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(Received 24 December 2012; published 25 March 2013)

We demonstrate that fast removal of many electrons uncovers initial correlations of atoms in a finite

sample through a pronounced peak in the kinetic-energy spectrum of the exploding ions. This maximum is

the result of an intricate interplay between the composition of the system from discrete particles and its

boundary. The formation of the peak can be described analytically, accounting for correlations beyond a

mean-field reference model. It can be experimentally detected with short and intense light pulses from

4th-generation light sources.
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Correlation effects beyond the mean-field description
are important in understanding the detailed structure of
matter. Amajor scheme has been the ‘‘exchange-correlation
hole’’ indispensable in electronic-structure theory [1],
which focuses on bound states, mostly even on the ground
state. Nowadays, very intense laser pulses at extreme ultra-
violet and x-ray energies [2,3] can create situations which
allow us to probe correlations in the continuum. One phe-
nomenon in this context is massively parallel ionization [4]
of a cluster or large molecule: Many electrons are ionized
almost simultaneously to an energy high enough that the
attractive ionic background does not play a role in the short
time span during which energy exchange of electrons in the
continuum happens.

Complementarily, one may ask how the many ions
behave, whose dynamics (in the case of short intense
x-ray pulses [2,3]) develops on a longer time scale, when
most of the electrons have left [5]. Do the ions also develop
a correlated motion in the continuum—and if so, what are
its characteristics in terms of observables, e.g., the energy
spectrum of the ions? The simplest description well known
from plasma physics approximates these ions as a continu-
ous charge density. The corresponding spectrum provides a
comparison for highlighting the differences to a correlated
continuum calculation. They occur for two reasons: first,
the granularity of our system, i.e., the fact that we deal with
real particles which typically have a minimal separation �
and therefore give rise to a classical ‘‘correlation hole.’’
Moreover, the ionic system is finite (for simplicity, we
assume a spherical shape) with an edge. The softness of
this edge, i.e., the distance a over which the charge density
decreases to zero, is the second spatial scale which influ-
ences the ionic correlations in the continuum. In fact, we
will show that the ion dynamics exhibits a crossover, chara-
cterized by the ratio a=�, from a dominant influence of
the correlation hole if a � � (hard edge) to the dominant
influence of the edge for a � � (soft edge).

Surprisingly, this crossover can be probed by simply
varying the pulse length of the ionizing light pulse in the
correct parameter regime: A long pulse (for reasonable

target systems this would be of the order of a few hundred
femtoseconds) will slowly ionize the cluster and give
the ions created near the surface time to move outward.
Thereby, a soft edge in terms of decreasing density of ions
is created. On the other hand, a short violent pulse (of a few
femtoseconds only) will start the motion of all ions created
at once leading to correlation-hole dominated dynamics.
Whereas most cluster experiments at the x-ray free-

electron lasers [3] address xenon clusters [6,7], mainly
because of the large scattering cross sections, or argon
clusters [8], because of the internal electron dynamics
[9], the correlation effect discussed in the following would
be most easily identified experimentally with ultrashort
pulses and low-Z clusters.
We set the stage by defining the mean-field reference

system, a homogeneously charged sphere of charge Q and
mass M. It undergoes Coulomb explosion, doubling its
initial radius R in time [10]

t? ¼ ð1þ lnð ffiffiffi
2

p þ 1Þ= ffiffiffi
2

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MR3=Q2

q
: (1)

Making use of Gauss’ law and the fact that shells of charge
in a homogeneously charged sphere do not overtake each
other, one can directly map the initial potential energy due
to the enclosed charge at a radius r to the final kinetic
energy E per unit charge EðrÞ ¼ Qr2=R3. Evaluating the
standard expression for the energy distribution
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yields [12–14]
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for E< E?

0 for E> E?;
(3a)

E? ¼ Q=R: (3b)

In terms of these scales for energy E? and time t?, we show
in Fig. 1 kinetic-energy spectra of ions from Lennard-Jones
(LJ) clusters [15] with 1000 particles for various effective
pulse duration T. Hereby, effective pulse duration refers to

PRL 110, 133401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

29 MARCH 2013

0031-9007=13=110(13)=133401(5) 133401-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.133401


the time in which the particles get charged. We select
randomly a charging time for each particle in such a way
that the ensemble averaged charge grows as hQti ¼ Q½1þ
erfðt=TÞ�=2which, e. g., corresponds to ionization of atoms
in a cluster by single-photon ionization, as it would occur
for a sample exposed to intense free-electron laser radia-
tion with keV photons in a Gaussian pulse [16]. At such
photon energies electrons are ‘‘kicked out’’ so quickly that
their impact on the ion dynamics can be safely neglected.

One clearly sees in Fig. 1 a crossover behavior with two
‘‘hot spots’’ at short and long pulses [cf. also Fig. 2(a)
which shows the height of the ridge as a function of pulse
length T], always close to the maximal energy possible
at a given pulse length T. The long-pulse regime is com-
patible with a mean-field dominated dynamics and has
been described previously: This mean-field peak in the

kinetic-energy spectrumwas observed for spherical objects
with a washed-out edge, i.e., a nonuniform radial density
distribution. It allows faster ions from inner regions of an
exploding sample to overtake slower outer ones, leading to
radial caustics, as revealed by means of a kinetic model
[17]. Under suitable conditions this caustic can even lead to
a shock shell [13]. Preexploding the sample [18] softens
the edge of the system to a gradually decreasing density,
which is indeed close to the situation for long pulses shown
in Fig. 1. Charging at low densities as effected by a long
laser pulse reduces the energy deposition in the sample
and leads to a global decrease of kinetic energies for long
pulses, also visible in the spectrum for a homogeneously
charged sphere (dashed line in Fig. 1).
What has not been seen before is the sharp maximum for

short pulses whose origin is fundamentally different from
the mean-field peak at long pulses. We will refer to this
maximum as the granularity peak since its origin is the
granularity of the system in connection with the fact that
it is finite and has an edge. Indeed both features, the mean-
field and the granularity peak are surface phenomena.
This fact can be easily read off from Fig. 1, since for the
respective pulse length the peaks are located near the
maximal energy contributed by surface ions. This is further
confirmed by comparing the mean-field spectra according
to Eq. (3) and the numerical ones from individual ions [19]
in Figs. 3(a)–3(c). Formally, these spectra correspond to
cuts at T ¼ 0 in Fig. 1, but for different cluster sizes,
namely 100, 1000, and 10 000 atoms, respectively. One
sees that the spectrum deviates less from the mean-field
prediction for larger cluster size and correspondingly
smaller surface-to-volume ratio; nevertheless, the granu-
larity peak remains clearly visible.
That mean-field and granularity peak are of different

origin can be seen, e.g., from the formation of the maxima
in time: The mean-field peak builds up gradually in time
and appears toward the end of the explosion [Fig. 2(c)]
since inner shells of charge density need time to overtake
the outer ones. The granularity peak in the case of a short
pulse, on the other hand, appears right from the beginning
[Fig. 2(b)] suggesting that it can be understood from the
forces acting initially on the individual ions. This is indeed
the case as we will see.
Because of the repulsive interaction potential of the

atoms in the cluster, nearby particles are very unlikely in
the ground state. Hence, a correlation hole around an atom
or ion exists. This means if there is an atom at position r the
probability to find another atom at position r0 within the
radius � of the correlation hole, i.e., for jr� r0j< �,
vanishes leading to the characteristic pair-correlation func-
tion as shown in Fig. 3(d). It has been numerically obtained
by an ensemble average over

gðrÞ ¼ R3

r2~gðrÞ
X
i�j

�ðr� rijÞ; (4)

pulse length T/t

0

2

4

6

8

10

pe
ak

 h
ei

gh
t m

ax
( d

P
/d

E
)

energy E/E

T=t
*
/20

0.1 1 10 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5
energy E/E

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e 

tim
e 

ξ

T=20t
*

FIG. 2 (color online). Peak height of kinetic-energy spectra for
ions shown in Fig. 1 for different pulse lengths T=t? (a). The two
arrows indicate the pulse lengths T ¼ t?=20 and T ¼ 20t? for
which the evolution of the spectra dP=dE are shown in (b) and
(c), respectively, as a function of energy and time � 2 ½0; 1�. The
time variable � ¼ EðtÞ=Eð1Þ describes how far the Coulomb
explosion has evolved in terms of the kinetic energy EðtÞ of an
expanding homogeneously charged sphere.
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FIG. 1 (color online). Ion-energy spectra as obtained from an
exploding LJ cluster with 1000 particles for various pulse
durations T given in units of the expansion time t?, cf. Eq. (1).
Energy is given in terms of E? the highest energy for homoge-
neously charged sphere, cf. Eq. (3b). The dashed line marks the
surface energy of a sphere, which is charged homogeneously
according to a Gaussian pulse (see text).
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with rij the distance between the particles i and j and

~gðrÞ¼ 3
16ðr=R�2Þ2ðr=Rþ4Þ the distribution of distances

r in a sphere with radius R [20]. The normalization with
~gðrÞ is necessary in order to remove the trivial dependence
on r due to the finite size of the system.

We can assess how the correlation hole affects the force
acting on an ion at position r analytically. To this end,
we determine the Coulomb repulsion of the ion from an
infinitesimally thin spherical shell of radius r0 and charge q
by integrating over all angles

fr0 ðrÞ ¼ q

4�

Z 2�

0
d�

Z �

0
d� sin�

@

@r

1

jr� r0j ; (5)

with r0 � r0ðsin� cos�; sin� sin�; cos�Þ a vector on the
shell. The radial component of this force can be determined
without loss of generality by choosing r ¼ rẑ along the z
axis. Integrating over � and using � � cos� it reads

fr0;��ðrÞ ¼ q

2

Z þ1���

�1
d�

d

dr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0�

p ; (6a)

¼ q

r2

�
1

2
þ ð1� ��Þr� r0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r2 � 2ð1� ��Þr0rp

�
: (6b)

Hereby, the integration was restricted to the upper limit
1� �� < 1 in order to account for a correlation hole, cf.

the sketch in Fig. 4 and its inset, which shows �� explicitly.
Equation (5) corresponds to �� ¼ 0. In this case, perform-
ing the integration over � yields—as expected—Gauss’
law, i.e., fr0;0¼0 for r<r0 and fr0;0 ¼ q=r2 for r � r0. As
can be seen in Fig. 4(a), for finite �� the force is fr0;�� > 0
inside the shell with radius r0 and fr0;�� < q=2r2 outside

this shell. Yet, this modification of the forces does not
play a role as long as the test particle’s correlation hole
is in the bulk (r < R� �, see test particle at r1 in Fig. 4)
since reduced repulsion from inner charged shells with
r0 < r is fully compensated by a finite repulsion from outer
shells with r0 > r in accordance with Gauss’ law for
spherical charge distributions and a test particle with its
correlation sphere completely inside the charge distribu-
tion. A reduced force is expected at the surface (see test
particle at r2 in Fig. 4). Both expectations are confirmed by
the cumulative force, i.e., the integration over all charged
shells, shown in Fig. 4(b). For this integration we use �� ¼
ð�2 � ðr� r0Þ2Þ=ð2rr0Þ, which guarantees that the ‘‘open’’
shells (see thick green or gray line in the sketch of Fig. 4)
form a spherical correlation hole with radius � for jr�r0j�
�. For all other shells it is �� ¼ 0. This �� inserted into
Eq. (6) and integrated over all shells yields an explicit expr-
ession for the force in the presence of a correlation hole
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FIG. 3 (color online). Spectra from numerical propagation of
systems with N ¼ 100, 1000, and 10 000 ions, respectively, are
shown by orange or gray-shaded areas (a)–(c). The mean-field
model as given by Eq. (3) is shownwith dashed lines. Considering
a correlation hole in the mean-field description by using Eq. (8) in
Eq. (2) yields the spectrum shown as solid line (b). Additionally
the pair-correlation function gðrÞ according to Eq. (4) is shown
for the cluster with N ¼ 1000 individual ions (d).
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FIG. 4 (color online). Sketch of the integration assuming a
correlation hole with radius � around the test particle at distance
r. We show two situations, where the correlation hole is inside
the bulk (r1) and at the surface (r2), respectively. The test
particle force is obtained by integration over all shells (indicated
by green or gray lines) with some of them being ‘‘open’’ (thick
green or gray line, see also inset) due to the correlation hole.
The force on a test particle as a function of the distance r (a) due
to an ‘‘open’’ charged spherical shell with radius r according to
Eq. (6) and (b) integrated over all shells of the charged sphere of
radius R according to Eq. (7).
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FR;�ðrÞ ¼ Qr=R3 for r < R� � (7a)

¼ AR;�ðrÞQr=R3 for R� � < r < R; (7b)

with the dimensionless attenuation factor

AR;�ðrÞ� ðrþR��Þ2ð2ðrþRÞ�þ�2�3ðr�RÞ2Þ
16�r3

: (7c)

Indeed, the force from Eq. (7) increases linearly, character-
istic for a homogeneously charged sphere and without any
effect of the correlation hole until the latter touches the
surface from the inside [for the case shown in Fig. 4(b) at
r ¼ 2R=3]. When this happens the force grows more
slowly than in the homogeneous case and even decreases
still within the charged sphere reaching a maximal value at
rmax ¼ R� �=3 (for � � R).

With the initial forces sculpturing the properties of the
final ion-energy spectrum, we may even attempt to calcu-
late this spectrum according to Eq. (2). We assume a self-
similar expansion, i.e., scaling of all lengths in the system
with the common factor �. Consequently, the force (7)
inherits the property F�R;��ð�rÞ ¼ ��2FR;�ðrÞ from the

Coulomb force. Thus, the final kinetic energy depends on
the initial position similarly as in the case of a homogenous
charge density through an integral along the similarity path
with increment dr0 ¼ rd�

EðrÞ ¼ r
Z 1

1
d�F�R;��ð�rÞ ¼ rFR;�ðrÞ: (8)

In all (numerical and analytical) spectra presented we take
into account a finite energy resolution �E ¼ E?=50. For
Eq. (2) this means to replace �ðxÞ with K�EðxÞ ¼
expð� ðx=�EÞ2Þ= ffiffiffiffi

�
p

�E. In Fig. 3(b) one sees the spectrum
for clusters with 1000 atoms in comparison to the one obta-
ined with the mean-field approach including the correlation
hole as just described. The deviations of both the numerical
result (orange or gray-shaded area) and the correlation-
hole result (solid line) with respect to the simple mean-field
result (dashed line) from Eq. (3) at energies E & E? clearly
reveals the importance of the correlation hole.

However, given the analytically calculated force of
Eq. (7b) we also know that in order for the correlation
hole to have an effect, the ion density must have a sharp
edge, essentially falling to zero within the radius � of the
correlation hole. Otherwise, the forces of each shell in the
presence of the correlation hole will compensate each
other; see Fig. 4(a). On the other hand, a soft edge gives
rise to the mean-field peak through catching up of faster
inner ions with the slower outer ones, as described in the
introduction. We may quantitatively describe the edge by a
Fermi distribution %a;RðrÞ ¼ 2~%a;R=½1þ expððr� RÞ=aÞ�
with the softness parameter a and ~%a;R the ion density

at r ¼ R which is determined through the integral
4�

R
drr2%a;RðrÞ ¼ N. In Fig. 5 the energy spectrum of

ions initially distributed according to a Fermi distribution
%a;RðrÞ is shown for various values of a measured in terms

of the correlation hole radius �. One can see the crossover
from the granularity to the mean-field peak near a ¼ �.
We have seen that these two features are of very differ-

ent origins, although both of them are surface effects and
occur, therefore, on the rim of maximal energy in the
spectra of Fig. 5. It should be possible in an experiment
to reveal both phenomena and their crossover by simply
varying the pulse length of the ionizing light pulse as
demonstrated in Fig. 1. A time-delayed probe pulse could
reveal, in addition, the different temporal behavior of both
peaks illustrated in Fig. 2.
In the examples discussed here, the granularity of the

system was quantified by the correlation hole which is the
most common case for ground state matter. However, a
little thought reveals that ions (or electrons) randomly
distributed over a finite volume give rise to a granularity
peak as well. It is much weaker and broader [21] but still
has the same reason: Forces on an ion from other ions
inside and outside a virtual shell do not compensate each
other near the edge of the sample where the radius of the
shell is defined by the distance of the ion to the charge
center of the sample.
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