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In attosecond science it is assumed that Wigner-Smith time delays, known from scattering theory, are
determined by measuring streaking shifts. Despite their wide use from atoms to solids this has never been
proven. Analyzing the underlying process—energy absorption from the streaking light—we derive this
relation. It reveals that only under specific conditions streaking shifts measure Wigner-Smith time delays.
For the most relevant case, interactions containing long-range Coulomb tails, we show that finite streaking
shifts, including relative shifts from two different orbitals, are misleading. We devise a new time-delay
definition and describe a measurement technique that avoids the record of a complete streaking scan, as
suggested by the relation between time delays and streaking shifts.
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Attosecond laser pulses access ultrashort time spans to
uncover microscopic details of dynamical processes. To
date, however, it is technically challenging to produce two
strong enough attosecond pulses for a pump-probe experi-
ment, i.e., to start and stop the clock. One way to bypass
this obstacle is the so-called streaking method [1]: An
attosecond laser pulse starts the clock by emitting an
electron. A second, weak near-infrared pulse, phase locked
with a tunable delay s to the attosecond pulse, “streaks” this
photoelectron, i.e., influences its momentum in the
continuum while it is leaving its (binding) potential.
From the streaking spectrogram, the energy (or momen-
tum) distribution as a function of s, one can extract
so-called streaking delays τs. These delays differ for
photoelectrons coming from different orbitals, as revealed
in seminal experiments for atoms and surfaces [2,3]. With
photoelectron streaking having developed into a frequently
used tool in attosecond physics, experiments have been
extended to molecules, nanoparticles, and solids [4–8].
In the following, we will show that all photoionization

time delays extracted by streaking—even relative ones
between two orbitals with different binding energy—do not
represent a property of the target only, but of the combined
light-matter system. They grow with decreasing streaking
frequency beyond all limits. This has considerable conse-
quences for photoionization streaking time delays regard-
ing their interpretation and general relevance. This result
follows from analyzing the energy absorption of the

released electron, the very process that underlies the
streaking approach.
Furthermore, we derive analytically that only for a finite-

range potential and in the limit of very low streaking
frequency, streaking delays approach the Wigner-Smith
(WS) time delay δt from scattering theory [9,10], revealing
how much time a particle spends traversing a potential in
comparison with a free particle with the same energy E.
Previously, comparing theoretically obtained streaking
delays and WS delays has provided evidence that both
agree for short-range potentials and typical laser parameters
[11]. Since those laser parameters fulfill the criterion of low
frequency (800 nm light corresponding to 1.5 eV photon
energy, which is small compared to typical electron excess
energies), this finding for short-range potentials is consis-
tent with our derivation.
However, finite streaking time delays for (long-range)

Coulomb potentials as reported in the literature from
streaking experiments and simulations, do not have a
deeper meaning and are merely a consequence of the
low but finite streaking frequency. From a broader
perspective, this should have been expected as the
WS time delay for Coulomb potentials is infinite, i.e., ill
defined [10].
Basically all theoretical accounts of the streaking tech-

nique rely on the strong-field approximation (SFA), which
neglects the potential for the continuum electron although
the field-potential interaction is the source of energy
absorption from the streaking laser (see various reviews
[11–13], with the notable exception [14]). Moreover,
streaking measurements are “classical clocks” [11].
Other than “quantum clocks” measuring time delays
[15–17], they do not rely on quantum interferences.
Classical streaking calculations have been shown to
coincide with quantum calculations [11,18], as long as
there are no resonances in the continuum [17]. They are

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 125, 113202 (2020)

0031-9007=20=125(11)=113202(6) 113202-1 Published by the American Physical Society

https://orcid.org/0000-0003-3208-8273
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.113202&domain=pdf&date_stamp=2020-09-10
https://doi.org/10.1103/PhysRevLett.125.113202
https://doi.org/10.1103/PhysRevLett.125.113202
https://doi.org/10.1103/PhysRevLett.125.113202
https://doi.org/10.1103/PhysRevLett.125.113202
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


also closely related to wave packet formulations of the time
delay [19]. Hence, we use classical dynamics in the
following, which naturally allow us to include the potential
and to work out the cornerstones of streaking time delays
from energy absorption clearly.
The time delay of a “half-collision” [11] in the spherical

potential VðrÞ initiated at time t ¼ 0 with energy E follows
from the action difference [20]

SðEÞ ¼
Z

∞

0
dr½pðrÞ − pE% ð1Þ

through the energy derivative δt ¼ dSðEÞ=dE, which
yields

δt ¼
Z

∞

0
dr
!

1

pðrÞ
−

1

pE

"
¼

Z
∞

0
dt
!
1 −

pðtÞ
pE

"
; ð2Þ

where in the last expression dr ¼ pdt has been used. The
time delay δtmeasures how much more or less time it takes
a particle to move in a potential V with momentum pðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E − VðrÞ%

p
compared to a free particle with momentum

pE ¼
ffiffiffiffiffiffi
2E

p
. This is particularly obvious from the second

equation in (2). As noted by Smith [10], for δt to be well
defined, the particle must be asymptotically free.
Figure 1 shows δt for a short-range Yukawa potential

(black line). The time delay is compared to streaking shifts
τs, with a laser field of frequency ω and peak vector
potential A ¼ F=ω, where the field strength F is so small
such that A ≪ pE. (Below we use intensities such that
A ¼ pE=100.) The streaking field

AsðtÞ ¼ −A sinðω½tþ s%Þ; ð3Þ

can be shifted by a delay s with respect to the particle’s
release at t ¼ 0, often achieved by attosecond photoioni-
zation [3–8,18,21–27]. In a full streaking scan, s is varied

from −Tω=2 to þTω=2, i.e., over the period Tω ≡ 2π=ω of
the streaking laser. Note that using a finite streaking pulse
instead of (3) modifies the extracted τs only weakly. We
show in Fig. 1 streaking shifts τs for two different laser
wavelengths λ. They are determined from the shift relative
to AðtÞ of a sinusoidal function fitted to the calculated
momentum change [cf. arrow in Fig. 2(b)] of the character-
istic trajectory rEðtÞ starting at the potential center.
Obviously, the time delay δt agrees with those streaking
shifts τs only for sufficiently large energies E.
In order to determine the general conditions under which

streaking delays reveal the WS time delay, we investigate
how the streaking field AsðtÞ changes the momentum of the
electron while leaving the potential region. To first order in
the vector potential A, the momentum change is given by

δpðsÞ ¼ Asð0Þ þ
1

pE

Z
∞

0
dt½AsðtÞ − Asð0Þ%V 0(rEðtÞ) ð4Þ

with the vector potential AsðtÞ and all other quantities from
the field-free (A ¼ 0) dynamics. The derivation of Eq. (4) is
straightforward in the Kramers-Henneberger frame and
requires only the perturbative character of the streaking
field A ≪ pE. Details can be found in the Supplemental
Material [28].
We have written (4) in a form which makes the relation

to the often-used SFA apparent. The latter neglects
the potential V leaving the well-known result that
δpðsÞ ¼ Asð0Þ, the vector potential at release time t ¼ 0.
We would like to stress at this point that all results below
are obtained from exact numerical calculations, we use
Eq. (4) based on the characteristic field-free trajectory rEðtÞ
with energy E for interpretation only. Figure 2 shows,
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FIG. 1. Wigner-Smith time delay δt (black solid line) and
streaking delays τs for two wavelengths, λ ¼ 200 nm (blue
squares) and λ ¼ 800 nm (red circles) as a function of the
electron energy E for a Yukawa potential VðrÞ ¼ e−r=ryuk=r with
ryuk ¼ 3 Å.
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FIG. 2. Comparison of the harmonic streaking scans
δpðsÞ from Eq. (5) with respect to a numerical solution.
The relative deviation is defined as Δscan ≡

R
ds½δpðsÞ −

δpnumðsÞ%2=
R
ds½δpnumðsÞ%2 and shown for four energies (a) as

a function of the laser field strength A, with A given in units of
pE. Results are for the Yukawa potential, as in Fig. 1, (blue lines)
and the Coulomb potential (red). The circles mark the largest F
for which a full streaking scan can be made. The squares mark the
two examples, having relative large deviationsΔscan, shown to the
right (b),(c), where δpnum (gray circles) is compared to the
harmonic expression δp (blue and red lines) from Eq. (5).
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however, that it gives even quantitatively correct results for
sufficiently small streaking fields F or A, respectively.
Note that Eq. (4) is valid for arbitrary forms AsðtÞ. For

the harmonic streaking field (3) it has the particularly
compact form

δpðsÞ ¼ −
F
ω
½χS sinðωsÞ þ χC cosðωsÞ%; ð5aÞ

χS ≡ 1 −
1

pE

Z
∞

0
dt½1 − cosðωtÞ%V 0(rEðtÞ); ð5bÞ

χC ≡ 1

pE

Z
∞

0
dt sinðωtÞV 0(rEðtÞ); ð5cÞ

which reveals that δp is harmonic as well, with amplitude
(in units of the quiver momentum F=ω) and phase defined
by the newly introduced quantities χS and χC.
With the momentum change (5) we can elucidate the

relation to the WS time delay (2), which can be rewritten
(using integration by parts) as

δt ¼ −
1

pE

Z
∞

0
dt t V 0(rEðtÞ): ð6Þ

Without loss of generality we may compare (6) to the
streaking-induced momentum change at s ¼ 0 from (5)

δpð0Þ ¼ −
F
ω
χC ¼ −

F
pE

Z
∞

0
dt

sinðωtÞ
ω

V 0(rEðtÞ): ð7Þ

It is obvious that for small streaking frequencies ω, δpð0Þ
directly gives the WS time delay

τz ≡ δpð0Þ
F

¼ χC
ω

with δt ¼ lim
ω→0

τz: ð8Þ

Since δp is measurable, Eq. (8) provides a direct way to
determine δt experimentally, provided that the streaking
frequency ω is sufficiently small and that the streaking
vector potential A is sufficiently weak to allow for a first-
order description of the momentum change or energy
absorption, cf. Fig. 2. Note, that there is no need for a
full streaking scan of many delays s, a single measurement
with s ¼ 0 contains the necessary information.
Turning to traditional streaking measurements, the

momentum change (5) may be written as

δpðsÞ ¼ −A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2S þ χ2C

q
sinðω½sþ τs%Þ; ð9aÞ

τs ≡ 1

ω
arctanðχC; χSÞ; ð9bÞ

which is, just as Eq. (5a), a harmonic function of s with a
displacement in the phase given by the streaking shift τs.
Both times τz and τs are, for sufficiently weak lasers,

independent of the field strength F, as observed exper-
imentally [3]. From limω→0 χS ¼ 1 and limω→0χC ¼ ωδt,
cf. Eq. (8), follows immediately

lim
ω→0

τs ¼ lim
ω→0

arctanðωδt; 1Þ
ω

¼ δt: ð10Þ

Equations (8) and (10) are the main result of this work,
since they show that both single and full-scan streaking
measurements may indeed provide the Wigner-Smith
time delay.
To be quantitative, we investigate next, under which

conditions the streaking delays τs and τz really give the WS
time delays δt for a Yukawa potential, which has been used
as prototypical short-range potential in this context [18].
Figure 3 provides the evolution of the relative differences
Δz ≡ jτz − δtj=δt and Δs ≡ jτs − δtj=δt as a function of
electron energy E and streaking-laser wavelength λ. Indeed,
for “typical” energies E ≫ 10 eV and Ti:sapphire laser
pulses (λ ¼ 800 nm) there is reasonable agreement
between streaking shifts τs, τz, and time delays δt, as
reported before [11,18]. However, this agreement is by no
means generally guaranteed—it requires, depending on the
energy E, sufficiently large wavelengths λ in agreement
with Eqs. (8) and (10). While the overall behavior of both
streaking delays is similar, one can see that Δs grows faster
thanΔz. Details regarding location and shape of the contour
lines depend, of course, on the underlying potential. From
Eqs. (5) follows

rEðTω=4Þ ≫ rV; ð11Þ
i.e., the trajectory with energy E should have reached the
asymptotic region beyond the potential’s range rV after a
quarter of the streaking-laser period Tω. Thus, larger
energies and longer wavelengths (e.g., THz pulses [24])
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FIG. 3. Deviation of the zero-streaking time τz ¼ δpð0Þ=F
according to (8) and the full-streaking time τs according to (9)
from the WS delay δt for the Yukawa potential used before in
Fig. 1. Shown are the relative errors Δz ≡ jτz − δtj=δt and Δs ≡
jτs − δtj=δt as a function laser wavelength λ and electron energy
E. The vertical dotted lines mark the two wavelengths already
shown in Fig. 1, the horizontal one the energy shown in Fig. 4(a).
The thicker white lines are the lower bounds for 1‰ accuracy and
can be approximately described by E > 135 eV½λ=1 μm%−5=3
and E > 126 eV½λ=1 μm%−3=2, respectively.
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are always an option for short-range potentials to reach the
parameter regime where the streaking time delays
approach δt.
This, however, does not hold for long-range potentials,

most importantly, for the Coulomb potential. Since δt
diverges and the streaking delays τz and τs agree with δt
for ω → 0 or λ → ∞, they should also diverge in this limit
and in fact they do. Yet, the situation is more intricate as
streaking for larger ω is only sensitive to a certain part of the
potential (notably the inner part as shown below) and
therefore leads to a finite momentum change. This is,
however, not only a property of the Coulomb potential
itself but depends on the parameters used, namely electron
excess energy E and streaking frequency ω, as illustrated
in Fig. 4. Note, that the relative streaking delay between
photoelectrons from two orbitals with different binding
energies, or equivalently, with two different excess energies,
exhibits the same qualitative dependence on the streaking
frequency [compare the black line in Fig. 4(b) with the red
lines]. In other words, neither absolute streaking delays nor
these relative streaking time delays, although finite, are
suitable to characterize a Coulombic system.
From a theoretical point of view, one should take the

pure (hydrogen’s) Coulomb potential VrefðrÞ ¼ −1=r as a

reference (instead of the free particle) to determine time
delays of systems with a long-range Coulomb tail, an idea
that has been put forward in the context of RABBIT [12].
That means we define a Coulomb action ScðEÞ by replacing
in Eq. (1) the free-particle momentum pE by prefðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E − VrefðrÞ%

p
or, equivalently, subtract the action of the

hydrogen reference from the actual Coulomb-tailed system.
We obtain a finite time delay

δtc ≡ dScðEÞ
dE

¼ dSðEÞ
dE

−
dSrefðEÞ

dE
: ð12Þ

In analogy to (12) we define

τcσ ≡ τσ − τrefσ with σ ¼ s; z ð13Þ

whereby the reference times obtained for Vref introduced in
(12) above. Note that in Eq. (13) the individual terms
diverge for ω → 0, the difference, however, has a finite
limit, independent of the properties of the streaking field
(if it is sufficiently weak), as illustrated with Figs. 4(c)
and 4(d). This limit establishes the proper streaking time
delays for potentials with a Coulomb tail.
We conclude with a remark on the so-called “Coulomb-

laser coupling time” [11,18,27,29]—suggesting that in the
case of a Coulomb potential there is a coupling between
laser and potential and, conversely, that this is not the case
for short-range potentials. In general, we have shown that
streaking time delays originate from the momentum change
δp through the streaking laser. A momentum change of the
electron is only possible in the presence of a potential as
basic laws of energy and momentum conservation forbid
energy absorption from light by a free electron [30]. We
underline this point with Fig. 5, which shows the electron’s
energy as a function of distance r
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FIG. 4. Streaking shifts τs (and τz) for Coulomb potentials as a
function of the streaking-laser wavelength λ. In order to allow for
a logarithmic scale we show absolute values for all times.
(a) Comparison of Coulomb (red solid lines) and Yukawa, as
in Fig. 1 (blue dashed) potential for E ¼ 10 eV. (b) Shifts for two
different energies (red dotted and red dashed) and their respective
difference (black solid). (c),(d) τs and τz for the smoothed
Coulomb potential VðrÞ ¼ −1=
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(green dashed) and in Eq. (13) defined τcσ (black solid) using
the Coulomb potential (red dot-dashed) as reference, both
obtained for the same energy E ¼ 10 eV. The arrows at the
right give values for λ ¼ 100 μm, indicating converged values.
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PHYSICAL REVIEW LETTERS 125, 113202 (2020)

113202-4



Es¼0ðrÞ ¼
Z

tðrÞ

0
dt̃Aðt̃ÞV0ðrEðt̃Þ −½αðt̃Þ − αð0Þ%Þ; ð14Þ

with the quiver motion αðtÞ in the Kramers-Henneberger
picture. The index “s ¼ 0” indicates that the electron is
released at field maximum, vanishing vector potential or
maximum excursion, respectively. As one can see energy
absorption occurs early on, i.e., during the first half-cycle
of the laser t < Tω=2, cf. the respective leftmost dark
stripes in Fig. 5, for both short- and long-range potentials.
At the distance traveled in this time by the electron, the
asymptotic values of energy absorption (or the asymptotic
values of the integrals χS and χC, respectively) are reached
(apart from tiny, quickly vanishing oscillations) in accor-
dance with Eq. (11) as can be seen in all panels of Fig. 5.
Since for longer wavelengths λ also Tω=2 grows, the
electron travels further outward (larger r) during this time
span, giving rise to more energy absorption, unless this
region is already beyond the range of the potential [which is
the case for the Yukawa potential in Fig. 5(c)]. Since the
Coulomb potential has an infinite range, energy absorption
continues to grow with increasing laser period (smaller
frequency) as seen in Figs. 5(d)–5(f).
In summary, we have derived the streaking time delays

by means of the physically underlying process of energy
absorption from the streaking laser which determines the
measurable momentum of the photoelectron. Our analysis
has shown that streaking time delays become independent
of the properties of the streaking laser and approach the
Wigner-Smith time delay of short-range potentials for
sufficiently weak streaking fields and in the limit of small
frequencies or long wavelengths. That streaking experi-
ments for atoms measure finite times τs (despite infinite
WS time delays δt for Coulombic systems) is a conse-
quence of finite laser frequencies used. Those finite
streaking delays, however, depend on the laser parameters
and the excess energy of the electron. Therefore, both
absolute streaking delays and relative ones for different
excess energies are not suitable to characterize properties of
a Coulombic system. From a theoretical point of view,
photoionization streaking delays should be measured
relative to those of a pure hydrogenic Coulomb potential
at the same excess energy of the photoelectron. Since this is
impossible with a single experiment, it is probably more
feasible experimentally to use a reference system with an
orbital binding energy as close as possible to the one to be
investigated, as recently done in a different context [31].
Obviously, the interpretation of measured streaking time

delays requires careful analysis. Even a relative measure-
ment of a time delay between two orbitals of different
binding energy in the same atom and with the same
streaking laser depends against any reasonable expectation
on the properties of the streaking light, namely its
frequency. However, with the results presented here, it
should be possible in the future to design experiments

which measure time delays free from properties of the
streaking laser.
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Supplement “Proper time delays measured by optical streaking”

Ulf Saalmann and Jan M Rost

The electron’s momentum change (corresponding to energy absorption) is derived in detail.

In the Kramers-Henneberger (KH) frame the dynamics of a laser-driven particle starting at the center

of a spherical potential is determined by the Hamiltonian

H =
p

2

2
+ V

�
r�↵(t)
�

(S1)

with the quiver distance ↵(t). The KH frame has the advantage, that at large r, in consequence

of V (r!1)=0, the laser driving vanishes by itself. We start the electron motion at the potential

center with initial momentum in the direction of the streaking laser, rendering its motion essentially

1-dimensional. Therefore we omit right from the beginning a vector notion. With H ⌘ H � E = 0,

the energy-change rate follows from

@

@ t
H =

d

dt
E = A(t)V 0
�
er(t)�↵(t)
�

(S2)

with the time-dependent vector potential A(t)= ↵̇(t) and er(t) the trajectory obeying Hamilton’s

equation for (S1). For a particle, starting at the center r=0 with energy E, the final energy reads

Efin =
[pini + A(0)]2

2
+ V (0) +

1Z

0

dt A(t)V 0
�
er(t)�↵(t)
�

(S3)

with the initial momentum pini =
p

2[E�V (0)]. Hence, the absorbed energy is

�E ⌘ Efin � E = pini A(0) +
A

2(0)
2
+

1Z

0

dt A(t)V 0
�
er(t)�↵(t)
�
. (S4)

Considering 1st-order changes of the energy in terms of the field strength F only amounts to replace

er(t)�↵(t), with r(t) the solution for the field-free Hamiltonian (S1) and setting ↵(t)=0. Then, the

absorbed energy can be written as

�E =
î
pE �

1Z

0

dt V
0�

r(t)
�ó

A(0) +

1Z

0

dt A(t)V 0
�
r(t)
�

(S5)

with the final momentum pE =
p

2E of the asymptotically-free electron. The corresponding mo-

mentum change �p from �E = [pE+�p]2/2 � pE

2/2 ⇡ pE �p, consistently approximated with the

above assumption, reads

�p = A(0) +
1

pE

1Z

0

dt

⇥
A(t)� A(0)
⇤

V
0�

r(t)
�

, (S6)

which corresponds to Eq. (4) of the main text. This momentum change for small driving fields

contains the strong-field approximation (SFA, or simple man’s model) value

�pSFA = A(0) , (S7)

which follows from (S7) by neglecting the potential V=0, as it is done in SFA.


