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1. INTRODUCTION

The response of atomic clusters on the irradiation by
strong femtosecond laser pulses is, despite numerous
experimental and theoretical investigations in the last
15 years (see recent reviews [1, 2]), a field of active
research. The interest is fostered by the observation of
an extremely effective energy absorption by the clusters
resulting in the emission of kiloelectronvolts-photons
[3], highly charged ions [4, 5] or fast electrons [6, 7].
While the basic absorption mechanism—the formation
of a nano-plasma which can absorb resonantly energy
if its eigenfrequency matches the laser frequency [8]—
is generally agreed by now [9–13], the mechanisms,
e.g., of ion [4, 5, 14, 15] and electron [6, 7, 16, 17]
acceleration are under current investigations. Here, we
will focus on the emission of fast electron which turned
out be determined by rescattering [16, 17] of electrons
at the polarized/charged cluster.

Whereas the kinetic energies of ions are due to the
Coulomb explosion of the charged cluster [18], the
electron dynamics does not merely follow from their
mutual repulsion but is strongly driven by the laser
field. We will show below, that the measured energy
spectra are due to an interplay of many-electron (laser-
heated nano-plasma inside the cluster) and single-elec-
tron (laser-assisted rescattering at the cluster) dynam-
ics. We will discuss a novel mechanism [17], namely
individual scattering of electrons at the cluster poten-
tial, and show that it is responsible for the observed
kinetic energy spectra of electrons.

Fast electron generation has been discussed in terms
of 

 

multiple

 

 scattering of electrons at 

 

different

 

 clusters in
the gas [19], which should therefore depend on the
cluster density. In this situation, scattering at the long-
range Coulomb tail of the clusters dominates, whereas
scattering inside the cluster is not crucial [19]. This
does not apply for hot electrons which have just crossed
the cluster border but are still in reach of the cluster’s
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Coulomb potential; they can be rescattered and the
dominating laser-driven “inside scattering” will define
their kinetic energy.

This situation is akin to the recollision in strong-
field atomic physics [20]. There, however, the phase of
the laser field at the electron’s release time determines
the final kinetic energy. A simple classical model [21],
which captures the main physics, shows that the energy
of direct electrons is not larger than 2

 

E

 

pond

 

 (the ponder-
omotive energy) and those which are backscattered
[22] have energies not larger than 10

 

E

 

pond

 

. The structure
of the scatterer does not play an important role; results
are very similar for different atoms [23]. In contrast to
that for extended scatterers [17], the structure of the
scattering potential, in particular the charge state of the
cluster, determines the electron energies.

2. JELLIUM CLUSTERS
IN STRONG LASER PULSES

In order to keep the picture for the electron acceler-
ation simple we study model clusters characterized by
the total number of 

 

N

 

 electrons, which are initially
bound in a jellium sphere of homogenous charge den-
sity (with its integral being 

 

N

 

) within a radius 

 

R

 

. We
neglect “creation” of new electrons through inner ion-
ization [2] and expansion of the charged cluster, i.e., no
bound electron is excited into the cluster and the cluster
radius 

 

R

 

 is fixed over the whole pulse. The first limita-
tion is abolished by considering clusters with different
electron densities. The latter one is not critical for the
situations we are interested in. A quantitative estima-
tion of the expansion dynamics is given in Appendix A.

The initial electron positions are determined by
minimizing the total energy of 

 

N

 

 particles interacting
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through Coulomb repulsion in a jellium sphere with the
potential

(1)

This is achieved by cooling the electronic system
during the propagation after initialization in a random
configuration. This procedure will most likely not lead
to the global minimum which is, however, of no impor-
tance here since the system is strongly heated by the
laser, whereby information about the exact initial con-
figuration is quickly lost. The initialization and the
response to the laser is obtained from molecular
dynamics calculations solving classical equations of
motion for the electrons. For particle numbers 

 

N

 

 > 10

 

4

 

we have used the fast-multipole method (FMM) [24] in
the implementation of Dachsel and Kabadshow [25].
Only thereby we could reach cluster sizes with as many
as 

 

N

 

 = 10

 

6

 

 interacting electrons.
The driving force on the electrons is given by (lin-

early or circularly polarized) laser pulses characterized
by their vector potentials

, (2a)

(2b)

with the envelope function for times 

 

|

 

t

 

|

 

 

 

≤

 

 

 

T

 

, (3)

where 

 

I

 

0

 

 = 3.51 

 

×

 

 10

 

16

 

 W/cm

 

2

 

. The center frequency
was in all cases 

 

ω

 

 = 1.59 eV corresponding to a wave-
length of 

 

λ

 

 = 780 nm.
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3. KINETIC ENERGY OF RELEASED 
ELECTRONS

We have performed systematic calculations of the
ionization varying the cluster size 

 

N

 

 over a wide range.
Furthermore, we have studied different electron densi-
ties by choosing different cluster radii 

 

R

 

 for a given 

 

N

 

.
Since they determine the eigenfrequency 

 

Ω

 

 of the
spherical nano-plasma, their exact value is crucial if it
is close to the laser frequency 

 

ω

 

 where absorption
becomes resonant. Beside the resonant case (

 

Ω

 

 = 

 

ω

 

) we
have calculated higher eigenfrequencies (

 

Ω

 

 > 

 

ω

 

) since
this is the typical case for laser-cluster interaction
where the eigenfrequency 

 

Ω

 

 change with time. At the
rising edge of the pulse the charging leads to large 

 

Ω

 

which is compensated later on by expansion of the clus-
ter. This lowers 

 

Ω

 

 which eventually may become reso-
nant with 

 

ω

 

 [12]. Since we omit cluster expansion here,
we study the relevant cases separately.

We start by presenting the dependence of the elec-
tron spectra on the size of the clusters in Fig. 1. All
spectra were obtained for pulses as specified in Eqs. (2)
and (3) with a laser intensity of 

 

I

 

 = 10

 

14

 

 W/cm

 

2

 

 and a
pulse duration of 

 

T

 

 = 100 fs. The electrons were propa-
gated long enough to ensure that the energy distribu-
tions 

 

S

 

(

 

E

 

) have reached their asymptotic shape. For 

 

N

 

 =
10

 

3

 

 and 10

 

4

 

 we have averaged over 100 and 10 random
orientations of the initial electron configuration,
respectively, in order to improve the statistics. For 

 

N

 

 =
10

 

5

 

 and 10

 

6

 

 we present single cluster results.
All spectra show a monotonic decrease for larger

energies 

 

E

 

. These decays can be approximated by an
exponential function

(4)

with 

 

E

 

kin

 

 a fitting constant and 

 

C

 

 an irrelevant normal-
ization factor. In discussing the electron energies we
will refer to these fitting constants 

 

E

 

kin

 

 simply as elec-
tron energies. They are presented in Fig. 2a.

SEkin
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Fig. 1. Abundance of emitted electrons as a function of their kinetic energy E for jellium clusters of different sizes N = 103, 104,
105, 106 (from left to right) and different eigenfrequencies Ω = 2ω, 3ω/2, ω, respectively. The pulse, cf. Eqs. (2) and (3), had a dura-
tion of T = 100 fs and an intensity of I = 1014 W/cm2. The spectra for the two lower eigenfrequencies are shifted upward for better
visibility. Note the different scales for the energy E which is given in terms of the ponderomotive energy Epond = 5.67 eV. All spectra
are fitted by exponential functions (solid lines).



204

LASER PHYSICS      Vol. 19      No. 2      2009

 SAALMANN

Clearly, they depend strongly on the cluster size;
note the different horizontal scale in Fig. 1 when going
from left to right and the logarithmic vertical scale in
Fig. 2a. The difference becomes most obvious for the
resonant case Ω = ω. Here the electron energies are
about two orders of magnitude larger (Ekin ≈ 842Epond

for N = 106 versus Ekin ≈ 9.4Epond for N = 103) for the
largest and smallest cluster sizes considered. Most
notably are the large energies Ekin � Epond for the larger
clusters which can only be explained by rescattering at
the strongly charged cluster as discussed below.
Whereas the laser intensity I is the same in all cases, the
cluster charges Q as observed at the end of the pulse
differ strongly as can be seen in Fig. 2b. The systemat-
ically larger charges Q for smaller eigenfrequencies Ω
are due to the effective collisionless heating of the clus-
ter’s nano-plasma close to the resonance [8, 12].

Obviously, there is a correlation between the elec-
tron energies Ekin and the cluster charges Q. In order to
quantify this effect we have developed a simple rescat-
tering model for extended systems [17]. The idea was
borrowed from the three-step model [20] of laser-atom
interaction. There, the electron, after release from the
atom and acceleration back towards the atoms, can be
elastically back-scattered at the atom. If this happens at

the right phase of the electric field [22] the final kinetic
energy will be considerably larger than for direct elec-
trons, i.e., those electrons which are not rescattered.
There are two main differences when going from atoms
to clusters: Firstly, the electron dynamics in clusters is
not phase-locked with the laser. Rather a plasma is
formed in the cluster and electrons may undergo multi-
ple collisions before they may end up in the cluster’s
Coulomb tail from where they may be driven back to
the cluster potential. Secondly, the scattering process
itself differs by the finite extension of the scatterer. This
is discussed in detail in Appendix B. It gives the maxi-
mal velocity an electron can acquire by passing an
extended potential in the presence of an oscillating
field, cf. Eq. (B9). The corresponding energy gain reads

(5)

This equation shows clearly the dependence of the
electron energies on the scattering potential in agree-
ment with the observation in Fig. 2. It is qualitatively
different from the rescattering at atoms where the struc-
ture of the scatterer is of minor importance [23]. Using
the ponderomotive energy of the peak intensity and the
charges Q as obtained from the calculation, cf. Fig. 2b,
we can estimate V and thus the final kinetic energies
according to Eq. (5). The corresponding values are pre-
sented in Fig. 3. The overall trend for the kinetic ener-
gies is quantitatively reproduced. Deviations are
mainly for small clusters (N = 103) where the model
overestimates the energies which could be due to the
fact that ionization occurs early in the pulse, i.e., at field
strengths smaller than the peak field strength.

It is known that increasing the ellipticity of the
polarization reduces the backscattering signal for atoms
[23]. The reason is that the electron does not hit that
atom (or ion) since the other laser component drives it
away from the rescattering axis. This is different in the
case of clusters where plasma heating continuously
brings electrons into the cluster’s Coulomb tail from
where rescattering can occur. Thus one would expect
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Fig. 2. Kinetic energy of electrons Ekin (a) and total cluster
charge Q (b) after irradiation with a laser pulse as specified
in Fig. 1. The values Ekin are the fitting constants from
Eq. (4) for the data presented in Fig. 1. Different symbols
refer to different eigenfrequencies of the model clusters as
specified. Open symbols (a) are from respective calcula-
tions far circularly polarized laser pulses. Note that both
vertical axis are logarithmic.
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Fig. 3. Kinetic energy of electrons Ekin according to the res-
cattering model, Eq. (5), for the clusters presented in Figs. 1
and 2.
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similar results for the electron energies for circular
polarization. Indeed, as can be seen by the open sym-
bols in Fig. 3a, results for circularly polarized even
quantitatively agree with those for linearly polarized
light.

Energy distributions are often attributed to the ther-
mal energy of electrons in the cluster. Our calculations
show that values for the final kinetic energy and typical
kinetic energies of plasma electrons (“temperature”)
differ considerably. We will not present absolute values
of this temperature for two reasons. First of all it
changes during the pulse. Secondly, the velocity distri-
bution of the plasma electrons does not have a Max-
well–Boltzmann shape due to the strong driving and
electrons that are rescattered at the cluster. Plasma elec-
tron energies at the peak of the pulse ranges from about
100 eV for clusters with N = 103 electrons to about
400 eV for clusters with N = 106 electrons. In contrast
to that, final kinetic energies change much more,
namely from about 50 eV to about 5 keV, cf. Fig. 2a at
Ω = ω, for these clusters.

Another indicator for non-evaporative release of
electrons are angular distributions of electrons.
Whereas Fig. 1 summarizes over all electrons, Fig. 4

shows the fitting constants as a function of the polar
angle ϑ, the angle between laser polarization axis and
direction of observation. We present here results for
N = 104 and 105. Independent of the cluster’s eigenfre-
quency Ω and thus the absolute values of the electron
energies Ekin, the fastest electrons are ejected along the
laser polarization direction, i.e. for ϑ = 0°. The fitting
constants for parallel ejection (ϑ = 0°) are about two
times larger than those for perpendicular ejection (ϑ =
90°). Furthermore, our data do not only show that the
electrons ejected along the polarization are faster but
also that the absolute ejection is stronger along the laser
polarization. The preferred ejection along the polariza-
tion axis has been observed experimentally for large
xenon clusters [7] as well as for small silver clusters
[16].

4. CONCLUSIONS

We have shown by model calculation with jellium
clusters that the emission energy of electrons strongly
depends on the cluster they are emitted from. For iden-
tical driving fields electrons are considerably faster if
the cluster is more strongly charged. This is due to res-
cattering of electrons at the cluster’s potential in the
presence of an oscillating laser field. A generalization
of the simple rescattering model for atoms explains the
dependence of the kinetic energies on this cluster
potential. Angular distributions indicate that the elec-
tron emission is preferred in the polarization direction
with faster electrons than perpendicular to it. This rules
out evaporation from the hot nano-plasma in the cluster
as the mechanisms for fast electron production.

APPENDIX A

CLUSTER EXPANSION

We estimate the relevance of the cluster expansion
by looking at the hypothetical dynamics of an ion at the
cluster surface. The electric field at the surface of a
cluster with a time-dependent charge Q(t) is

(A.1)

the latter being an upper limit. Assuming that the clus-
ter charging can be approximated by

(A.2)

with TQ the “charging duration.” We obtain an upper
limit for the radius from integrating Newton’s equation
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Fig. 4. Angular distributions for linearly polarized laser
pulses with I = 1014 W/cm2 and T = 100 fs. Shown are the
fitting constants Ekin as a function of the polar angle θ, the
angle between laser polarization axis and direction of obser-
vation.
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(t) = q�(t) for an atom with mass m and charge q

(A.3)

with the poly-logarithm function Li2. At the end of the
charging, i.e., at time t = TQ, one gets Li2(–e) ≈ –1.806
and thus

(A.4)

This gives an upper limit for the expansion ∆R. Abso-
lute values for some clusters considered above are give
in table. Even for the most extreme case the expansion
would not be larger than 10% during the laser-cluster
interaction time.
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APPENDIX B

RESCATTERING AT A FINITE WELL POTENTIAL

In order to write down the rescattering analytically
we consider a finite well potential of width L and depth
V. For comparison with the numerical data in Section 3
we set later L = 2R and depth V = (3Q)/(2R), see Eq. (1).
We use the Kramers–Henneberger frame, where the
potential oscillates according to the motion of a free
electron in an oscillating field, depicted as gray-shaded
area in Fig. 5. Considering that the potential is constant
outside one gets the final electron velocity directly
without any oscillating part as in the frame using the
length form [17]. We assume a sinusoidal form of the
potential’s velocity

(B.1)

The electron’s velocity is constant apart from the
jumps at the cluster border, which show up as kinks in
the trajectories in Fig. 5. We will use the symbols vi, vt,
and vf for its initial, transient and final velocity, respec-
tively. These three velocities are connected by formulas
guaranteeing energy conservation (in the moving
frame) at the times t1 and t2, when the electron enters or
leaves the potential well

, (B.2a)

(B.2b)

with v1 = vwell(t1) and v2 = vwell(t2) the well’s velocity
at the crossing times.

Since for the case we are interested in, the time dif-
ference t2 – t1 is smaller than one laser period 2π/ω we
will use below the phases ϕ1 := ωt1 and ϕ2 := ωt2 to
characterize the crossings of the potential borders. The
final velocity reads

(B.3)

which is of course equivalent to the expression derived
for the electric field in length form [17].

The phases ϕ1 and ϕ2, thus the velocities v1 and v2,
can not be chosen arbitrary but are connected through
the external parameter vi, L, V, and �0. One can calcu-

late the width , the potential should have, for a given
combination of ϕ1 and ϕ2 from

(B.4)

and obtains the equation

(B.5)

For a given L, Eq. (B.5) is an implicit equation connect-
ing ϕ1 and ϕ2.
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Fig. 5. Three electron trajectories (straight lines) passing an
oscillating finite well (gray-shaded area). The initial veloc-
ity vi is the same in all three cases. Entering and leaving the
well potential at different times/phases of the oscillation
leads to different final velocities vf. The strength of the
kinks at the borders, as given by Eq. (B.2), depend beside
on the potential depths also on the respective velocities of
the potential at the crossing times.

Compilation of radial changes ∆R giving an upper limit
of expansion during the charging time TQ ≈ 50 fs according
to Eq. (A.4). For m we have used the atomic mass of xenon
and q = 1. Estimating the atomic charge q from Q using the
xenon density would give even smaller values q and thus
smaller changes ∆R of the radii

Cluster (N, Ω) Rinit Qfinal ∆R

(103, 2ω) 35 Å 583 1.8 Å

(103, ω) 35 Å 945 3.5 Å

(106, 2ω) 351 Å 1.34 × 104 0.5 Å

(106, ω) 351 Å 6.27 × 105 26 Å
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In order to find the values of v1 and v2 which makes
vt and vf extremal, we look at the derivations with
respect to these velocities

, (B.6a)

(B.6b)

Limiting vi ≥ �0 ≥ v1 and assuming that the electron
does not get trapped (vt – v2)2 > 2V, the derivatives for
vt and vf in Eqs. (B.6), are always positive or negative,
respectively. Thus the optimal crossings are at v1 = +�0

and v2 = –�0. With other words, for maximal vt and vf
the potential should move along with electron for the
step down and against it for the step up, cf. Fig. 5. The
maximal final velocity reads

(B.7)

and is achieved only if the potential width fulfills the
following equation

(B.8)

Both expressions (B.7) and (B.8) simplify if one
assumes that the potential’s transient velocity is much

larger than the initial and the quiver velocity  � vi

and  � �0. Both assumptions are fulfilled in the
calculations presented above. Finally we get

(B.9a)

(B.9b)

The first equation gives the optimal value for the veloc-
ity that can be acquired, the second one is a requirement
which should be fulfilled in order to acquire it.
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