
 

Adiabatic Passage to the Continuum: Controlling Ionization with Chirped Laser Pulses
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We demonstrate that, by changing the direction of the chirp in vacuum-ultraviolet pulses, one can switch
between excitation and ionization with very high contrast, if the carrier frequency of the light is resonant
with two bound states. This is a surprising consequence of rapid adiabatic passage if extended to include
transitions to the continuum. The chirp phase locks the linear combination of the two resonantly coupled
bound states whose ionization amplitudes interfere constructively or destructively depending on the chirp
direction under suitable conditions. We derive the phenomenon in a minimal model and verify the effect
with calculations for helium as a realistic example.
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Rapid adiabatic passage is an extremely simple, albeit
rather efficient and robust, population-transfer technique.
It has been known for a long time [1,2] and is explained in
review papers [3–5] and textbooks [6]. Initially investigated
for nuclear magnetic resonance [1], it was experimentally
implemented with lasers for the first time in the 1970s (a list
of experiments can be found in a review [3]). The necessary
time-varying resonance condition was achieved by very
different means: Stark shifts in molecules [7], chirping the
laser frequency [8] position-dependent Doppler shift of the
laser beam [9], or manipulating coupled waveguides [10].
The selected population of adiabatic states with chirped
pulses has been measured in situ by weak-field ionization
of the Stark-shifted states [11,12].
In the following we will demonstrate that in the context

of intense vacuum-ultraviolet (VUV) pulses, a new pos-
sibility opens: namely to use the chirp direction as an
effective control for turning ionization “on” or “off,”
although ionization is typically inevitable when atoms
are exposed to VUV light. This is quite surprising since
the direction of the chirp does not play any role in
traditional rapid adiabatic passage [3–6]. Possible applica-
tions include suppression of ionization, an unavoidable but
not always welcome effect of high-frequency laser-matter
interaction. This is in particular true for coherent diffractive
imaging [13], where ionization inflicts radiation damage.
More generally, it may turn out that freely optimized pulses
often contain chirped parts, which serve the purpose of
transiently locking adiabatic states.
We will explain the main mechanism with a minimal

model and show subsequently that our findings equally
apply to real atoms. To this end we consider first an electron
in one dimension subject to a soft-core Coulomb potential
VðxÞ ¼ −1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1=2

p
and a Gaussian light pulse with the

time-dependent vector potential

AβðtÞ ¼ AβgβðtÞ cosðϕβðtÞÞ; ð1aÞ

gβðtÞ ¼ expð−2 ln 2t2=T2
βÞ; ð1bÞ

whose frequency drifts linearly in time

ωβðtÞ ¼
d
dt

ϕβðtÞ ¼ ω0 þ
4 ln 2

β þ 1=β
t
T2

; ð1cÞ

controlled by a dimensionless chirp parameter β. The
Fourier-limited pulse (β ¼ 0) is characterized by carrier
frequency ω0 and length T. Note, that the strongest chirp
is achieved with β ¼ %1 and that any chirp stretches the
pulse in time to Tβ ¼ ½1þ β2'1=2T, which implies a reduced
peak amplitude ofAβ ¼ ½1þ β2'−1=4Amax, leaving the pulse
energy unchanged [14]. We solve the time-dependent
Schrödinger equation (TDSE) including the light-matter
coupling term AβðtÞp̂ in the basis of field-free eigenstates
[ [15], Sec. 2]. The two lowest states have energies of E0 ¼
−24.2 eVandE1 ¼ −8.6 eV, respectively, corresponding to
a transition energy of Δ ¼ E1 − E0 ¼ 15.6 eV. Although
not essential, E0 is close to the binding energy of helium.
The two-level system restricted to the two lowest states

of the model, constitutes our case I. It shows upon driving
with a chirped laser almost perfect rapid adiabatic passage,
cf. Fig. 1(e). With a properly chosen carrier frequency, e. g.,
ω0 ¼ Δ as in Fig. 1, the uncoupled dressed states with
energies E0 þ ωβðtÞ and E1 would cross. The laser cou-
pling, however, pushes them apart, as shown in Fig. 1(a),
and thereby suppresses (nonadiabatic) transitions. As a
consequence, only one adiabatic state is occupied for all
times. Yet, this enables a transition since the adiabatic state
changes its character [2–6]. The sign of the chirp β does not
play any role. Indeed, the final occupation probability is
identical for pulses “flipped” in time [ [15], Sec. 4].
What happens if one bound state is replaced by a

continuum allowing photoionization? We use the same
underlying 1D system and laser parameters as before, but
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remove the ground state and start from the first excited
state, constituting case II. At a first glance, the dressed state
with energy E1 þ ωβðtÞ seems to intersect the levels of the
discretized continuum, see Fig. 1(b). However, the diagon-
alized levels shown are adiabatic levels and exhibit narrow
avoided crossings, facilitating nonadiabatic transitions, see
the inset of Fig. 1(b). They form the most striking differ-
ence to the bound two-level system and allow us to preserve
the initial state, if the level crossings are transversed
diabatically. Nevertheless, the many possibilities to stay
adiabatically in a continuum level lead to a significant
depletion of the initial state. This is seen in Fig. 1(f),
rendering the bound-continuum “two-level system” very
similar to the bound-bound one, which is also corroborated
by the fact that reversing the sign of the chirp does not
change the depletion. Note, however, that with a reversed
chirp, modified electron spectra may result in the saturation
regime, since either the low-energy (β < 0) or the high-
energy (β > 0) tail remains unpopulated.
In the next and final case III, we keep the continuum but

again add the bound state, we had dropped before. Through
the time-dependent frequency Eq. (1c) and the coupling,
two adiabatic states are formed which contain roughly the
same amount of the two bound states when the pulse is at
full strength around t ¼ 0, see Figs. 1(g) and 1(h). Yet, for
this two-level system, which is in contrast to case I addi-
tionally coupled to the continuum, reversing the chirp has
dramatic consequences: while the negative chirp leads to a
similar effect as in the pure two-level system, namely a
nearly complete exchange of the two bound states apart

from small losses to the continuum [Fig. 1(c)], the system
almost fully ionizes under positive chirp [Figs. 1(d)
and 1(h)]. Note that for both chirp directions, the initial
state gets fully depleted.
One can get from the insets of Figs. 1(c) and 1(d) a

qualitative reason for this drastic difference: apparently the
upper adiabatic state (referred to as “↑” in the following)—
initially populated for the negative chirp—hardly couples
to the continuum as apparent from the very narrow avoided
crossings as the inset of Fig. 1(c) reveals. Comparatively
broader avoided crossings [inset of Fig. 1(d)] indicate that
the lower adiabatic state “↓”, initially populated for the
positive chirp exhibits a significant interaction with the
continuum, similar to case II with one bound and one
continuum state. As a consequence the ionization proba-
bility differs strongly when reversing the sign of the chirp
parameter β. For negative β one sees hardly any ionization,
for positive β there is strong ionization. We stress that the
absolute value of the two pulses in the frequency domain
is identical; they differ only by their phase. Hence, the
difference in ionization cannot be attributed to a resonance
effect: in fact, both pulses are resonant in the same manner.
Also, for both chirp directions, the initial state gets fully
depleted. One may say that the sign of the chirp decides if
the three-level system behaves like the bound-bound
(case I) or the bound-continuum (case II) system, although
for each isolated two-level system the chirp direction does
not matter.
Figure 2 summarizes the strong dependence of case III

on the chirp, confirming that significant ionization occurs
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FIG. 1. Dressed-state description for cases I, II, and III as discussed in the text and sketched in the insets. Panels (a) and (e): two-level
system with positively chirped pulse (case I). Panels (b) and (f): single level coupled to a continuum with positively chirped pulse
(case II). Panels (c) and (g) and (d) and (h): two levels coupled to a continuum with negative and positive chirp, respectively (case III).
Upper row: time-dependent energy levels (black lines) and corresponding occupations (green lines with the thickness corresponding to
the occupation probability). The dense set of lines in (b)–(d) represents the discretized continuum. Lower row: occupation probability of
the two lowest [in (f) only the lowest] field-free states. The gray-shaded areas show the envelope (with the brightness gradient illustrating
the frequency chirp) of the driving laser pulse. Time t is measured in units of the pulse duration Tβ.
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for β > 0 from the lower state “↓” since the peak energy is
Epeak ≈ 4 eV. On the other hand for β < 0, ionization
originates from the upper state “↑” with Epeak > 8 eV
but is strongly suppressed. Consequently, the total ioniza-
tion yield (grey-shaded area) suddenly drops as a function
of decreasing β around β ¼ 0. The two peak positions
result from an Autler-Townes splitting [18], from which we
estimate at the maximal field strength Aβðt ¼ 0Þ ¼ Aβ

E↓↑ ¼ E0 þ 2ω0 ∓ Ω01; ð2Þ

with the laser frequency ωβðt ¼ 0Þ ¼ ω0 ¼ Δ, cf. Eq. (1c),
and the Rabi frequency Ω01 ≡ 1

2 jAβV01j, where Vjj0

denotes the coupling matrix element. We obtain E↓ ¼
3.6 eV and E↑ ¼ 10.4 eV for the parameters of Fig. 2 in
good agreement with the peak positions seen there.
Why does a typical two-level adiabatic passage system

become extremely sensitive to the chirp direction when
coupled to a continuum? An essential dressed-state repre-
sentation, where the Hamilton matrix is augmented with
states “dressed” by an appropriate number of photons,
provides the answer. Summarizing the detailed derivation
in the Supplemental Material [ [15], Sec. 3], the minimal
states required are the two bound states φ0 and φ1,
resonantly coupled through V01 with E1 − E0 ¼ ω0 and
two states φu and φg in the continuum with the same energy
E but different symmetry. The latter couple among each
other through Vug and each of them couples to one bound
state via the matrix elements V0u and V1g, respectively. In
the dressed-state representation, states couple only if they
have opposite symmetry (gerade vs ungerade) and if they
differ by exactly one dressing photon. Therefore, the effec-
tive Hamiltonian matrix constructed from the four states

contains only five dressed states and can be cast into a form
where the 2 × 2 bound and the 3 × 3 continuum blocks are
diagonalized [15]:

0

BBBBBBBB@

E0 þ 2ω Ω01 Ω0u 0 0

Ω10 E1 þ ω 0 Ω1g 0

Ωu0 0 Eþ ω Ωug 0

0 Ωg1 Ωgu E Ωgu

0 0 0 Ωug E − ω

1

CCCCCCCCCCA

→

0

BBBBBB@

E↓ 0 · C↓ ·

0 E↑ · C↑ ·

· · · 0 ·

C↓ C↑ 0 E 0

· · · 0 ·

1

CCCCCCA
.

Here, ω denotes the instantaneous frequency ωβðtÞ and the
Rabi frequencies are defined asΩjj0 ≡ 1

2AβgβðtÞVjj0 with gβ
the Gaussian from Eq. (1b). We would like to stress that the
chirp β merely selects the adiabatic state, “↓” vs “↑”, but is
not essential for the subsequent discussion. The coupling
terms C↓↑ read for the case E0 þ ω ¼ E1 as

C↓↑ ¼
∓ Ω0uΩug − ωΩ1gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ω2 þ 4Ω2
ug

q : ð3Þ

At the pulse peak, the coupling C↑ vanishes for

Ω0u

Ω1g
¼ ω

Ωug
or

Aβ

2

V0u

V1g
¼ ω0

Vug
: ð4Þ

Together with the adiabatic locking to either state “↓” or “↑”
(i.e., keeping a fixed combination of ground and excited
state, just as in conventional rapid adiabatic passage) this
explains the very different electron dynamics for positive or
negative chirps β, respectively. That the chirp with direction
sgnðβÞ ¼ %1 creates a locked linear combination in time is
illustrated in Figs. 3(a) and 3(b) with the time-dependent
bound-state density in the model, which oscillates with the
energy difference ω0 ¼ E1 − E0 of the bound states but is
otherwise stationary over the main part of the pulse.
Having established that the chirp generates a locked linear

combination of the two bound states even in the presence
of the continuum (and possibly other bound states), it is
tempting to describe adiabatic passage to the continuum as a
standard strong-field ionization process [19]

jψðtÞi ¼ −i
Z

t
dt0Ûðt; t0ÞAβðt0Þp̂jψ iniðt0Þi; ð5aÞ
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FIG. 2. Electron-energy spectra of the model system for
various chirp parameters β. The pulse parameters [14] are
I ¼ 3 × 1015 W=cm2, T ¼ 2 fs, and ω0 ¼ 15.6 eV. Without a
Stark shift one would expect a peak at E ¼ 7 eV. For negative β
peaks shift towards higher energies, ionization is increasingly
suppressed; this is most clearly seen from the integrated ioniza-
tion probability shown as a gray-shaded area on the left side.
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with the initial “chirp-locked” state

jψ iniðt0Þi ¼ sgnðβÞj0ie−iE0t0 þ j1ie−iE1t0 ; ð5bÞ

and the (Volkov) propagator

Ûðt; t0Þ ¼ e−i
R

t

t0
dt00½p̂2=2þp̂Aβ cosðω0t00Þ': ð5cÞ

For the latter we fix the vector potential at maximal field
strength Aβ and neglect the chirp in the frequency since it
changes the photon energy maximally by jδω=ω0j < 0.03
for our parameters.
With these approximations, we can use Eq. (5) in order to

calculate the amplitude hkjψðtÞi for a specific continuum
state with momentum k analytically [15]. At resonance
k2=2 ¼ E0 þ 2ω0 ¼ E1 þ ω0 and in leading order of the
electron-photon coupling parameter

λ ¼ Aβk=ω0; ð6Þ

the ionization probability Pres
ion ≡ jhkjψðt → ∞Þij2 reads

Pres
ion ∝ jsgnðβÞhkj0iλ2=2þ hkj1iλj2: ð7Þ

Obviously, ionization is suppressed for a negative chirp
β < 0 if hkj0iλ=2 ¼ hkj1i. It can be shown [15] that this
condition is equivalent to condition in Eq. (4) above.
Moreover, Pres

ion clearly shows that the suppression or
enhancement of ionization in the dressed continuum,
dependent on the chirp direction, is due to destructive or
constructive interference of the lower bound state j0i
having absorbed two photons ð∝ λ2Þ and the higher bound
state j1i after absorption of one photon ð∝ λÞ.
Having worked out adiabatic passage to the continuum

with a minimal model, we will finally demonstrate it for
realistic 3D systems, whereby A⃗βðtÞ ¼ AβðtÞe⃗z. To this end
we will present calculations for a helium atom within the
single-active-electron approximation, certainly applicable
for the parameters used. With technical details summarized

in the SupplementalMaterial [15], we show results in Figs. 4
and 5. As before, all calculations are done for the resonant
frequency ω0 ¼ Δ ¼ E2p − E1s ≈ 21 eV, but apply simi-
larly to quasi-resonant frequencies ω0.
Figure 4(a) shows a clear transition of the ionization

probability Pion as a function of the chirp β with a contrast
of about 80%. Closely related, and almost complementary
to this behavior, the excitation probability Pex changes. For
chirp values jβj > 2 these two quantities add up approx-
imately to 1. For smaller β the initial 1s state does not get
fully depleted, cf. dashed line in Fig. 4(a). The symmetry
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(b) chirp, respectively. The densities are obtained by solving
the TDSE for the 1D model system (I ¼ 3 × 1015 W=cm2,
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Pinið−βÞ ¼ PiniðþβÞ follows from a more general relation
for pulses “flipped” in time [15]. Figure 4(b) shows the
ionization (and for completeness the excitation) probability
as a function of laser intensity I for two chirp parameters
β ¼ %3 and fixed pulse duration of T ¼ 3 fs [14]. The
graph covers the entire range from negligible ionization to
full saturation. Note, that this transition occurs at rather
different intensities for positive and negative chirps β.
Finally, Fig. 5 confirms the important role of two-

photon absorption for the chirp-sensitive ionization
according to Eq. (7): long pulses are too weak (note that
we use fixed-fluence pulses in Fig. 5) for efficient two-
photon processes such that the condition for perfect
interference is missed by an increasing margin lowering
the contrast of negative and positive chirped ionization.
Short pulses weaken the prevalence of the resonant energy
k due to their large energy spread and the fact that also
higher-order multiphoton processes can be realized due to
the large intensity of the light. This is indicated by the
larger deviation between full ionization and ionization by
two photons (dashed lines) for short pulses. Moreover,
ultrashort pulses activate the qualitatively different regime
of nonadiabatic photoionization [20].
To summarize: if rapid adiabatic passage is extended to

include transitions to the continuum, the direction of the
chirp decides if ionization is suppressed in favor of
excitation with high contrast or vice versa. The phenome-
non is universal for suitable combinations of parameters
which occur naturally, e.g., for intense VUV pulses exciting
resonantly the 1s-2p transition in helium. It is remarkable
that the locking of the bound states due to the chirp persists
during the main part of the pulse almost unaffected by the
laser-induced interaction with free electrons which act as an
ordinary photon-dressed continuum. This may in general
simplify in the future the approach to electron dynamics
controlled by shaped light pulses.
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Supplement “Adiabatic passage to the continuum”

Ulf Saalmann, Sajal Kumar Giri, and Jan M. Rost

Technical details for laser pulses and the treatment of the time-dependent Schrödinger
equation, with all of them being standard, are provided. Parameters for the numerical
calculations are specified. Furthermore, we give details for deriving the conditions for
ionization suppression. Finally, a proof for pulses “flipped” in time is given.

1 Chirped laser pulses

We consider only Gaussian pulses

A�(t) = A� g�(t) cos
�
��(t)

�
with the envelope g�(t) = e

�2 ln2 t2/T�
2
, (S1a)

A� being the peak value of the vector potential and T� the full-width-at-half-maximum pulse
duration. By means of a quadratic modification of the phase in the frequency domain around
the central frequency !

0

e��(!) = �
T 2

4 ln2

[! � !
0

]

2, (S1b)

the phase in time in Eq. (S1a) grows also quadratically [1]

��(t) = !
0

t+
��

2

t2

T 2

with the pre-factor �� ⌘ 4 ln2

�+1/�
. (S1c)

This results in a linear chirp of the instantaneous frequency !�(t) =
d

dt��(t)

!�(t) = !
0

+ ��
t

T 2

. (S1d)

The rate of frequency change is d

dt!�(t) = ��/T
2, which becomes largest for a given pulse

duration T where the prefactor �� is maximal. This occurs for � = ±1, with d

dt!�=±1

=

±2 ln2/T 2. Note that a finite chirp � modifies the effective strength and pulse duration in the
envelope function (S1a) according to

A� =

A
max

4
p
1+�2

and T� =

p
1+�2 T. (S1e)

Thus, chirped pulses are longer and weaker, but the product A�
2T� is constant, i. e., the energy

of the pulse does not depend on the chirp �. This is just a manifestation of Parseval’s theorem:
Since we do not change the absolute value in the frequency domain, but just the phase as in
Eq. (S1b), the integral of the absolute square in the time domain is also unchanged.

Throughout the text we will use the dimension-less quantity � in order to characterize the
chirp of the pulse.

2 Time-dependent Schrödinger equation

2.1 Basis-set representation

We will discuss the time evolution of the electron state  (t) due to the Hamiltonian ˆH(t) =

ˆH
0

+A�(t) p̂ in terms of a field-free basis ˆH
0

'j = Ej'j . For

 (t) =
X

j

e

i�j'jaj(t) and Vjj0 = e

�i[�j��j0 ]h'j |p̂|'j0i. (S2)

1
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the time-dependent Schrödinger equation (TDSE) reads

i ȧj(t) =
X

j0

⇥
Ej�jj0 +A�(t)Vjj0

⇤
aj0(t). (S3)

This description applies for both cases discussed in the text, the 1D model system and the 3D
case of helium. The additional phase factors in the expansion (S2) allow for working with real
Hamilton matrices. We chose �j = (�1)

j⇡/4 and �j = (�1)

`j⇡/4 for the 1D and 3D case,
respectively. In the 1D case j is odd/even for a gerade/ungerade state 'j , in the 3D case `j is
the angular momentum of the field-free state 'j .

2.2 Two-level system and rapid adiabatic passage

For a two-level system we use

c
0

(t) ⌘ e

i[E0t���(t)+E1t]/2a
0

(t), c
1

(t) ⌘ e

i[E0t+��(t)+E1t]/2a
1

(t) (S4)

to get instead of (S3)

i

✓
ċ
0

(t)
ċ
1

(t)

◆
=

✓
+

1

2

��(t)
1

2

⌦

01

(t)
1

2

⌦

10

(t) �1

2

��(t)

◆✓
c
0

(t)
c
1

(t)

◆
, (S5)

with the Rabi frequency and the detuning

⌦jj0(t) ⌘ A� g�(t)Vjj0 , ��(t) = E
0

+!�(t)� E
1

. (S6)

Hereby we have used the time-dependent frequency (S1d) and simplified the coupling by
means of the rotating-wave approximation, i. e. replaced cos

�
�(t)

�
by either 1

2

e

+i�(t) or 1

2

e

�i�(t).
The TDSE (S5) describes the process of rapid adiabatic passage [2]. Hereby one transfer

the population from one state to the other by adiabatically changing the character of eigenstate
including the non-diagonal coupling terms.

2.3 Dressed-state description

Similar to Eq. (S4) one can split the amplitudes aj(t) into a sum as

aj(t) =
X

k

cjk(t)e
ik��(t), (S7)

which results in a partitioned TDSE

i ċjk(t) =
⇥
Ej+k !�(t)

⇤
cjk(t) +

X

k0=k±1

X

j0

⌦jj0(t) cj0k0(t) (S8a)

with ⌦jj0(t) ⌘ A�

2

g�(t)Vjj0 . (S8b)

In principle the sum over k runs from �1 to +1, but one can limit it to finite values. The
coupling matrix ⌦jj0 is proportional to the envelope g� of the pulse (S1), the oscillations are
transferred to the diagonal blocks. It has only finite values for states that are coupled: For the
1D model discussed in the text this requires that (i) one of states is gerade and the other one is
ungerade and (ii) the “photon-number” difference should be |k�k0| = 1.

2.3 Numerical propagation

The TDSEs for both, the 1D model system and the 3D helium atom, are propagated in terms of
field-free eigenstates. Therefore, eigenenergies and eigenfunctions as well the corresponding

2
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dipole matrix elements are calculated numerically. For the 1D model we considered the lowest
200 states in a box of size x = �250 a

0

. . .+250 a
0

(with a
0

being the Bohr radius) and used a
Numerov approach with a step size of �x = 0.1 a

0

. For the 3D helium atom we use an effective
potential [3]. For angular momenta ` = 0 . . . 4 we calculated the lowest 750 states in a box of
size r = 0 . . . 103a

0

with a Numerov step size of �r = 0.01 a
0

. For the longer pulses shown in
Fig. 5 of the main text we used 2250 states with r

max

= 3⇥10

3 a
0

(for T > 4 fs) and 3750 states
with r

max

= 5⇥10

3 a
0

(for T > 12 fs), respectively.

3 Suppression of ionization

3.1 Dressed-state description

In order to understand the ionization dynamics it is sufficient to consider a set of essential
states, which consist of the ground state (E

0

), the excited state (E
1

), and a gerade (E
g

) and an
ungerade (E

u

) continuum state, respectively. Those states, in its original and dressed form,
build this effective Hamilton matrix

H
e↵

(t) =

0

BBBBBBBBBBBBBBBBBBB@

E
0

+2! ⌦

01

0 0 0 0 0 ⌦

0u

⌦

10

eE
1

+! 0 0 ⌦

1g

0 0 0

0 0 E
g

+! 0 0 ⌦

gu

0 0

0 0 0

eE
u

+! ⌦

ug

0 0 0

0 ⌦

g1

0 ⌦

gu

E
g

0 0 ⌦

gu

0 0 ⌦

ug

0 0

eE
u

⌦

ug

0

0 0 0 0 0 ⌦

gu

E
g

�! 0

⌦

u0

0 0 0 ⌦

ug

0 0

eE
u

�!

1

CCCCCCCCCCCCCCCCCCCA

. (S9)

Hereby, we use the abbreviation ! ⌘ !�(t), omit the time argument for all ⌦, mark gerade and
ungerade state with a bar or a tilde, respectively, and separate blocks with a definite photon
number k by dashed lines. The two continuum energies are the same: E = E

g

=

eE
u

. Note the
the couplings ⌦

ug

between the two continuum state are much larger than among bound states
(⌦

01

) or between bound and continuum states (⌦
0g

and ⌦

1u

). That is the reason that continuum
states dressed by ±1 photons have to be included in the effective Hamilton matrix (S9).

In order to understand the emerging dynamics from matrix (S9), one should rearrange it
by exchanging columns and rows to get

H
e↵

(t) =

0

BBBBBBBBBBBBBBBBBB@

E
0

+2! ⌦

01

⌦

0u

0 0 0 0 0

⌦

10

eE
1

+! 0 ⌦

1g

0 0 0 0

⌦

u0

0

eE
u

�! ⌦

ug

0 0 0 0

0 ⌦

g1

⌦

gu

E
g

⌦

gu

0 0 0

0 0 0 ⌦

ug

eE
u

+! 0 0 0

0 0 0 0 0 E
g

�! ⌦

gu

0

0 0 0 0 0 ⌦

ug

eE
u

⌦

ug

0 0 0 0 0 0 ⌦

gu

E
g

+!

1

CCCCCCCCCCCCCCCCCCA

. (S10)

Thereby we end up with three blocks: one consisting of bound states only and two decoupled
blocks in the continuum. Only one of the two is connected to the bound-state block, the other
one (at the bottom-right) is not and therefore can be neglected from now on.

3
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In order to understand the chirp-dependent ionization dynamics we have to consider the
four top-left blocks, which are given also in the text. In the diagonal, not only the 2⇥2 bound-
state block, but also the 3⇥3 continuum-state block can be diagonalized analytically to get

H
e↵

(t) =

0

BBBBBBBBBBBBBBBBBB@

E# 0 · C# · · · ·
0 E" · C" · · · ·

· · · 0 · · · ·
C# C" 0 E 0 · · ·
· · · 0 · · · ·

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

1

CCCCCCCCCCCCCCCCCCA

, (S11)

whereby matrix entries with a dot are not specified (they are not necessarily 0), since they are
not relevant for the following discussion. The respective eigenvectors are

V#" =
1p
2

�
1,±1

�
and eV =

1p
2⌦

ug

2

+ !2

�� ⌦

ug

,!,+⌦

ug

�
. (S12)

Relevant are the two matrix elements connecting either of the adiabatic states with energy E#"
with the continuum state at energy E. They read explicitly

C#" =
⌥⌦

0u

⌦

ug

� !⌦
1gp

2!2

+ 4⌦

ug

2

(S13)

and are given as Eq. (3) in the main text. Apparently, under the condition ⌦

0u

⌦

ug

= !⌦
1g

the
two couplings C#" may have very different absolute values.

3.2 Strong-field propagated wavefunction

The Volkov propagator [see Eq. (5c) in the main text]

ˆU(t, t0) = e

�i

R t
t0dt

00
[p̂2/2+p̂A� cos(!0t00)] (S14)

is diagonal in the momentum representation
⌦
k| ˆU(t, t0)|k↵ = e

�i

R t
t0 dt

00
[k2/2+A�k cos(!0t00)]

= e

�i[S(t)�k2t0/2�� sin(!0t0)], (S15)

with � ⌘ A�k/!0

being the electron-photon coupling parameter and S(t) ⌘ k2t/2 + � sin(!
0

t)
accounting for a phase which is irrelevant for the absolute value of the amplitude (S15). By
means of the Jacobi-Anger expansion the diagonal form of ˆU reads

⌦
k|U(t, t0)|k↵ = e

�iS(t)
+1X

m=�1
e

i[k2/2+m!0]t0Jm(�). (S16)

Inserting this into Eq. (5a) of the main text we get

⌦
k| (t!1)

↵
= �i e

iS(t)�!
0

T�

p
⇡

2

X

m

e

�
[

k2/2�[m+2]!0�E0]
2
T�

2

⇥ ⇥
sign(�)Jm+1

(�)hk|0i+ Jm(�)hk|1i⇤. (S17)

4



Supplement “Adiabatic passage to the continuum” Saalmann, Giri, and Rost

The dominant ionization channel is the two-photon absorption, collapsing the the sum in (S17)
to the term m = 0, with the final continuum energy k2/2 = E

0

+2!
0

. Since the argument in the
Bessel function is �<⇠ 1, the term with m = 0 dominates. This allows for additionally retaining
only the lowest order of � in the Bessel functions J

0

(�) = 1 +O(�2) and J
1

(�) = �/2 +O(�3).
Thus we may formulate the condition for ionization suppression as

�

2

hk|0i = hk|1i or A�

2

hk|0i
hk|1i =

!
0

k
, (S18)

where we have used in the latter version the explicit expression of the electron-photon coupling
parameter �, cf. its definition (6) in the main text. The condition for continuum suppression
obtained from the dressed-state picture [Eq. (4) in the main text] and from the strong-field
amplitude with a locked initial state [Eq. (S18) above] are equivalent. It can be shown that for
large-k continuum states V

ug

=

2

⇡k and
P
j2u

Vjg = k, where the sum corresponds to the Volkov-
propagated state.

4 Pulses “flipped” in time

We will proof that the final occupation of an initially populated state is the same in both cases,
when the system is driven either by a pulse F (t) or its “flipped” version eF (t) ⌘ F (�t). In other
words the depletion of the initial state does not depend on the “direction” (i. e. in the cases
studied in the text it does not depend on the sign of chirp) of the driving pulses.

Instead of looking at the TDSE (S3) it is convenient to consider the time-evolution op-
erator ˆU(t, t0), which is also defined by a “TDSE”, which reads in a basis or close-coupling
representation

i

@

@t
U(t, t0) = H(t)U(t, t0) (S19)

with bold symbols denoting matrices and the Hamilton matrix in particular being H(t) =

Hjj0(t) = Ej�jj0 +F�(t)Vjj0 as in Eq. (S3). The formal solutions of (S19) read for both cases, i. e.
driving by F (t) and eF (t), respectively,

U(+⌧,�⌧) = e

�i �tH(tn) . . . e�i �tH(t1), (S20a)
eU(+⌧,�⌧) = e

�i �tH(t1) . . . e�i �tH(tn), (S20b)

whereby we consider n ! 1, �t ! 0, n⇥ �t = 2⌧ , and tk = �⌧ + [2k�1]�t. By means of
H(tk) = H>

(tk) one can deduce from the two sums (S20)
eU(+⌧,�⌧) = U>

(+⌧,�⌧) i. e. eUjj0(+⌧,�⌧) = Uj0j(+⌧,�⌧). (S21)

In particular the special case eUjj(+⌧,�⌧) = Ujj(+⌧,�⌧) is interesting, since it guarantees
that from aj(�⌧) = eaj(�⌧) = �jjinit follows immediately ajinit(+⌧) = eajinit(+⌧) with ⌧ being
arbitrarily large. So indeed, the amplitudes of the initial state j

init

are the same, irrespective of
the “direction” of the pulse.
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