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Abstract. We investigate theoretically electron dynamics under a vacuum
ultraviolet (VUV) attosecond pulse train, which has a controlled phase delay
with respect to an additional strong infrared laser field. Using the strong field
approximation and the fact that the attosecond pulse is short compared to the
excited electron dynamics, we arrive at a minimal analytical model for the kinetic
energy distribution of the electron as well as the photon absorption probability
as a function of the phase delay between the fields. We analyze the dynamics
in terms of electron wave packet replicas created by the attosecond pulses. The
absorption probability shows strong modulations as a function of the phase delay
for VUV photons of energy comparable to the binding energy of the electron,
while for higher photon energies the absorption probability does not depend
on the delay, in line with the experimental observations for helium and argon,
respectively.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 053011
1367-2630/09/053011+14$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:riviere@pks.mpg.de
http://www.njp.org/


2

Contents

1. Introduction 2
2. Ionization with an APT in the presence of an IR field: analytical approach 3
3. Explicit form of the replicated EWP 4
4. The photo-electron spectrum 6

4.1. One atto pulse during an IR cycle . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2. Two atto pulses during an IR cycle . . . . . . . . . . . . . . . . . . . . . . . . 7

5. Position of the maxima and minima in the absorption probability 8
6. Comparison with experimental results and exact quantum calculations 10
7. Conclusions and outlook 12
Acknowledgment 13
Appendix A. Taylor expansion of the phase 13
References 14

1. Introduction

Technological advances have made it possible to expose atoms and molecules to a combination
of attosecond pulse trains (APT) and infrared (IR) laser pulses with an accurate control of
their phase delay [1]. The photo-electron spectrum of atoms in this combined light field has
been studied [2], as has induced photo association [3] and above threshold ionization [4]. The
latter has also been theoretically investigated together with high-harmonic generation in the
combined field [5], along with another quasi-analytical formulation [6] and a fully numerical
R-matrix calculation [7].

While many parameter combinations are possible, a dynamically very interesting regime
emerges when the energy of the vacuum ultraviolet (VUV) photon from the APT is comparable
to the ionization potential but the IR pulse alone (typically 780 nm wavelength) is not intense
enough to ionize the atom. The combined action of both fields leads to a time-dependent
wave packet dynamics, which is very sensitive to the phase delay, equivalent to the
carrier–envelope phase (CEP) of the IR field. Consequently, stroboscopic measurements of
interfering electron wave packets (EWPs) that overlap in this energy regime but leave in
opposite directions have been demonstrated to provide a sensitive tool to measure phase
differences [8]. In a subsequent experiment, it has been recently shown that the phase delay
not only influences the photo-electron spectrum, but also modulates the total ionization and
absorption probability [9]. A solution of the one-electron time-dependent Schrödinger equation
(TDSE) with a pseudo potential for helium yields excellent agreement with this experiment [9].
While quite generally interference of wave packets must be responsible for the pronounced
oscillatory behavior of the absorption yield as a function of the phase delay, the exact reason for
and systematics of these oscillations are difficult to identify in a fully numerical solution.

Here, we formulate a minimal analytical approach. It elucidates the mechanism behind the
pronounced structures in the electron observables as a function of phase delay in the spirit of
the ‘simple man’s approach’ successfully formulated for high-harmonic generation in intense
fields [10]. For a recent refinement of the simple man’s approach, see [11].
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2. Ionization with an APT in the presence of an IR field: analytical approach

We consider an electron bound with energy "i exposed to a train of attosecond pulses in one
dimension. The intensity is so weak that we are in the single-photon regime for each atto pulse
of width � and central time tn. Consequently, we neglect the slowly varying envelope of the
ATP and write for the interaction potential (in velocity gauge and rotating wave approximation)

Vatto(t) = p exp(�i�t)
NattoX

n=1

exp[�(t � tn)
2/(2� 2)], (1)

where p is the electron momentum and � the central frequency of the attosecond VUV pulses.
The IR field is characterized by the vector potential

A(t) = A0 cos(!t +'). (2)

It has linear polarization in the same direction as the atto pulses and a phase delay ' with respect
to the APT. Its envelope A0 is assumed to be constant over the length of the APT. We use atomic
units throughout the paper unless stated otherwise.

Since the APT gives only rise to single-photon absorption events, first-order time-
dependent perturbation theory provides an accurate description under which an initial state
|9(ti)i evolves into the state at time tf according to

|9(tf)i = �i
Z tf

ti

U (tf, t)Vatto(t)U (t, ti)|9(ti)i dt (3)

with the time evolution operators U for the electron under the combined influence of the IR field
and the Coulomb potential of the ion [12].

The key idea behind the simple man’s simplification which permits an analytical treatment
is to consider the phases in the integral of equation (3) as the dominant contributions,
U↵(t 00, t 0) = exp(i[8↵(t 00) �8↵(t 0)]), and to approximate the propagators before and after the
photoabsorption differently, U (t, ti) ⌘ Ui and U (tf, t) ⌘ Uf. Then, one gets from equation (3)

 (t) =
X

n

Z tf

ti

exp (�n(t)) dt, (4)

where the exponent is given by

�n(t; p,') = i[8f(tf) �8f(t)] � (t � tn)
2/(2� 2) � i�t + i[8i(t) �8i(ti)]. (5)

Here, 8i is the phase accumulated before the VUV absorption, where the electron remains in
its initial state, almost unperturbed by the laser field. Hence, we may write 8i(t) = �"it , and
define the energy "f = "i +� after the absorption of the VUV photon at time t 0. For t > t 0 we
assume that the electron dominantly feels the IR field, described by the corresponding classical
action (or, equivalently, quantum Volkov propagator)

8f(t; p,') = �
Z t

(p + A0 cos(!⌧+'))2/2 d⌧. (6)

A wavefunction expressed as an integral over time with two phases 8i,f, as in equation (4),
appears also in the analytical description of high-harmonic generation, see e.g. equation (22)
in [13]. In this context, often a stationary phase approximation is invoked. This is not possible

New Journal of Physics 11 (2009) 053011 (http://www.njp.org/)

http://www.njp.org/


4

for equation (4), since the attosecond pulse restricts the time integration effectively to an interval
of the order of � < 2⇡/!, the period of the IR field. However, here we may expand the phases
in a Taylor series about the atto peak at time tn. This converts equation (4) for ti ! �1 and
tf ! +1 into a Gaussian integral of the form

 1(p,') =
X

n

Z 1

�1
exp

"
2X

k=0

F (k)
n (p,')

(t � tn)
k

k!

#

dt, (7)

where the wavefunction depends now on the asymptotic electron momentum p and the phase
delay '. The solution to equation (7) reads

 1 =
X

n

s
2⇡

�F (2)
n

exp
h

F (0)
n �

�
F (1)

n

�2
. �

2F (2)
n

�i
. (8)

The expressions F (k)
n are explicitly given in appendix A. The photo-electron spectrum

dP(p,')/dp and the total photo absorption probability P(') read in terms of  1(p,')

dP(p,')/dp = | 1(p,')|2, P(') =
Z

dp| 1(p,')|2. (9)

For simplicity, we will consider an absorption probability, normalized by the number of atto
pulses Natto

P Natto(') ⌘ P(')

Natto
. (10)

3. Explicit form of the replicated EWP

As we will see it is possible to factorize the replicated EWP into one term which depends on
N , the number of IR cycles over which the APT extends, and ⌫, the number of atto peaks in
each IR cycle. Experimentally, both ⌫ = 1 and 2 have been realized [14]. The total number of
attosecond pulses is then Natto = N⌫.

We start with the fundamental APT with one attosecond pulse in each IR period, therefore
tn = 2⇡n/!. Any offset in time can be absorbed in the definition of the phase '. To obtain
 1
⌫ (p,') from equation (7) explicitly we have to evaluate the functions F (k)

n in equation (8) at
times tn as detailed in appendix A. Collecting all the phases from equation (8) but the prefactor
(2⇡/(�F (2)

n ))1/2, which contributes only logarithmically to the phases, we may write

 1
1 (p,') = a1

N�1X

n=0

ei2n⇡C�(p,'), (11)

where a⌫ is an overall phase, which will not affect the observables in equation (9) and

C = (p2/2 + Up � "f)/!, (12)

with the ponderomotive potential Up = A2
0/4. The wave packet � takes the form

�(p,') = exp(ipx') exp
⇢
� [(p + p')2/2 � "f]2

2� 2
" (p)

(1 � i� 2!2x'(p + p'))
�

, (13)

where only real-valued parameters have been used. The two parameters

p' = A0 cos', x' = (A0/!)sin' (14)
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Figure 1. Comb function KN (p) corresponding to N = 8 (solid), N = 4 (dashed)
and N = 2 (dotted-dashed) IR cycles, for both one or two attosecond pulses
per IR cycle. The IR intensity is I = 1.3 ⇥ 1013 W cm�2 and the excess energy
"f = 0.144 au.

characterize the motion of an electron released at t = 0 into the IR field: it will quiver around
the position x' + p't having a drift momentum p'. The wave packet � in equation (13) contains

�"(p) =
h
1/� 2 +

�
�!2(p + p')x'

�2
i1/2

, (15)

which is an effective width in energy with two contributions: the first one is 1/� 2, the variance
in energy due to the temporal width of the Gaussian attosecond pulse. The second one accounts
for the change of p' gained from the IR field during the VUV photo ionization. This change is
proportional to the electric field, or to x' .

Next, we evaluate equation (8) for two atto pulses per IR cycle, ⌫ = 2. Apart from pulses
at tn = 2n⇡/! we have a second sequence at tn+1/2 = 2(n + 1/2)⇡/! = (2n + 1)⇡/!. A little
thought reveals that for the first sequence 8f(tn; p,') =8f(0; p,'), whereas for the second
one 8f(tn+1/2; p,') =8f(0; �p,'), see also appendix A. Collecting again all terms from
equation (8) we can write  1

2 (p,') in the form

 1
2 (p,') = a2

N�1X

n=0

ei2n⇡C
�
e�iC⇡/2�(p,') + eiC⇡/2�(�p,')

�
. (16)

Obviously, the sum over n is the same geometric series as in equation (11). We call its absolute
square the comb function,

�����

N�1X

n=0

ei2n⇡C

�����

2

= sin2(N⇡C)

sin2(⇡C)
⌘ KN (p), (17)

and show it for increasing N in figure 1. From ⌫ = 1 and 2, the general structure of the final
wavefunction  1

⌫ (p,') for an arbitrary number of atto pulses ⌫ per IR cycle emerges: it
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Figure 2. Results for 1 atto per IR cycle, I = 1.3 ⇥ 1013 W cm�2, "f = 0.144 au
and N = 4 (color coding in linear scale). The attosecond pulses have a width
FWHM=370 as (� = 9.186). (a)81(p,'). The white lines represent ±(2"f)

1/2 �
p' . (b) Comb function K4(p). (c) Photo-electron spectrum, |91(p,')|2.
(d) Normalized absorption probability P4(').

factorizes in the comb amplitude, which depends on the number of N of IR cycles, and a
complex wave packet containing ⌫ sub-packets, which are created by atto pulses during one
IR cycle and therefore depend on the phase difference ' of the IR pulse and the APT.

4. The photo-electron spectrum

The product structure of the asymptotic wavefunction  1
⌫ carries over to the photo-electron

momentum distribution (9) since

dP⌫/dp = | 1
⌫ (p,')|2 = KN (p)X⌫(p,'). (18)

The function KN (p) has maxima separated in energy by the IR frequency !, which become
sharper with increasing N , as can be seen in figure 1. Hence, KN (p) acts like a comb in
momentum for the photo-electron spectrum. The comb selects particular values of p occurring
at specific phases ' from the electron momentum distribution X⌫(p,'), which builds up from
the ⌫ atto pulse wave packets within one IR period.

4.1. One atto pulse during an IR cycle

For ⌫ = 1, we get from equation (13)

X1(p,') = |�(p,')|2 = exp
⇢
� [(p + p')2/2 � "f]2

� 2
" (p)

�
. (19)
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Figure 3. Same as in figure 2 (N = 4), but for ⌫ = 2 atto pulses per IR period
(Natto = 8). The white lines in (a) correspond to different branches in the wave
packet X , see text.

The electron distribution X1 shown in figure 2(a) has two branches centered about p± =
±

p
2"f � p'. Each of them traces the streaking momentum p' (equation (14) and white lines

in the figure) which is imprinted when the attosecond pulse excites the electron with a phase
delay '. The width �✏ of the branches has maxima at ' = 1/2⇡, 3/2⇡ and minima at ' = 0,⇡ .
The multiplication ofX1 (figure 2(a)) with the comb K4(p) (figure 2(b)) gives the photo-electron
momentum distribution shown in figure 2(c). One clearly sees a preference of momenta and
phase delays. The modulation in phase delays survives upon integration over p in the total
absorption probability P N atto(') shown in figure 2(d), with maxima at ' = 0,⇡ .

4.2. Two atto pulses during an IR cycle

While the comb function remains the same, we have now a more complicated single cycle
momentum distribution composed of two wave packets during each IR cycle,

X2(p,') =
��e�iC⇡/2�(p,') + eiC⇡/2�(�p,')

��2
. (20)

The basic structure with two branches for each wave packet � is the same as for ⌫ = 1, resulting
in a total of four branches at p+

± = ±
p

2"f � p' and p�
± = ±

p
2"f + p', indicated as white lines

(solid and dashed, respectively) in figure 3(a). In addition, the wave packets interfere leading to
a rich pattern in X2, as can be seen in figure 3(a). However, again the comb K4(p), cf figure 3(b),
selects specific momenta and phases for the photo-electron momentum distribution (figure 3(c)),
which produces a modulation in the total absorption probability (figure 3(d)) similarly as for
⌫ = 1, with maxima at ' = 0,⇡ . Note that for both ⌫ = 1 and 2 the number of maxima in the
absorption probability P⌫(') is the same.
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Figure 4. Photo-electron energy spectra for an intensity I = 1.3 ⇥ 1013 W cm�2,
excess energy "f = �0.028, ⌫ = 2 and N = 3 (a) and N = 6 (b) IR cycles (color
coding in linear scale).

The effect of an increasing number N of IR cycles in the comb KN (p) on the photo-
electron spectrum is shown in figure 4 for the same intensity as before, but for an excess
energy "f = �0.028 and ⌫ = 2. The narrower lines for larger N (figure 4(b) as compared with
figure 4(a)) is due to the sharper comb for larger N .

For the cases shown in figures 2–4 the maxima appear at ' = 0,⇡ and the absorption
probabilities have similar shapes. This is not always the case. Rather, the position of the maxima
and the contrast between maxima and minima depend on the particular comb KN and therefore
on N , Up and "f, as well as on the details of the branches in the wave packet X⌫ . This will be
discussed in the next section.

5. Position of the maxima and minima in the absorption probability

We have seen how the oscillations in the absorption probability arise from the interplay between
the comb function KN (p) and the momentum distribution X⌫ of a multi-component wave
packet. Both depend in a complex manner on the parameters of the laser fields and the ground-
state energy of the atom. Hence the question arises if one can predict analytically for a given
IR field intensity, where the maxima in P⌫(') appear as a function of phase delay for different
VUV photon energies � of the APT.

From the structure of the comb as discussed in section 4, one can directly conclude that
the oscillations in P⌫(') will disappear for increasing "f = "i +�, as illustrated in figure 5(a).
For large excess energy "f the branches of � are centered about high absolute momentum values
| ± (2"f)

1/2 ± p'|, where the comb is dense. Hence, the comb tracesX (p,') homogeneously for
all ' and the absorption probability hardly depends on ' (figure 5(b)). The physical meaning of
this is that when the electronic wave packet triggered by an atto pulse leaves the nucleus with
a high kinetic energy, the overlap with the EWPs released by subsequent atto pulses vanishes,
which diminishes the interference among the wave packets.

A more systematic analysis of the position of the maxima and minima in the absorption
probability can be carried out analytically using symmetry properties of P⌫ and eventually a
stationary phase approximation with respect to p. The condition for extrema is dP⌫/d' = 0,
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Figure 5. Photo-electron momentum distribution (left, color coding in linear
scale) and corresponding absorption probability (right) for ⌫ = 1, I = 1.3 ⇥
1013 W cm�2, N = 8 and "f = 0.28 au (upper panels) and "f = �0.028 au (lower
panels).

which can be written for the case of ⌫ = 1 as

dP1

d'
=

Z
dpKN (p)X 0

1(p,') = 0, (21)

where X 0
1(p,') = @X1(p,')/@', which is proportional to x'. Therefore, the absorption

probability has extrema for x' = 0. The symmetry of the functions under the integral reveals
another set of maxima: the comb KN (p) is even in p, and for p' = 0, the function X 0

1 is odd
in p. Hence, the integral in equation (21) is zero and there are also extrema for p' = 0. To
summarize, equation (21) is fulfilled for every ' = n⇡/2.

To distinguish between maxima and minima we need the sign of the second derivative, X 00
1 .

To keep the derivation simple, we will make now use of the stationary phase approximation,
which is applicable since the comb KN (p) is a highly oscillatory function which depends only
on p2. Therefore, its global stationary phase point is p = 0, which is also obvious from figure 1,
and we get for equation (21)

dP1

d'
⇠ KN (0)X 0

1(0,'), (22)

where

X 0
1(0,') = X1(0,')

d
d'

h
�

�
p2
'/2 � "f

�2
.
� 2
" (0)

i
. (23)
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Table 1. Position of the maxima and minima in ' for different energy ranges "f.
Energy ' = n⇡ ' = (n + 1/2)⇡

"f > 2Up Maximum Minimum
"f < 0 Minimum Maximum

It can be easily shown that this function is zero for x' = 0 or p' = 0 as before, and has additional
zeros at p2

' = 2"f. For the determination of maxima and minima, we are only interested in the
sign of the second derivative, which can be expressed for the three groups of extrema as

sgn
h
X 00

1 (0,')
��
'=n⇡

i
= sgn

⇥
g(2Up � "f)

⇤
, (24)

sgn
h
X 00

1 (0,')
��
'=(n+1/2)⇡

i
= sgn [g("f)] , (25)

X 00
1 (0,')

��
p2
'=2"f

= �8
"f(2Up�"f)

� 2
"

< 0, 06 "f 6 2Up (26)

with g(x) = x(1 + 4� 4!2Upx)8� 2UpX1(0,'). This leaves a clear structure of maxima and
minima for "f < 0 and "f > 2Up as summarized in table 1. For 0 < "f < 2Up, all four extrema
within 2⇡ are minima, making the approximation not very trust worthy. Indeed, as will be
demonstrated later, chaotic dynamics dominates this energy region rendering approximations
problematic. In figure 6(a), one can see this structure of maxima and minima in ' additionally
modulated in "f, where the distance between the maxima is !. The latter is a consequence of the
effect of the comb function KN (0), which has maxima at C0⇡ = n⇡ (with C0 = C |p=0), which
means maxima at energies "f = Up ± n!.

Moving on to the case ⌫ = 2, we investigate P2(') taking X2 from equation (20), and for
the sake of simplicity we will use the stationary phase approximation from the beginning. This
function has the same stationary phase point p = 0 as before. Then we can write

X2(0,') = 4 cos(C0⇡/2)X1(0,'). (27)

From equation (27) it is immediately clear that the ⌫ = 2 case has the same structure of maxima
and minima with respect to the phase delay ' (see table 1) as the ⌫ = 1 case. The only difference
is the modulation in "f: the additional factor cos[C0⇡/2] has maxima only at even multiples of
the IR frequency "f = Up ± 2n!, while it has zeros at odd multiples of !. Consequently, the
distance between the peaks for ⌫ = 2 on the "f axis is given by 2! instead of ! as for ⌫ = 1,
which can be seen in figure 6.

6. Comparison with experimental results and exact quantum calculations

The interesting dependence of the absorption probability on the phase delay ' was first reported
experimentally and shown to be in agreement with a full numerical quantum calculation by
Johnsson et al [9]. In the meantime, it has been confirmed by other experiments [15]. Instead of
increasing the VUV photon energy (to vary "f = "i +�), the ionization potential �"i was varied
in the first experiment [9] by using He and Ar atoms as targets for the combined IR + APT field,
the latter with two atto pulses per IR cycle and a central energy of �= 23 eV. This energy is

New Journal of Physics 11 (2009) 053011 (http://www.njp.org/)

http://www.njp.org/


11

Figure 6. Absorption probability as a function of ', for 1 (a) and 2 (b) atto pulses
per IR cycle, for I = 1.3 ⇥ 1013 W cm�2 and N = 8 (color coding in linear scale).
Vertical white lines: position of the maxima at "f in the two regions "f < 0 and
"f > 2Up, as predicted with the stationary phase approximation: at ' = ⇡/2 and
3⇡/2 in the first case and at 0, ⇡ and 2⇡ in the second. The horizontal white
lines differentiate these two regions.

enough to ionize an electron from Ar, but not from He (see inset in figure 7). Strong oscillations
in the ionization probability of He as a function of ' were found with maxima at ' = (n + 1/2)⇡
and no oscillations were detected for Ar.

These results are in qualitative agreement with our analytical predictions, as shown in
figure 6(b). For "f < 0 (as in He with �= 23 eV), we expect maxima at ' = (n + 1/2)⇡ ,
while for energies well above threshold as in Ar, we expect a flat absorption probability. To
double check the transition from the positions of the maxima from (n + 1/2)⇡ to n⇡ going
from "f < 0 to positive "f, we have performed full numerical calculations. We use a three-
dimensional one-electron model for the He atom2, and a classical electric field, with! = 0.0572,
I = 1.3 ⇥ 1013 W cm�2 for the IR, and I = 1011 W cm�2 for the APT. Results are shown in
figure 7 for three different APTs, centered at the harmonics 13th, 15th and 17th, respectively.
One sees indeed that the contrast of the maxima gets smaller for increasing but still negative "f,
as it is the case going from the 13th to the 15th harmonic while for positive "f (17th harmonic),
there appear maxima at ' = 0,⇡ .

Hence, the simple man’s approach presented here provides in general a very good
understanding and interpretation of the effect a combined APT and IR field has on the ionization
of atoms. Only for energies "f very close to the ionization threshold, |"f| ⇡ Up the simple man’s
approach is too drastic for reliable results. In this energy range, the oscillatory absorption
probability depends sensitively on details of the electronic wave packet whose underlying
classical dynamics is highly chaotic, i.e. extremely sensitive to external parameters such as the
photon frequency or the field intensity. This is demonstrated in figure 8 for the contrast between

2 We propagated the TDSE in the atomic potential V (r) = �[1 + exp(�r/r0)]/r , with r0 = 0.29 Å guaranteeing
the correct ionization potential of helium, and the combined laser field of APT and IR pulse. The envelope of the
APT was a Gaussian of 5 fs width, the one of the IR pulse had a cos2 shape containing 20 cycles.
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(dashed line) and the 17th (dashed-dotted line). The energy levels of the He atom
are shown in the inset (full black lines), together with the ionization threshold of
He and Ar (dashed lines). The energies for the 13th, 15th and 17th are also shown
(red lines at the right).

maxima (at 'max) and minima (at 'min) for different photon energies,

A = P('max) � P('min)

P('max) + P('min)
. (28)

One may question if such details of the chaotic behavior are helpful to understand the
dynamics. Future work will show if more robust observables, such as correlation functions with
characteristic correlation lengths and similar quantities are more suitable to characterize electron
dynamics under the illumination of APTs and IR fields.

7. Conclusions and outlook

We have presented a minimal analytical approach to understand the behavior of EWPs generated
by an APT in the presence of a strong IR field in the framework of the simple man’s approach in
strong field physics, with special emphasis in the phase delay between the APT and IR pulses. In
this approximation, the photo absorption probability can be written as a product of a frequency
comb function, resulting from the periodic nature of the pulses with the IR frequency, and the
probability density of an electronic wave packet whose number of components is given by the
number of attosecond pulses within an IR period. Only the latter depends on the phase delay
between the APT and IR fields, while the former acts like an electron momentum filter. The
minimal approach provides insight into the formation of oscillations in the photo absorption as
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Figure 8. Contrast (equation (28)) of maxima and minima in the absorption
probability for ⌫ = 2 atto pulses per IR period. Straight line: analytical approach.
Dashed line: TDSE calculations, for an APT with central energy from the 13th
to 17th harmonics. The energies for the 13th, 15th and 17th harmonics are
pointed out. The conditions are N = 4 (Natto = 8), I = 1.3 ⇥ 1013 W cm�2 and
�= 796 nm. The ionization threshold is marked by a vertical line.

a function of phase delay, on the frequency of these oscillations and the general trend of the
phase delay as a function of excess (or photon) energy. The minimal approach fails for excess
energies comparable with the ponderomotive potential, where the chaotic nature of the electron
dynamics renders results very sensitive to approximations.
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Appendix A. Taylor expansion of the phase

The functions F (k)
n = dk�n(t)/dt k|t=tn needed in equation (8) are

F (0)
n = i

Z tn (p + A(⌧ ))2

2
d⌧ � i"ftn, (A.1)

F (1)
n = i

(p + A(tn))
2

2
� i"f, (A.2)

F (2)
n = i(p + A(tn))A0(tn) � 1

� 2
. (A.3)

New Journal of Physics 11 (2009) 053011 (http://www.njp.org/)

http://www.njp.org/


14

Their explicit values for tn = 2⇡n/! are

F (0)
n = F0 + i2n⇡C + ipx', (A.4)

F (1)
n = i

(p + p')2

2
� i"f, (A.5)

F (2)
n = �i(p + p')!2x' � 1

� 2
, (A.6)

where C , x' and p' are defined in equation (12) and equation (14), respectively. F0 is a phase
that does not contribute to | 1

⌫ (p,')|2 (equation (9)).
For two atto pulses per IR cycle (⌫ = 2) we have an additional set of quantities F (k)

n+1/2.
They differ from the values of the F (k)

n in equations (A.4)–(A.6) only in two respects: the term
i2n⇡C in F (0)

n has to be modified to i(2n + 1)⇡C and in all quantities p has to be replaced by
�p, which follows from the Volkov propagator (6).
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