that the wave
function expansion coefficients can be computed as

y y

y

+ D = - + D

= - + D - + D + ¼

( ) [ ( ) ] ( )
[ ( ) ( ) ] ( )

( )

t t t t

t t t

T V

1 T V T V

exp i

i
1
2

,

13

2 2

where each term in the expansion is evaluated iteratively.
Hence, the numerical problem reduces to the evaluation of
products y·T , where T is diagonal, and y·V , which is
evaluated using the Toeplitz matrix-vector multiplication
algorithm presented above. The accuracy can be controlled by
choosing the order of expansion at each time-step. Although
the propagator is not norm-conserving, if enough expansion
orders are included norm conservation up to a desired num-
erical accuracy can be easily achieved. In this work, the
expansion was truncated once the norm of the corrections to
the wave function coefficients dropped below 10−16. The
Taylor expansion propagator, combined with the FFT algo-
rithm for matrix-vector multiplication operations, allows to
treat large Fourier expansion orders m explicitly. More
sophisticated propagation methods that also rely on matrix-
vector products like Arnoldi–Krylov-propagators may be
easily implemented.

3.1. Accuracy

The accuracy of the time-dependent Floquet Hamiltonian
approach developed in this work is verified by comparing the
wave function obtained by directly solving the TDSE in
velocity gauge with the solution of the TDSE defined in (10).
In both cases, identical plane-wave basis and propagator
routines of the TDSE were used.

For all laser pulse parameters that were used in this work,
the wave functions obtained from the time-dependent Floquet
Hamiltonian approach and by directly solving the TDSE in
velocity gauge were found to match up to numerical accuracy,
if sufficiently many Fourier orders m were considered. The
accuracy of the time-propagation procedure is determined by
the time-step and Taylor expansion order. The maximum
required number of Fourier components mmax can be deter-
mined from the plane-wave basis set by requiring that

w >∣ ∣ ∣ ∣m k 2max max
2 , where ∣ ∣k max is maximum momenta

described by the plane-wave basis. In practice, less Fourier
components are sufficient.

An illustrative example is provided in figure 2 for ioniz-
ation from a soft-core potential, which is defined in section 4.1,
with ω=1 a.u. photon energy, = ´ -I 2.4 10 W cm18 2

intensity and 5 fs full-width at half-maximum (FWHM) dura-
tion pulse. The spectra under similar laser pulse parameters
were extensively investigated in previous works [15–19] and
the calculation is further discussed in section 4.2, therefore here
we only note that each Floquet channel provides the m-photon
absorption channel, see figure 2(a). The final spectra, obtained
by summation over all Floquet channels m, is indistinguishable
from the spectra obtained by the direct solution of the TDSE in
velocity gauge, see figure 2(b). Note, that the energy resolved
spectrum is strongly modulated and does not show a smooth
envelope, as might be expected from single-photon ionization.
These modulations are the result of a large Stark shift of the
initial state during the ionization process [18, 19].

The approach was tested to be accurate for photon
energies ranging from 0.05 to 1 a.u.. Furthermore, it was
accurate for pulses down to single cycle duration for both low
and high frequencies. Therefore, the time-dependent Floquet
Hamiltonian formalism is capable of fully describing the
dynamics driven by intense and short laser pulses using the
cycle integrated Hamiltonian for arbitrary laser parameters.

The accuracy of the numerical procedure is further dictated
by the quality of the plane-wave basis set. In all the calculations
presented in this work, a converged basis set in terms of
maximum momenta ∣ ∣k max and spacing between momenta
components Dk is used. Finally, note that atomic potentials
with a long-range tail lead to a singularity at the origin in the
momentum representation, i.e. = l -¥i ( )V k 0 . This singu-
larity could be treated by, for example, a Landè subtraction
procedure [34, 45]. Alternatively, the potential can be con-
sidered in a ‘finite box’, as in [46]. Finally, since adding a delta
function to a momentum representation of a potential leads only
to a trivial energy shift of the spectra, the singularity can be
removed by introducing a new potential xd+- ¢ - ¢iVk k k k into
(10) with x l ¥, where d - ¢k k is the Kronecker delta function.
Numerically this corresponds to setting all elements - ¢=iVk k 0 to
zero. Here we use the latter approach as it is both simple and
provides accurate results for all observables studied in
this work.

3.2. Performance

The Toeplitz matrix approach described above allows to
efficiently solve the time-dependent Floquet Hamiltonian
formulation of TDSE in (10) using the FFT based matrix-
vector multiplication. The use of FFT algorithm allows to
achieve scaling proportional to ( )N Nlog with respect to the
size of the basis N=NK×NF, where NK is the number of
plane-waves and NF is the number of Fourier components.
This scaling is illustrated as a function of the total number of
basis elements N in figure 3 for different calculations with
laser pulse parameters used in this work. The size of the
plane-waves basis is varied between 512 and 4096 with the
maximum momenta kept fixed. The number of Fourier
components is varied between 1 and 401. The numerical
effort is measured in terms of processor cycles spent solving
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the TDSE. The number of cycles is then divided by the total
number of time-steps used, so that calculations using different
pulse lengths could be directly compared. In addition, the
expansion order of the Taylor propagator in (13) is kept fixed
at 8. In an adaptive expansion scheme, the expansion order
mainly depends on ´ D∣ ∣ tk max .

The main effort required to solve the TDSE stems from
updating the wave function at each time-step using the Taylor
expansion method, which is illustrated by the black dots in
figure 3. It scales proportionally to ( )N Nlog as expected. The
numerical effort required for different sizes of the plane-wave

basis is shown in figure 4. Again, the effort scales pro-
portionally to ( )N NlogF F with the number of Fourier com-
ponents. Additional numerical effort is required to update the
elements of potential energy operator at every time step, since
they depend on the laser field. This effort is illustrated by
green crosses in figure 3. It can take up to 40% of the total
effort. However, it scales linearly with the total number of
basis elements since only ´N NK F elements are stored in
memory.

The time-dependent Floquet Hamiltonian method pre-
sented here cannot compete in efficiency with conventional
approaches to solve TDSE that do not use Floquet expansion.

Figure 2. Energy resolved photoionization spectra after the pulse obtained by solving the TDSE in velocity gauge (black lines) compared
with the spectra obtained using the time-dependent Floquet Hamiltonian approach (a) for each Floquet channel m; (b) combined spectra from
all Floquet channels.

Figure 3. Numerical effort as a function of the total number of basis
elements, evaluated in terms of processor cycles spent per single
time-step for calculations with different basis sizes and pulse
durations. Black dots indicate the effort required to compute a single
time-step; green crosses—time effort required to update the
Hamiltonian. Gray dashed line indicates the scaling ( )N Nlog .

Figure 4. Numerical effort as a function of the number of Fourier
components for different plane-wave basis sizes, evaluated in terms
of processor cycles spent per single time-step; gray dashed line
indicates the scaling ( )N Nlog .
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The numerical effort required for the latter would be com-
parable to using just a single Floquet channel, see figure 4.
However, the time-dependent Floquet Hamiltonian method
does not aim to compete with the established approaches in
terms of speed or accuracy, but rather to provide an efficient
way to tackle large-scale Floquet problems in for short laser
pulses. Therefore, the strength of the current approach is its
ability to provide insight into the dynamics during the laser
pulse, which is possible due to Floquet-like approach only.

1. Extension to more spatial dimensions
Although this work is limited to one-dimensional

potentials, the generalization to more dimensions D for a
plane-wave basis in Cartesian coordinates is straightforward.
However, such an approach does not take advantage of the
symmetry of the potential and therefore in general requires a
large number of basis elements to be included into the
Hamiltonian, which scales as ´N NK

D
F . The corresponding

increase of numerical effort can be extrapolated from figures 3
and 4.

A direct extension of the method to, e.g. a spherical
coordinate system is not straightforward. The advantage of
the plane-wave basis in Cartesian coordinates is the
separation of any arbitrary potential in the KH reference
frame into time-independent and time-dependent parts, as
can be seen from (7), which allows us to calculate the
coupling between the plane-wave components at each time-
step efficiently. We did not find such a simple form for the
expansion of the KH potential into spherical harmonics for
linearly polarized fields.

A possible alternative approach to describe atoms in
linearly polarized laser field beyond a single dimension is to
use cylindrical coordinate system (see, e.g. [47]). Since the
KH potential is symmetric around the laser polarization axis,
a plane-wave expansion can be applied along this direction.
The KH approach can also be formulated for a circularly
polarized field, see, e.g. [47]. Finally, multi-pole expansion of
the KH potential can be used, which allows for an efficient
description using conventional quantum chemistry meth-
ods [31].

4. Dynamics driven by short laser pulses using the
Kramers–Henneberger–Floquet representation

4.1. Model system

The time-dependent Floquet Hamiltonian approach is illu-
strated using the example of a 1D model atom, described by a
soft-core potential

= -
+

( ) ( )V x
x x

1
, 14

2
0
2

which has been widely used to study the dynamics of atoms
in high intensity laser fields both analytically and numerically
[27, 48]. In this work the softening parameter is chosen to be

=x 20
2 , which leads to a binding energy equal to that of a

hydrogen atom Ip=0.5a.u..

The laser pulse with a peak electric field F0 is defined in
terms of the classical electron trajectory introduced in (2) with
a Gaussian envelope function [21]

a
w

w w f= - +( ) ( ) ( ( ) ) ( ) ( )t
F

P T t T t aexp 4 ln 2 cos , 150
2

2

w
w

=
+

( )
( )

( )P T
T

b
1

1 8 ln 2
. 15

2

An envelope of T=5 fs FWHM is used, unless specified
otherwise. For all except few cycle pulses w ~( )P T 1 holds.

Furthermore, laser intensity and frequency are chosen such
that the maximum classical excursion length a0 is equal to

a
w

= = ( )F
10 a.u. 160

0
2

for all laser frequencies investigated. Since the KH potential
depends only on the classical excursion length a0 the eigen-
energies of the cycle-averaged potential will have identical
time-dependence. Nevertheless, the dynamics will still depend
on the frequency via the spacing between Floquet channels.
Therefore, the choice of a constant maximal a0 will allow one
to clearly separate the role of the cycle-averaged potential from
the role of the laser frequency.

The typical eigenenergy spectra of the 1D cycle-averaged
potential a( )V x,0 0 are depicted in figure 5(a) as a function of
time during the pulse. They are obtained by diagonalizing the
Hamiltonian in a single Floquet channel. The eigenenergies of
 ( )t strongly depend on the instantaneous intensity of the
laser pulse due to the widening and the formation of the
dichotomy of the cycle-averaged potential in figure 1 for
increasing electron excursion a0.

In figure 5(b) the effective quantum numbers * =n
- E0.5 n are plotted for bound states of  ( )t as a function

of time along the laser pulse. Bound states of a hydrogenic
potential would lead to an infinite series of equally spaced n*,
which is the case at early times in figure 5(b). Deviation from
a pure hydrogenic potential lead to an uneven spacing of n*,
referred to as quantum defect. In the case of the cycle-aver-
aged potential, the quantum defect is a result of the dichotomy
of the potential and is clearly visible for the lowest eigen-
states. On the other hand, although the energy of the higher
(n>3) eigenstates is lowered due to the widening of the
cycle-averaged potential, n* stay approximately equidistant,
indicating that these states are determined by the long-range
Coulomb tail of the cycle-averaged potential and are not
strongly influenced by its dichotomy.

All the calculations presented further in this work were
done using 2048 plane-wave basis states with momenta
equidistantly spaced by pD =k 2 2000 a.u.. A time-step of
Δ t=0.1 a.u. was used for the propagation, which we found
sufficient to obtain converged ionization probabilities. The
ground state was obtained by diagonalizing the Hamiltonian
defined by (10) with a = 00 for a single m=0 Floquet
channel. Finally, the carrier-envelope phase was set to f = 0
in all calculations.
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4.2. High-frequency

The KH approach was originally proposed in the context of
high-laser frequencies, for which the underlying dynamics is
by now mostly well understood, see [3, 4] for comprehen-
sive reviews. Therefore, the high-frequency case provides a
good reference point to illustrate the influence of the pulse
envelope on the dynamics induced by high-intensity laser
fields using the time-dependent Floquet Hamiltonian
approach developed here. We choose a laser frequency of
w = ~1 a.u. 27 eV, substantially larger than the field-free
ionization potential. Accordingly, the peak laser intensity is
set to = ´ -I 2.4 10 W cm18 2, so that the maximum electron
excursion length is a = =( )t 0 100 a.u.. Note that for these
laser parameters, non-dipole effects contribute negligibly to
the dynamics [49]. Hence, we safely work in the dipole
approximation.

The population in the Floquet channels m=0 and 1 as a
function of time is depicted in figure 6(a). During the initial
part of the pulse around 30% of the population is transferred

from m=0 to the m=1 Floquet channel, indicating a one-
photon absorption process. The population transfer stops,
when the adiabatic stabilization regime is reached. Around the
peak of the pulse, despite the rapid increase of field strength,
population in each Floquet channel m stays approximately
constant, implying that the Floquet channels are decoupled as
predicted by the high-frequency Floquet theory [50]. As the
field intensity decreases at the end of the pulse, another 20%
of the population is transferred to the m=1 Floquet channel
by single photon absorption. The remaining Floquet channels
(m>1) contain =1% of the population after the pulse.

1. Non-adiabatic excitations
Projecting the population in each Floquet channel m onto

the eigenstates of  ( )t reveals that the ionization process is
adiabatic, see figure 6(b). The population in the m=0 sub-
space stays in the ground state throughout the dynamics and
no substantial transitions due to the time-dependence of  ( )t
takes place. In this case, the ionization process can be
described in terms of a discrete state that belongs to the
m=0 Floquet channel embedded into the continuum of

Figure 5. Eigenenergies (a) and effective quantum numbers (b) of the cycle-averaged soft-core potential (see equations (3a) and (14)) as a
function of time along the pulse envelope (bottom axis) and classical excursion length a0 (top axis) for a maximal excursion length of
a = 100 a.u. and a pulse defined in (15).
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states that belong to the m=1 channel, as assumed within
the high-frequency approximation [50]. Furthermore, once
adiabatic stabilization sets in, the envelope of the laser pulse
plays a minor role.

The adiabatic picture is not applicable for a shorter laser
pulse with the same peak intensity. In this case, due to the
rapid change of the eigenstates, non-adiabatic excitations
from the ground to the excited states occur as is shown in
figure 7 for a T=1fs FWHM pulse. However, the popula-
tion stays in the m=0 Floquet channels, i.e. no photons are
absorbed from the field indicating that the excitations are
induced by the envelope of the pulse. This is confirmed by
excitations of even-parity states only, as absorption of a
photon would lead to the excitation of odd-parity states. At

the end of the pulse, the excited states of ( )t transform to the
corresponding field-free states. Such non-adiabatic transitions
[51] were investigated in [21] using the envelope Hamiltonian
formalism, where it was shown that they can be quantified
using time-dependent perturbation theory.

4.3. Intermediate-frequency

A range of ‘intermediate’ frequencies can be defined, where
the laser frequency is smaller than the binding energy of the
field-free potential, but larger than the binding energy of the
cycle-averaged potential at peak intensity. We will show, that
for such ‘intermediate’ frequencies, the field-free ground state
does not simply adiabatically connect to the ground state of
 ( )t , as in the high-frequency case. Instead, it undergoes a
series of crossings with excited states that belong to higher
Floquet channels.

We choose a laser frequency of ω=0.4 a.u.∼10.9 eV
and an intensity of = ´ -I 9 10 W cm16 2. Therefore, two
photons are required for ionization, however the photon
energy is still twice the binding energy of the cycle-averaged
potential at the peak of the pulse, see figure 5(a).

The time-dependent populations in the m=0, 1 and 2
Floquet channels, which are shown in figure 8(a), immedi-
ately suggest that ionization proceeds in a sequential manner
via the intermediate m=1 channel. This is confirmed by the
time-dependent population in the eigenstates of ( )t depicted
in figure 8(b). While the ground state of the m=0 Floquet
channel is rapidly depopulated, the population is transferred
to the odd-parity excited states of the m=1 channel, i.e. via
one-photon transition. From these states, the population is
slowly transferred to the m=2 channel, i.e. ionized via
absorption of a further photon.

Figure 6. (a) Population in m=0 and m=1 Floquet channels as a function of time and (b) population in the ground state and the continuum
states of the KH potential as a function of time for a laser pulse with frequency ω=1 a.u., intensity = ´ -I 2.4 10 W cm18 2 and duration
T=5fs FWHM pulse.

Figure 7. Population in the ground state and n=2, 4, 6 excited
states of the cycle-averaged potential in the m=0 Floquet channel
as a function of time for the same pulse as in figure 6 but with
T=1fs FWHM pulse.
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The dynamics in figures 8(a) and (b) can be understood
in terms of the evolution of ( )t eigenstates during the pulse,
shown in figure 8(c). At the beginning of the pulse the energy
of the ground states rapidly increases and undergoes a series
of crossings with the excited states that belong to the m=1
Floquet channel. At each of these crossings, a fraction of
ground state population is transferred to the excited state. As
the energy of the ground state decreases at the end of the
pulse, the population is exchanged again at the second
crossing. Between these crossings, a small but significant
coupling of the states leads to small Rabi oscillations that are
seen around t=0 in figure 8(b).

The two transitions that occur at the crossings of the
ground and excited states of  ( )t lead to interference that
depends on the phase accumulated in each state in between.
This phase in turn depends on both the energy differences and
the couplings between the states. Since the time between two
crossings depends on the pulse duration it strongly influences
the final population after the pulse, as seen in figure 9(a).

The origin of oscillations in figure 9(a) is further eluci-
dated by the evolution of excited-state populations during the
pulse. In figures 9(c) and (d) these populations are shown for
pulse durations, when either n=0 or n=3 state is pre-
dominantly populated after the pulse. Initially the dynamics in
both cases is very similar. Clear differences emerge only after
the second crossing between the states, indicating that inter-
ference effects determine the final populations.

The final populations oscillate with well-defined fre-
quencies as the pulse duration changes, see figure 9(b). The
biggest amplitude oscillation is between the ground and
n=3 state, which is to be expected since the coupling
between these states is at least a factor of two larger than
between any other states and n=3 state is the first one to
undergo a crossing with the ground state. The time-window of
strong interaction with the ground state is also longest for the
n=3 state, since the crossing occurs at the beginning of the
pulse, where the energy–time gradient is not as steep as for
higher-energy states.

Unlike the final population of each state in figure 9(a),
which requires one to consider all interactions, we found that
the frequencies of oscillation of final populations in
figure 9(b) are determined mainly by the dynamics of the
ground and a single excited state. The presence of higher-
energy states does not significantly perturb these frequencies,
since they mainly depend on the phase difference accumu-
lated between the times of crossing of the two states. These
times in turn depend on their energy difference—the higher
the energy of the excited state, the later the first crossing will
occur. Higher-energy states contribute to smaller frequencies
reducing their influence.

Interaction of the ground state with any individual exci-
ted state can be readily described by a Landau–Zener–
Stückelberg (LZS) interference process [52, 53]. In case of
multiple states with non-trivial time-dependence of energies
and couplings, the interconnected LZS transitions lead to
complicated and rich dynamics. Nevertheless, characteristic
features prevail. The ground state will be depleted sequen-
tially transferring population to higher excited states at later
times. Therefore later crossings will become less important
due to weaker couplings and the smaller population available
for transfer. Hence, the traces of single state dynamics show
up in figure 9(b) even for very high laser intensities.

4.4. Low frequencies

Although the KH approach was originally proposed to study the
interaction of atoms with high-frequency laser fields, it was
speculated that it could also be applicable for low-frequency
and high intensity radiation [32, 33, 54, 55]. More recently,
the KH approach and in particular the properties of the

Figure 8. (a) Population in m=0, 1 and m=2 Floquet channels as
a function of time; (b) population in the ground state of the m=0
Floquet channel, n=3, 5, 7 excited states of the m=1 Floquet
channel and continuum states of ( )t as a function of time for a laser
pulse of ω=0.4 a.u. frequency and = ´ -I 9 10 W cm16 2 intensity;
(c) energies of the n=3, 5, 7 excited states from the m=1 Floquet
channel as a function of time, with the ground state energy of the
m=0 Floquet channel.
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cycle-averaged potential was used to explain the nonlinear Kerr
effect in laser filamentation [56] and acceleration of neutral
atoms in laser fields [57]. The time-dependent Floquet Hamil-
tonian formalism developed here allows one to directly inves-
tigate the KH approach for frequencies that are much smaller
than the ionization potential.

We choose the laser frequency of ω=0.057 a.u., which
corresponds to λ=800 nm wavelength radiation, and I=
3.7×1013W cm−2 intensity, so that the maximal electron

excursion length is again a = 100 a.u.. Therefore, the
eigenenergies of  ( )t and its dependence on the pulse shape
shown in figure 5 is identical to the high and intermediate-
frequency cases analyzed above. The FWHM duration of the
pulses is set to T=30fs. However, the essential results
presented here do not depend sensitively on the duration of
the pulse. Note that in order to obtain converged results, 201
Floquet channels (±100 ω) are treated explicitly in the num-
erical calculation.

Figure 9. (a) Population after the pulse in the ground state and n=3, 5, 7 excited states as a function of pulse duration for ω=0.4 a.u.
frequency and = ´ -I 9 10 W cm16 2 maximum intensity; the vertical dashed line indicates the pulse duration used in figure 8 and pulse
durations when the n=0 and n=3 states dominate; (b) frequency of final population oscillations for each excited state; (c) and (d) show the
time-dependent population in the excited states of  ( )t during the pulse for pulse durations when n=0 and n=3 states are dominantly
populated after the pulse (indicated by vertical dashed lines in (a)).
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The population in Floquet channels as a function of
time is plotted in figure 10. Almost all of the population is
transferred to higher Floquet channels at the peak of the
pulse and then returns to the m=0 channel at the end of the
pulse. Therefore, these transitions are virtual, which is in
contrast to high and intermediate-frequency cases. This is
not surprising, however, since for the given laser field
parameters the total ionization is less than 1% and most of
the population is expected to stay in the ground state after
the pulse.

Projecting the population at the peak of the pulse onto the
instantaneous eigenstates of  ( )t in figure 11(a) reveals that
the population is distributed over many states. Crucially, no
single state is dominating. Also, many Floquet channels are
populated during the peak of the pulse, as is shown in
figure 11(b). An increase of the field intensity leads to a
broadening of the distribution over both the excited states n
and also over Floquet channels m.

Virtual excitations created in multiple Floquet channels
can be understood qualitatively within the Floquet picture.
Since the interaction strength between states that belong to
different channels is much larger than the energy spacing
between them, a quasi-continuum of states is created. In this
situation, the eigenstates of  ( )t do not correspond to any
adiabatic or nearly adiabatic states of the field driven system.
Therefore, the wave function, which stays nearly identical to
that of the field-free ground state, is distributed over many
excited states in the KH reference frame. The redistribution
occurs at avoided crossings between states that belong to
different Floquet channels, similarly as in the intermediate-
frequency case. However, for low frequencies many more
avoided crossings become important.

For sufficiently large peak field strengths a regime may
exist, where  ( )t becomes applicable [32, 54, 55]. However,
by the time this intensity of the laser pulse is reached, the
wave function is already distributed over the excited states of
 ( )t . Therefore, in order to apply the KH approach at low

laser frequencies, it is essential to consider the transformation
of the field-free ground state wave function to the ‘field-
dressed’ KH picture during the switching-on of the pulse.

5. Summary and conclusions

We have developed a time-dependent Floquet Hamiltonian
approach formulated in the KH reference frame to study
dynamics driven by short and intense laser pulses. It con-
stitutes a systematic and flexible extension of the Envelope
Hamiltonian [21] applicable for arbitrary frequencies and
provide a convenient and efficient way to propagate Floquet
Hamiltonians.

Numerical application of Floquet approaches is often
hampered by the rapid increase of the number of Fourier
components required to describe the Hamiltonian. Therefore,
we have devised an efficient numerical procedure to prop-
agate the Floquet Hamiltonian which is able to overcome the
hurdle of large expansions. Indeed, we have performed cal-
culations for laser parameters, for which several hundred
Floquet channels had to be considered explicitly. Key element
is the formulation of the problem in the momentum repre-
sentation, which is particularly suited for the KH reference
frame as it allows us to separate the components of the field-
free potential from the field-dependent ones. We further use
the formalism of Toeplitz matrices and the FFT algorithm to
achieve a favorable scaling with Floquet channels. However,
unlike the split-operator methods that also rely on FFT, the
Toeplitz approach is numerically exact for finite-size matri-
ces. For Floquet problems it allows us to truncate the basis to
only several Floquet channels. Yet, the method can be applied
to any other Fourier basis to achieve an efficient and accurate
propagation.

The main advantage of the method is its ability to extend
the KH approach, which is particularly suited for high-fre-
quency and high-intensity fields, to the limit of very short
pulses. Thereby, we can investigate physical effects that
emerge at high intensities and can only be understood by
explicitly considering the time-evolution of the pulse
envelope.

We have shown that the pulse envelope exerts control
over two types of dynamics. For very short pulses, the rapid
change of the eigenstates of  ( )t over time leads to non-
adiabatic excitations. They are induced by the pulse envelope
and therefore do not involve the absorption of any photons
from the field. Thus, even for very high frequencies they can
lead to significant population in low lying bound states.

The second type of transitions, sensitive to the pulse
envelope, occurs at the crossings between the discrete
eigenstates of  ( )t that belong to different Floquet channels,
as their energy changes along the pulse. Although dynamics
at each crossing can be easily understood in terms of LZS
theory, in our case multiple states are strongly coupled
evading simple interpretations. Nevertheless, strong features
due to the coupling between individual states can be dis-
cerned, which is quite remarkable, considering the high
intensities used. They lead to a large sensitivity of final state

Figure 10. Population in Floquet channels m as a function of time for
a laser pulse of ω=0.057 a.u. frequency and = ´I 3.7

-10 W cm13 2 intensity. The .m 9 channels are above the ionization
thresholds.
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populations to the pulse duration providing a possible route
for their coherent control.

An extreme case for our KH approach is the low-fre-
quency limit, when the photon energy is much smaller than
the binding energy of the electron. In this case, the population
is transferred between the bound states of  ( )t at their
crossings, which are very dense due to the small energy
spacing between the Floquet channels, resulting in a rapid
distribution of the population over many eigenstates of  ( )t
before any populations has a chance to reach continuum
states.

To summarize, the time-dependent Floquet Hamiltonian
approach presented here provides a convenient basis for short
laser pulses and for all but the smallest photon energies. In all
investigated cases, including few-cycle pulses, the approach
was able to provide accurate numerical results indistinguish-
able from the ones obtained using conventional techniques of
propagating the TDSE. However, unlike the conventional
TDSE propagators, the time-dependent Floquet Hamiltonian
method allows one to obtain insight into dynamics that cru-
cially depend on the pulse envelope. Such dynamics will
become particularly important for short and intense pulses
generated by FEL facilities, which often devise unusual pulse
shapes, or for investigating the dynamics of states dressed by
unusually shaped pulses such as used in [12].

The richest envelope-dependent dynamics is observed in
the intermediate-frequency range. For multi-electron systems,
this energy range will be much more extended due to the
ubiquitous presence of core and double excitations, which
lead to a rich energy structure even for very high photon
energies. Therefore, we expect that for such systems the time-
dependent Floquet Hamiltonian formalism presented here will
be even more valuable.

Appendix A. Derivation of the time-dependent
Floquet formalism

A.1. Expansion of the Kramers–Henneberger potential into
Fourier components

In this work, the potential in the KH reference frame is
expanded into Fourier and plane-wave components as
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To determine the expansion coefficients i ( )V tk,m , let us first
consider only the expansion into the Fourier components
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The time-integration in (A3) is performed only over ¢t , i.e. the
periodic oscillation of the two-time potential
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Nevertheless, this provides an exact representation of the full
time-dependent potential ( )V tr, , as is easily verified by
inserting (A3) into (A2):
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Figure 11. Population in (a) the bound states of  ( )t and (b) in the Floquet channels at the peak of the laser pulse for ω=0.057 a.u.
frequency and = ´ -I 3.7 10 W cm13 2 intensity.
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where the definition of the Dirac delta function
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was used. Note that d ¢ -w ( )t t is periodic, with the period
Tω=2π/ω. However, its use is justified since

¢ + = ¢w( ) ( )V t t T V t tr r, , , , and the integration in (A5) can
be limited to the range ¢ Î w[ )t T0, .

A.2. Expansion of the Kramers–Henneberger potential into
plane-wave components

The Fourier components i ( )V tr,m are further expanded into
the basis of plane-waves. Using the definition of the potential
in (A3) and (A4) the expansion coefficients can be written as
(see also [29] for a similar derivation)

òp
=~ ~ -( )

( )
( ) ( )·V t r V t ak r,

1
2

d , e A7m m
k r

3
3 i

ò òp
= ¢ ¢

w

w- ¢w ( )( )
( ) ( )·

T
t r V t t br

1
2

1
d d , , e e A7

T
m tk r

3 0

3 i i

ò ò a
p

= +
w

w¢ ¢ -w ¢( )( )
( ( ))

( )

·
T

t r V t t

c

r
1

2
1

d d , e e

A7

T
m tk r

3 0

3 i i

ò= ¢ ~ a

w

w¢ ¢w ( ) ( )· ( )
T

t V dk
1

d e e , A7
T

t t m tk

0

i , i

where i ( )V k is the projection of the field-free potential on the
kth plane-wave
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with a¢ = + ¢( )t tr r , . Using
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and applying the Jacobi–Anger expression, the plane-wave
Fourier components i ( )V tk,m can be further expressed as

a=~ ~ f-( ) ( ) ( · ( )) ( )∣ ∣ ∣ ∣V t V J tk k k, i e , A10m
m

m
m

0
i

where Jm is the ordinary Bessel function of the 1st kind of
order m.

A.3. Derivation of the TDSE for the coupled Fourier and plane-
wave components

After expanding the wave function in terms of Fourier and
plane-wave components

òå yY =
~ w-( ) ( ) ( )·t k tr k, d , e e A11

m
m

m t k r
KH

3 i i

the expansion coefficients yi ( )tk,m are determined by
inserting (A1) and (A11) into the TDSE
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After projecting on the kth plane-wave component, the TDSE
becomes
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Collecting the terms proportional to w-e m ti we obtain
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where we have used that
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and where ´ = + ¢m m m was used in the second line together
with relabeling of the indexes in the last line. (A14) is
satisfied, if the expression in brackets is zero for all times t
and for all m and k. This condition leads to the coupled
system of equations for the Fourier and plane-wave compo-
nents of the wave function
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Inserting the definition for - ¢- ¢i ( )V tk k ,m m from (A10) leads
to the (8), which is the main equation used in this work.

Appendix B. Matrix-vector multiplication with
Toeplitz and BTTB (Block Toeplitz with Toeplitz
Blocks) matrices

B.1. Toeplitz matrix

A matrix is Toeplitz if each of its diagonals is formed of equal
elements. To describe a Toeplitz matrix only the knowledge
of its 1st column and 1st row are required. Any N×N
Toeplitz matrix can be cast into a ´N N2 2 circulant matrix,
which has identical rows and where each row is shifted to the
right by one element with respect to the previous row, with
rightmost element of the row transferred to the leftmost
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position. For example, a 3×3 Toeplitz matrix T can be
transformed into a circulant matrix C as

T T T
T T T
T T T

T T T T T
T T T T T
T T T T T

T T T T T
T T T T T
T T T T T

= º =
- -

-

- -

- -

- -

- -

- -

- -

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥
( )

T C

0
0

0
0

0
0

,

B1

0 1 2

1 0 1

2 1 0

0 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 1 0 1 2

2 2 1 0 1

1 2 2 1 0

where zero was appended in each row to concatenate a
Toeplitz matrix row with its column, and an arbitrary number
of zeros can be used when forming a circulant matrix.

Multiplication of a circulant matrix C and a vector x̃ is
equal to a convolution between the first column of the cir-
culant matrix ºC cn0 and the vector x̃. Hence, from the
convolution theorem it follows that

�
�, � �, �, �,

= =
= =

˜ · ˜ ˜
( ˜) ( ) ( ˜) ( ˜ ) ( )

b C x c x
c x c x b

,
, B2

where å denotes the convolution operation and �, is the
discrete Fourier transformation.

To efficiently multiply a vector x by a general Toeplitz
matrix T we need to: (i) form a column of the circulant matrix
c from the 1st column and the 1st row of the Toeplitz matrix
T; (ii) append the vector x with zeros forming an extended
vector x̃ that has the same length as the vector c; (iii) perform
the Discrete Fourier Transformation of the vectors c and x̃,
multiply them together element-by-element and perform the
inverse discrete Fourier transformation of the product. The
result will be stored in the first N elements, where N is the size
of the original vector. For the example in (B1):

= º =· ˜ · ˜b T x b c x,

where
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2
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�, �, �,=

= <

-˜ ( ( ) ( ˜))
˜ ( )i

b c x
b b

,

for 3. B3i i

1

B.2. BTTB matrix

A Block Toeplitz with Toeplitz Block, or BTTB matrix, is a
block matrix where the blocks are of Toeplitz form and the
blocks on each diagonal are identical. For example, assume a
BTTB matrix B with 3×3 blocks, where each block is a
Toeplitz matrix Tm of the from in (B1)

T T T
T T T
T T T

= =
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B4

m

m m m

m m m

m m m

0 1 2

1 0 1

2 1 0

,0 , 1 , 2

,1 ,0 , 1

,2 ,1 ,0

To calculate the dot product of a BTTB matrix B and a
vector x one has to (i) form a 2D circulant matrix C, where
each column is the circulant vector for a Toeplitz block T ;m

(ii) reshape the vector x into a matrix X̃ that has the same
shape as the circulant matrix C by filling the lower half and
the right half of X̃ with zeros; (iii) perform the 2D Discrete
Fourier Transformation of the matrices C and X̃, multiply
them together element-by-element and perform inverse 2D
Discrete Fourier Transformation of the product. The result
will be stored in the upper left corner of size N×M, where N
is the size of each Toeplitz block Tm and M is the number of
block. For the example in (B4) the procedure is

= º =· ˜ · ˜d B x D C X,

where
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