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Abstract. A general formalism is presented that treats self-also to larger systems — for the quantum electronic system.
consistently and simultaneously classical atomic motion andVethods like [20—24] are hereafter referred to as adiabatic
quantum electronic excitations in dynamical processes ofjuantum molecular dynamics, or simply as QMD.
atomic many-body systems (non-adiabatic quantum molecu- However, inall these MD or QMD calculations the
lar dynamics). On the basis of time-dependent density funcatomic dynamics is governed by forces resulting from the
tional theory, coupled highly non-linear equations of motion electronic ground-state configuration (adiabatic dynamics
are derived for arbitrary basis sets for the time-dependentn the Born-Oppenheimer (BO) ground-state surface). Al-
Kohn-Sham orbitals. Possible approximations to make theéhough one may obtain some microscopic insight into the
approach practical for large atomic cluster systems are disreaction mechanism, the adiabatic approximation is by no
cussed. As a first application of the still exact equations ofmeans justified if clusters collide or dissociate. Moreover,
motion, non-adiabatic effects in the scattering 6fHH, as in ion-cluster collisions electronic charge transfer as well as
a case study, are investigated. electronic excitations or ionization processes [6, 9, 10, 25]
are just the phenomena of interest. Therefore, the develop-
PACS: 31.15.Ew; 31.15.Qg; 31.70.-f; 34.10.+x; 36.40 ment of non-adiabatic methods to include electronic transi-
tions in cluster dynamics is one of the great challenges for
theory in the coming years.
In the field of chemical reaction theory (with typical
kinetic energies of eV and below) the treatment of non-
1 Introduction adiabatic processes has a long tradition [26-28]. How-
ever, “surface-hopping” models [27] or combinations [29]
Great progress has been made in the study of atomic clusf “surface-hopping” and the Pechukas theory [26] are gen-
ters during the last decade [1, 2]. Metal clusters especiallyerally not suited to describe dynamical processes in clusters,
which show remarkable analogies to atomic nuclei [3], asbecause the large number of classical degrees of freedom
well as fullerenes have been studied extensively. Recentlyprevents one from defining BO surfaces prior to consider-
dynamical processes with and within atomic clusters haveng the dynamics. Therefore any non-adiabatic approach to
become a very attractive field of cluster research. clusters must be formulated without the use of BO surfaces.

In particular, it is now possible to study even cluster- In the traditional field of ion-atom scattering, where one
cluster collisions (CCC) [4], as well as molecule-cluster col- deals with typical kinetic energies of keV, electronic excita-
lisions (MCC) [5], and atom-cluster collisions (ACC) [6-10], tions have been considered in time-dependent (td) mean-field
experimentally. Further, so called “half collisions”, i. e. frag- approximations [30-32]. In this case, the classical trajectory
mentation of (charged and especially highly charged) clusof the ion is usually predefined (e.g. by a “straight line” or
ters are studied in detail in novel experiments [10-15]. Coulomb trajectory).

In contrast to this fascinating experimental progress, the  For low-energy collisions there are also attempts to treat
theory and, therefore, the (microscopic) physical understandthe classical ionic motion self-consistently with electronic
ing of these processes is still modest. So far, most of the theexcitations by the use of time-dependent HF theory [31-34].
oretical studies have been performed with the help of molecAll these studies are restricted to few-electron problems (one
ular dynamics (MD) calculations [16—24], in which the inter- or two “active” electrons) whereas in clusters one encounters
atomic forces are calculated phenomenologically by two- ora real many-body situation. (E. g., in §g&Cso collision [4]
three-body interactions [16] or within tight-binding approxi- there are 479 “active” and correlated electrons.)
mations [17-19]. Fully microscopic calculations — restricted ~ Recently, an MD approach combined with a time-depen-
to small systems — are based on classical MD combined withlent treatment of the electronic many-body problem has been
Hartree-Fock (HF) theory [20, 21], density functional theory proposed in solid state physics [35] on the basis of td DFT
(DFT) [12, 22] or approximate DFT [23, 24] — applicable
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[36—38]. The td Kohn-Sham (KS) equations are solved by a&q. (1), has been already suggested by Mott [41] as early

plane-wave expansion. In collisions, however, an adequatas 1931. It has been used and applied in different fields

treatment of electronic transitions requires the accurate deef physics (e. g. nuclear heavy-ion collisions [42], ion-atom

scription of the asymptotic form of the density (or wave- scattering [43, 44], molecular processes [27], etc.). We adopt

function) and so, as in ion-atom scattering, local basis setthis approximation here also from the very beginning. One

have to be used (see discussion below). should note, however, that the hybrid description is justified
Very recently, an interesting non-adiabatic MD approachonly as long as théndividual quantum transition does not

(based on an extended Tully-type coupling [27] and takingchange considerably thepllective dynamics of the system

into account quantum effects on the atomic motion) has beedescribed classically. Otherwise, a fully quantum treatment

developed and applied to the photo-excitation dynamics obf the whole system is necessary which is beyond the scope

Ba(Ar)y (N = 10, 20) clusters [39]. of this paper (for a discussion of this point and a derivation
In this paper, the basic formalism of a non-adiabaticof Eq. (1) see e.g. [27, b]).

QMD is presented. First we discuss general equations of The time evolution of the electronic many-body state is

motion and related problems in Sect. 2. Using td DFT, self-given by the time-dependent Sékinger equation

consistent equations for the classical atomic motion and the R R

electronic dynamics are derived in Sect. 3. Possible approxit  ¥(r,t) = { Ho(f, p) + Him(F,R) } ¥ (r,?) 3)

mations to make the approach practical for large systems aréj

presented. As a case study and first application of the stillvith d = 3 R 8 = 3 +> R4 .2 R, - This abbreviation

exact equations, the scattering of H+k$ considered over for the scalar product of the ionic velocities and the gradients

a wide range of incident energies (10.eV10keV) within  of all ions will be used in the following.

a transparent model where all matrix elements can be cal- The equations of motion for the classical system can be

culated analytically (Sect. 4). It is found that non-adiabaticderived from the conservation of the total energy
effects become important above0 eV and below-100 eV A
bombarding energy. E = Heonl + (¥ |Ho+Hine| ) = const 4

because the total hamiltonian (1) does not depend explicitly
26 | i £ moti on time. In Eqg. (4) as elsewhere in the paper, the brackets
eneral equations of motion (...) denote integration over all electronic coordinates. The

In order to formulate the general problem as well as to dis- total time derivative of energy (4) vanishes

cuss relationships with other fields, we derive in this sect|on ZaTZ5
general equations of motion for a mixed system consisting E= Z PA +Z RA < Z )
of N; classical ions (nuclei) and/, electrons treated within dt 9RA [Ra—Rz
guantum mechanics. The hamilton operator for the whole A <W’ b W>

system can be divided into three parts IR Hing

H = Heon(R, P) + Ho(f, p) + Hint(F, R).. 1 R A
coII( ) O( p) |nt( ) ( ) +< d W’ Ao+ Hiny W> + <@ ‘Ho"'Him d LD>
HereR = {Ry1,...,Ry} andP = {Py,..., Py} are the di dt
sets of classical positions and momenta of the ions, while L
PO N AP . > =0 (5)
f={f1,...,fn} andp = {py,...,Ppy.} are the position
and momentum operators of the electrons. The single termwhich is equivalent to the equationd € 1, ..., V)
of the hamilton operator (1) are defined as :
I I NI ZAZB
H 2
o Z 21, 2 ZZ Ra - N iv: S <L17(t)‘ O B w(t)>
Ne s N IRy—Rp| OR, ™

Ho—zpa+222 e (2b) %

Ne N and
Hlnt—zz |r 7R | ZV(ra,R) (2c) < (;jtw Q’/>+<Q’/ :tQ'/> =0. (8)
where Holl deSC“beS the “free” dynamics of classical ions, Equation (8) is fulfilled automatically i represents the ex-
Hy depends only on the quantum electronic degrees of freeact solution of the Sclidinger equation (3). Equations (6)
dom including the electron-electron interaction aHg; is and (7), which must be solved simultaneously with Eg. (3),
the coupling between nuclei and electrons mediated by théave a transparent interpretation. They represent classical
single-particle potential/(r,R). In Eq.(2), M4 and Z4 Hamilton equations of motion for the ions, which move
stand for the mass and the charge of nucleysrespec-  within an explicit time-dependent potential. Thus, in contrast
tively. The prime at the sum excludes the divergent termsto adiabatic QMD where the second term in Eq. (7) does not
Atomic units (i=e=me=1/4meco=1) are used. depend explicitly on time, energy can be transferred from
The ad hoc splitting of a hamiltonian into classical and the classical subsystem to the quantum-mechanical one and
guantum mechanical degrees of freedom, as done e.g. ivice versa. Equations (3), (6) and (7) are self-consistent in

f'IO"'ﬁint ﬁo"'ﬁint
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the sense that the classical moti(t) determines the quan- diagonal matrix eIementxé% |er|] %} and by the velo-

tum dynamics (3) and the quantum staté) governs the  city-dependent ternR (., ‘aaR%’ .

classical dynamics (6), (7). With Eq. (10), the expression on the I. h.s. of (8) reads
The quantum force in (7) has been derived in differ- . ~

ent ways starting from a fully quantum mechanical treat- i Y. a}, (¥, ’Hel| Us) (¥ ‘HeI’ w) ay

ment [26, 45, 46]. Firstly, Pechukas [26] has applied the @87

stationary-phase approximation within a path-integral for- _j > ar (v, |gel| W, ) (W, |lffe|! Us)ag

mulation. Kwong [45] used an eikonal approximation for 5

the derivation and Diestler [46] applied the narrow-wave-

packet approximation to the ions. _F %/ 0 f
It is interesting to note, that the same general form of R o%w o < R %| %> @’6 ‘Hel, %> “
Egs. (6) and (7), has been derived and used also in the theory ) A
of nuclear heavy-ion collisions [42]. In this casH¢, de- B ;aa< 6R%| He" g/v> Gy
scribes the classical “free” motion of two nuclei (including K .
the conservative part of the nuclear interactiof), is the + Zﬁ aX (W |Hel| Vo) (Wo | o s ) ag
Yo

internal hamiltonian, i. e. that of the nucleons a[%’q.\t the

interaction between relative motion and intrinsic system ap- ~ o

proximated by two (static) HF-fields of the individual nuclei -2 a @v ‘Hel |aR L > ag

moving along classical trajectories [42]. In [42], the retar- T

dation effects contained in forces like (7) on the classicaland does not vanishes in general. Whereas the first two

motion (note that Eq. (7) is actually an integro-differential terms cancel each other in any basis, the térm} van-

equation and the force depends on the whole history of theshes only if the basis does not depend parametricalliR on

trajectory) have been studied in detail too. Owing to theje. aBR% = 0, or if the basis is complete, i.6_, ¥,(r;R)

short-range nuclear interaction the asymptotic range of they, (r": R) = §(r —r’) for anyR. In practical calculations the

HF (single-particle) wave functions is not decisive in heavy-second condition cannot be realized, and so the term}

ion reactions and crude model assumptions may give a reproportional to velocity gives rise to additional corrections

alistic description of nuclear collisions. to the force (7). Analogous corrections have to be taken into
In striking contrast, in atomic collisions, and particularly account if the electronic system is treated within td density

while describing charge transfer, it is important to properly functional theory (next section).

describe the exponential tails of the wave functions. A plane-

wave expansion, often used in solid state physics (e. g. [35]),

or the standard linear combination of Gaussian orbitals used \1olecular dynamics combined

in quantum chemistry [47], are generally not suited to de- i, time-dependent density functional theory

scribe atomic collisions. (For a detailed discussion of this

important point see e.g. [32a].) On the other hand, any use g

(realistic and adequate) local basis sets complicates the forc

calculations (in the static case or in adiabatic QMD simula- .
tions well known as Pulay forces [48]). In the td case, the The basic theorem of Runge and Gross [36] states that the

.1 General

force corrections resulting from local, finite basis sets canMany-body staté/(ry, ..., rx,,?) and thus any observable

be obtained from Eq. (8). of the system are uniquely defined by the td single-particle
This will be shown in the following by expanding the density o(r, ). (From now onr denotes the single-particle

many-body wave function coordinate.) As in the ground-state DFT, one can introduce

in the td case a non-interacting reference system with the
same density as the interacting system

!—/(I’, t) = Z Wa(r; R) aa(t) (9) Ne
" or, )= [ () (12)
J

where {¥,} is a many-particle basiparametrically de-

pending on the ionic position®. Although the basis is
not specified, one can assume without loss of generalitwith td single-particle functions)’(r,¢) determined by an
(Wa| ¥s) = 6ap to simplify the following equations. With  effective potentialVe still to be defined. The time evolution
this ansatz, the Scbdinger equation (3) can be rewritten in of the system is determined by the action

terms of coupled-channel equations for the expansion coef-

ficients a, (£) Y A I
e wore Jar 850 )
aq(t) = —i Z {<Wa |He|‘ Wg) to J
ﬁ+Rw 0, (10) [ d oty |veR 12)
< | 9R ﬁ>}aﬁ(t)
where the abb.reviatiorfle] = I:Io + ﬁ{im is usgd. These + ; /dgr’ ﬁgr_,’rt;)} — Axclol
coupled equations describe electronic transitions by non- .
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with ¢ the kinetic energy operator. The last tet#y. ac-
counts, in principle, foall exchange and correlation effects
of the interacting electrons. The solutions of the td Kohn-
Sham equations [36, 38]

w0 = (T Ve, 0} 07, ) (13
with the effective potential
V. =VR) + [0 vy a
and

_ 5Axc[Q]
Va0 = e (15)

The first term leads to the force for iofh
0
- [dren,p VER)

which is equivalent to the explicit time-dependent force of
Eq. (7). This can easily be seen if one integrates (7) over all
but one electronic variables. The last term in Eqg. (18) has to
be discussed in detail if the td single-particle functiaiis
are represented in a basis.

3.2 Basis representation and equations of motion

Assume now that the td single-particle functions are ex-

make the action (12) stationary. The exchange-correlatiofpanded within ararbitrary single-particle basiga, }

potentialVy. must be derived from an approximatdg. be-
cause an exact form is not available. In the following,

simplest approximation for the exchange-correlation part, the

the?’(r 1) = Z Ga(r; R)al, (t)

(19)

e

so called adiabatic (or time-dependent) local-density approxwhich depends parametrically &h Then the td Kohn-Sham

imation (LDA) [38]

t1
Addlel = / o / & ofr . #)enclel(r. ¥) (16)

is used. Obviously, the ansatz (16) should be a good ap-
proximation for slow time-dependent processes. This can be

equations (13) readiE 1,..., Ne)

al(ty=-> (Sl)aﬁ{

By

Ni
gy + Z RAR?V
A

} al (1)

expected to be realized for any situations where the timeyyith the following definition of matrices
dependence of the electronic density is governed only by the

slow atomic motion. In addition, Eq. (16) guarantees that the Sas = (¢a [#3)

non-adiabatic QMD formalism includes and describes auto
matically adiabatic situations (see below).

As Ay is local in spaceand time one has an explicit
expression fole = exc + géexc/ég. Thus one can obtain the
electronic energy as

Ne

Bl =Y 07 |F[w7)+ [ &ote.t [v«, R)
J
+;/d”;‘/ Q(rlvt)

o vedaco| . an

This energy depends on time and corresponds to the expec-

tation value with the many-body wave function in Eg. (4).
The total time derivative of this energy is

g Fl 10 =R [ dho.0 L VR

2

dy*/(r',t) 6 Eely]

dt sy t)
/ dW(r/,t) 5Ee|[1/}j]
+/“3’“ d W(r’,t)}

= R/ﬁg(r,t)gRV(r,R)

Ne

>

3
+<¢j

i

t+V,
dt eff

)
<))

t+ Verr (18)

(20)

(21a)

- Hag = <¢o{ |2?+ Veff| ¢5> (Zlb)
0

R, = <¢a R ¢B> . (21c)

Using Eg. (20) one can expre§§¢j explicitly and the time
derivative of the total energ¥ = H¢o + Ee becomes
N;j

o2, 5%

: 0
#Ra [ drotr) ) VOR
> @"WHag (S71) 5 R0}
afvyé

0
OR4

Pa
My

YAVA:
Ra—R35]

(22)

. Ne
R ¥

J

i A o .
+ Z a*?, (RT)aﬁ (S l)ﬁ7 H.,sa}
afyé
_Za*Ja <¢o¢ aRAQSﬁ >a23
ap

In the transposed matriXR")"  the derivation with re-
spect toR,4 acts to the left. It is obvious that the term
[...] in (22) vanish only if the underlying basis is com-
plete, i.e. if> 5 s RIS 5,00, (r"; R) = 6(r—r’), or
the basis does not depend &1 Rearranging some terms
one can deduce from Eg.(22) the following equations of
motion A=1,...,N)

{+ Veff

t+ Ver

_gﬁ:a fx< aRAd)oz

A
e’
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Ra=Pa/M 23a : o ; ;
A A/ Ma (23a) joR (R, afl(t)) - Z Z a*’ (t) Hag a‘é(t) (26)
e j aB
: 0 L ZuZg /
P = — ¢ 23b 1 / Q(rv R7t)Q(r 5R7t)
4 am% IRA-Rz| @z _2/d3r /dgr r—r'|

- *J 9 j dg Y xcl@] — Vxc
,Xj: Za@(aRAH“5> a, +/ T o(r Rt)(e [e] — VA [9])

af where the external potentid(r,R) in (14) has now to be

_ Z o <¢ 0 (Vf-f—V)‘ & > o understood as the sum of atomic pseudopotentigisR) =
— “1OR, € A S N Vis(r—Ra). The energy (26) is still considered on the
_ 4 ab-initio level. It is the aim of the following considerations
— Z [a*lea@ (S‘l)m Rﬁsag to simplify these expressions and then to derive appropriate
By approximate coupled equations of motion.
To do this we divide the density into two parts
+a') (RT) 1y (S78),, Hysah] o - or,R(1), 1) = o°(r,R(1)) + Ao(r, R(1), 1) (27)

where 0°(r, R(t)) depends smoothly on time via the coordi-

The td Kohn-Sham equations (20) and the Hamilton equahatesR(t) and Ao(r, R(?),t) contains the explicit time de-
tions (23) represent the basic equations of motion of theendence of the density. Independent on the total charge of
non-adiabatic QMD. They amexactin the sense of the time- the actual system under consideration we defit(e, R) as
dependent LDA (16) and they are valid fany basis. They the adiabatic density of the neutral reference system. This
describe Se|f-consistent|y and Simu|taneous|y (ﬂlyeamics definition allows to treat Charge and polarization effects with
of N; classical ions andV, quantum electrons including their the help ofAg explicitly, including that in neutral systems
excitations. For completeness we show in the appendix thasee below). One may now simplify the Coulomb- as well as
the non-adiabatic Egs. (20), (23) reduce to (or include) theéhe exchange-correlation integrals contained in (26) leading
corresponding equations of motion of an adiabatic QMD forto an approximate expression of the total energy which will
situations where electronic excitations do not occur. have a transparent interpretation.

An exact numerical solution of the highly non-linear ~ The ansatz (27) splits the two Coulomb terms in (26) into
Eq. (20) and the Eq.(23) with local basis sets is rather dif-three terms of the structure® o°, (¢°+Ap) ¢°, and Ap Ap.
ficult to obtain (if not impossible at all for realistic cluster Whereas the first two (and large) terms are taken into account
dynamics). These equations still contain all electrons includ€xactly, the last one (in general a small correction) is treated
ing the “non-active” core electrons. In the next section wein point charge approximation, i.e. with

propose and derive successive approximations for the solu- N
tion of the coupled Egs. (20) and (23). Ao(r,R,t) = — Z Qa(R,1)6(r—RA) (28)
A

where Q 4(R, t) is the net charge located on the centte
Consistent with the definition of°(r, R) the point charges
@4 can be obtained with help of theolwdin population
analysis [47]

3.3 Approximate equations of motion

For the following discussion it is convenient to start with an
LCAO (linear combination of atomic orbitals) representation

_ i y (= Nyal ) )
of.the td Kohn-Sham orbltélg( 1...,Na) QuR.1)= 20 Z Za*i(t) Sof‘ﬁ(R) a]ﬁ(t) 29)
P 1) =D alr—Ra,)dl(t). (24) 7 b

where the symmetric matriﬁfﬁ is defined with the square
Here A, stands for the atom on which the atomic orbital  root of the overlap matrix (21a) as

is centered. We treat at the very beginning valence electrons
Nvai only. Then the collective part of the total energy=  Si5(R) =) (51/2) <Sl/2) . (30)
Heon + Ee becomes va ara Y4B

N p2 1Y N 5050 In Eg. (30) the sum has to be taken over all atomic orbitals
Heon = Z 4 4 Z Z’ AZB (25)  belonging to the centrél.
— 2My 24+~ |Rs —Rp| Any practical application of (or approximation to) DFT

, 0 . ) is connected with an approximate treatment of the exchange-
with Z; the valence charge of the ion. The electronic  corejation effects. As a first approximation of a non-adia-
part E is obtained from (17) by rearranging some termspaiic QMD (and enlighting arguments given below) we re-
using (21b) with (14) and the density place the td density(r, R, ¢) in the last term of Eq. (26) as

R.t) = S~V % j yveII as in the exghange—corr(_alation potentigd, cor)tained
o R = 205 Lag @ a3 0 in H,z, by the adiabatic density’(r, R). Together with (28)
from (24) as this leads after some algebra to an approximate total energy

of the form
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Ni 2
P .
E-= XA: 2J\2A +U(R) + Ecoul (R, al,(t))

Nyal

+Z Za*f (t) H 3 aly(t)

with the conservative potential

(31

S, 737

UR) = 2 ZZ IRa—R3|
, 0°(r,R)°(r', R)
_é/ﬁ/&

r—r/|
—/dgr [°(r, R, 1)]

and the Coulomb correction

al (1) = ZZ'Z /@a

The last term in Eq. (31) still contains the full density but is
obtained now with the Hamilton matrix

Hop = (9a |E+ Ver| 9)

(32

2 5€xc[QO]
60°(r,R)’

(R7 t)QB(Ra t) )

E
coul ‘RA . RB|

(33)

(34)

which does not depend explicitly on time due to the effective

potential

VO(r.R) = V(r.R) + / o 9 VO R).

|
(35)

The sense of the upper made approximations becomes no%B(R t) = Z |

apparent. In the adiabatic limit (automatically contained in

(36)

i.e.6A/8a*) (t) = 0, provides the Kohn-

. >Nval)
{ } a?'y(t) .

N
1 H g, + Z RAR?’Y
A
Second, the time derivative of the total energy, i.B,/dt 2
0, results in the Newton equations

with respect ta*?,
Sham equationsj(= 1,

a0 == (57,
By
(37)

MR, = _a‘;A [U(R) + Eeou (R, o, (1) | (38)
Nyal ) 0 ;
“3 10 (o, ) o
_ Z |: #J Hocﬁ —1)5 R,Y(SCL&

afyé
), (RT), (574, Hwafs} } .

In Egs. (37) and (38) we have introduced the abbreviation

Ni
Heap = HYy—> ®5(R,1) 8%, (39)
B
with the potential
Qc(R,1)
40
Re—Rcl|’ (40)

the present formalism) the approximate energy (31) has forOwing to the Q4 dependence ofH,; the Kohn-Sham
mally the same structure as that used in the tight-bindingequations (37) are still non-linear. However, in neutral (or

approximation [49]. Here, however, one has explicit time-
dependent coefficients, (). In addition, and in striking con-
trast to the tight-binding method, the matrix eIemth(%

and the potential/(R) (in general short range and repul-

slightly charged) systems with delocalized electronic states
and therefore negligible charge localization effects (like
metal clusters or fullerenes) one may linearize (and therefore
extremly simplify the numerical solution of) the Kohn-Sham

sive, see the structure of (32)) do not contain any free paequations (37) because the assumptipn = 0 and hence

rameter. Owing to the inclusion of the Coulomb tefy

in (31), charged systems (still a delicate problem in the tight-

H.p = Hgﬂ is expected to be a good approximation. This,
however, must be checked carefully. For charged (and espe-

binding method) can be treated self-consistently as well (seeially highly charged) systems one is confronted in any case
below). In any case, the approximate energy (31) providesvith the non-linear Kohn-Sham problem (37).

a direct link between the (in principle exact) MD combined
with DFT and molecular dynamics combined with the tight-

A numerical implementation of the equations of mo-
tion (37), (38) and first non-adiabatic studies of cluster frag-

binding theory. This is especially so because the lower givermentation and collisions with clusters will be presented else-
equations of motion (37), (38) remain valid (and thereforewhere [40].

are consistent with (31)Jhdependenbf the assumptions or
approximations made in calculating the matrix eleméﬁgg
and the potential/ (R).

It is worth to note that (31) is still the exact energy for
neutral systems in the adiabatic limit.

Two longer calculations lead to the final equations of
motion. First, the variation of the action

A[]/w{ (0 ig

to

Nyal

ZZ@*’@)

| 99) O

In the next section we study non-adiabatic effects for a
model system using the exact Egs. (20), (23).

4 Case study: one-particle model

In order to obtain a first insight into the non-adiabatic inter-
play between classical motion and electronic excitations, we
study here the simplest case — the collision of a proton with
a hydrogen atom H-H. To make the approach as transpar-
ent as possible only central collisions are considered and a



minimal basis set that allows for non-adiabatic transitions is
used.

The (trivial) case of a one-electron system can be treated
with the exact equations of motion (20), (23) by omitting the
Hartree and exchange-correlation terms in the “effective”
potential (14). In that case the single-particle “Kohn-Sham
orbital” (19) corresponds to the one-particle wavefunction
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-10

¥(r,t). Assuming the nuclei to be located on theaxis at
the relative distancé?, one has

1 -1

Verlt ) = VIR = h ot e enjal

" (41)

Instead of an LCAO-ansatz (24) we use here the molecular

or adiabatic basi$y,,(r, R)} for the representation af(r, t)
with the ansatz

4 .
G =3 g Rye ] = g ).
n=1
The basis functions),,(r, R) as well as the energy levels
en(R) are obtained from the solution of (A10) using in-

(42)

€, [eV]

-30

-50 R 1 R 1 R 1
0

R [a.u.]

tentionally the smallest possible (symmetric) set of atomicrig. 1. Correlation diagram of the model systent+H. The adiabatic

hydrogen orbitsg,, in (A9) that may lead to excitations,

single-particle energies,, (n = 1,...,4) are plotted as a function of the

i.e., the 1s- and 2s-functions centered on both nuclei. Thdlistance between the nuclgi The molecular states with an ungerader¢
coefficientsa; and az belong to the gerade states whereasade symmetry are drawn by dotteddlid) lines. Note the avoided crossing
a, and a4 are the coefficients of the ungerade states. Thig fio ~ 0.65a.u. between the ungerade states

choice provides a very transparent correlation diagram with

one avoided crossing between the two ungerade state?
andn = 4 at a distance of abouty =~ 0.65a.u. (see Fig. 1).

Therefore electronic excitations are expected to be important

at centre-of-mass incident energiés,, larger than about
Eem = 1/Ro + ;5 (€1(Ro)—e1(00) + £2(Ro)—e2(c0)) ~ 32V
which corresponds to the BO energyfat Ry of the model
system with half-filled states; ande, (see below). The real
crossing between the gerade € 3) and ungerade state
(n = 2) does not contribute to excitations owing to the dif-
ferent symmetry.

With the adiabatic basis (42) the matrices (21) simplify
to

_ 9 _ T
Rnrn - <wn OR l/}m> - (R )nm (430)
and the equations of motion (20), (23) become
an = Ry Rame™ [ C ", (44)
,LLR:J./RZ—ZCL* aa a
n 6R n mn
" (45)

+ Z a;(&n - Em)aname_i fdt,(sm_en) .

nm

i) Equation (45) is solved with fixed coefficients
an(t) = an(to) - (46)

This provides a classical trajectori(t) on the BO
ground-state surface, i. e., that of an adiabatic QMD. The
comparison with the self-consistent trajectory allows us
then to study the influence of the non-adiabatic effects
on the classical motion.

Equation (44) is solved with a classical Coulomb trajec-
tory

pk=1/R?. (47)

This corresponds to the classical-trajectory approxima-
tion (or “impact-parameter method”) of the ion-atom
scattering theory [44]. The comparison of the elec-
tronic excitation energies calculated self-consistently and
within the approximation (47) reveals the importance of
the self-consistent coupling between the trajectory and
the dynamics of the quantum system.

a, =0,

i)

In Fig. 2, the classical trajectorig®(t) and the correspond-
ing kinetic energies of the relative motiaf, 2R2 are
plotted as a function of time for all three cases (non-adiabatic
QMD, adiabatic QMD, and Coulomb trajectory). The chosen
bombarding energy i¥.m = 45eV. The classical trajecto-
ries R(t) are very similiar in all three types of calculation.
The Coulomb trajectory, however, has a somewhat smaller
stiffness and, more importantly, a slightly larger distance of

with . = 918 a.u. the reduced mass of the system. They arelosest approach (located iat 0 in Fig. 3) as compared to

solved with the initial conditionsi2(to) = ax?(to) = 1/2
and a3?(tp) = a4®(to) = 0, which ensure that the electron is
initially located at one proton in its ground state.

The results following from the self-consistent solution

of (44) and (45) are compared with those of two other ex-

treme cases:

the two QMD trajectories. It is just this effect which may
induce large differences in the calculated electronic excita-
tion energies if different trajectories are used to follow the
quantum system by Eq. (44) (see discussion for Fig. 4).
The different classical dynamics for the three cases con-
sidered becomes more apparent in the behavior of the ki-
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Fion—el [a.U.]

Exin [eV]

Fiot [a.U.]

time [a.u.]

Fig. 2. Computed relative distance between the idd@) and the corre-
sponding kinetic energy of the relative motidtx, = ’;RZ as a function
of time for three different calculations: non-adiabatic QM$&»I{d line), L .

adiabatic QMD ¢otted, and Coulomb trajectoryd@shedl. In all cases the -200 -100 0 100 200
bombarding energy i&cm = 45eV and the impact parameterbsO time [a_u_]

Fig. 3. Calculated forces mediated by the ion-electron couplifg—_ei(t),
netic energiesiin(t). While the classical motion in the adi- i.e. that without the 1R? term in Eq. (45) pper par}, and total forces

abatic QMD and for the Coulomb scattering is strongly con- Fiot (lower parj for the same trajectories as shown in Figsdlid lines:
servative (manifested by completely symmetric curves Withnop—adiabatic QMDdotted lines:adiabatic QMD,dashed line:Coulomb
respect to the point of closest approach) the non-adiabatif®ec®"Y
QMD leads to a mean energy loss of abaliEy,/Fem =
10% (lower part of Fig.2). This energy is stored into elec-
tronic excitations. from the larger decrease afi as compared to the repul-
A more detailed insight into the classical dynamics cansive e,—state (Fig.1). As the systems approach closer, the
be obtained from the calculated forces (Fig. 3). In the upperepulsive component resulting from dominates leading to
part of Fig. 3 the forces originating only from the electron- repulsive forces in both cases. The forces begin to differ in
ion coupling Fion_er, i.€. that without the Coulomb term the region around the classical turning point. The adiabatic
1/R? in Eq. (45), for the two QMD cases are presented whileone (which must be completely symmetric with respect to
in the lower part the total forces (45) are plotted as a functiont = 0) becomes attractive (and again repulsive) arausd)
of time for all three cases. Because of the simplicity of thebecause of the decreasing slopezgpfaround Ry. The non-
chosen model system, all details of the different behavior ofadiabatic force continue to act repulsively, which is clearly
the forces can be physically understood in connection withdue to the electronic transitions from= 2 ton = 4 around
with the correlation diagram of Fig. 1 and the trajectories ofthis point (note the repulsive behaviour &f in Fig. 1). On
Fig. 2. the way “back” it becomes attractive again, with typical os-
Note first that initially the states = 1, 2 are filled with  cillations resulting from the energy differences between the
one-half probability. In the adiabatic QMD this occupation ¢, and ¢4 states and mediated by the last term in Eq. (45).
remains unchanged for all times and the system moves ofihese oscillations are damped out owing to the vanishing
the BO surface AR + ;(sl(R)—sl(oo) +52(R)—52(oo)) of coupling matrix R,,,,, (for increasingR) contained in this
the model system. In the non-adiabatic QMD remarkableterm.
changes in the occupation can be expected where the system Although there is a large difference in the time behav-
passes through the avoided crossin@ggt 0.65a.u. During  ior of the ion-electron forcegio,_¢ in the two QMD cases,
the approach phase the forcég,_¢ of the adiabatic and the total forces are strongly dominated by the Coulomb term
non-adiabatic QMD are identical and attractive. This resultsl/R? in Eq. (45). This can be seen in the lower part of Fig. 3
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5 e e : In the framework of an LCAO ansatz approximate equa-
tions of motion are derived. In the adiabatic limit they lead
to well known tight-binding-like equations, but are basically
different from the tight-binding theory because the micro-
scopic part of these equations is still based on the ab-initio
level and does not contain free parameters or parameter-
ized matrix elements. In addition, the consistent treatment
of charged systems causes no problems.

As a case study, non-adiabatic effects are studied in col-
lisions between a proton and a hydrogen atom using (in that
case) an adiabatic minimal basis which makes the equations
of motion simple and the interpretation of the results trans-
parent. For the chosen model system, non-adiabatic effects
are found to be important in the bombarding energy range
between about 20eV and 100eV. As a possible outlook for
future studies in this field, the non-adiabatic QMD can be a
good candidate to study ion-atom collisions for real many-
A e . electron systems (e.g.,"€C with 7 active and correlated
10 100 1000 electrons [51]) where the present status of ion-atom scatter-

E. [eV] ing theory failg [44, 52]. o . .
cm As the main field of applications of the non-adiabatic
QMD formalism, however, we intend to investigate dynam-
Fig. 4.Ce}|culated mean electronic excitation energigsas fUnCtiOI’.l of_the ical processes with atomic C|ustersy namely, fragmentation
bombarding energycm for the model system H-H (b=0). Thesolid line of (highly charged) clusters as well as collisions of ions

corresponds to the self-consistent non-adiabatic QMD calculation, whereaf t ith clust luster-i d clust lust li
the dashed linds obtained with a Coulomb trajectory a oms) with clusters (cluster-ions) and cluster-cluster colli-
sions [40, 51].

where for all three typ_es of C"_"ICUIatlon the total fordes We thank S. Blundell for a careful reading of the manuscript and help-

are drawn as a function of time. Whereas the two QMD+y| remarks. This work was supported by the DFG through the SFB 276

forces are practically equal, the pure Coulomb force is some¢Freiburg), the Schwerpunkt “Zeitaihgige PAnomene und Methoden in

what less repulsive around= 0 and therefore leads to a Quantensystemen der Physik und Chemie” and the EU through the HCM

slightly different trajectory (cf. discussion for Fig.2). The ‘l‘\let\/\{o_rks “Formation and Stabilit_y etnd Photophysics of Fullerenes” and

quantum system, however, reacts very sensitively to fine dif-C0llision Induced Cluster Dynamics”.

ferences in the classical trajectories.

This is demonstrated in Fig. 4 where the calculated elec- )

tronic excitation energie?* as a function of the bom- Appendix

barding energyE¢n, are plotted for a self-consistent non-

adiabatic calculation and for the solution of (44) with a pure The coupled Eqgs. (20) and (23) of the non-adiabatic QMD

Coulomb trajectory (47). Obviously, in the region between should contain as limit the adiabatic QMD if electronic tran-

Ecm =~ 20...100eV there are large differences in the cal- sitions are unlikely or unimportant. To demonstrate this, we

culated valuegs* for both cases demonstrating the impor- first derive the corresponding coupled equations foadih

tance of a self-consistent trajectory for the dynamics of theabatic QMD combined with static DFT using local basis

quantum system. For energi¢s, < 100eV the trajecto- sets for the KS orbitalg,,(r; R). The indexn numerates the

ries are dominated by the Coulomb repulsion only and (astatic single-particle levels.

expected) the results coincidence. Finally, we remark that The starting point is the density(r) which can be rep-

the double-humped behavior &* as a function ofE, is  resented in the formulation of Kohn-Sham [50] by

due to the interference between both electronic transitions N,

during the approach and the recoil phases of the relative , .\ _ .y [2

motiogn. Owir?(; to the simplicity of oEr model, with only olr) = Z [¥n (6 RN (A1)

one avoided crossing, this can be understood qualitatively "

within the Landau-Zener-8tkelberg theory [44] too. The total energy of the system including the classical part is
given by

5 Summary and outlook E = Heon + Eall¢s](R) (A2)

with Hcon according to (2a) and the electronic part
The basic formalism of a non-adiabatic QMD is presented. col g to (22) P

Based on td DFT, exact equations of motion are derived . &
which describe self-consistently and simultaneously classicafeel¥n](R) = Z (Wn || ) +/ ro(r) [V(r, R)
atomic motion and quantum electrordgnamics They are n
valid for any basis for the representation of the td Kohn- 1 r’
y p +2/Osr/ |r9(_ r)J + Belo]

occ

Sham orbitals. (A3)
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which determines the Born-Oppenheimer surface of the electy,, |v,,) = Zaﬁ CraSasChn i1
tronic ground state. Minimization of the functional (A3) with

respect o) (r; R) leads to the Kohn-Sham equations and rearranging some terms in (A7) and (A11) one obtains

. finally

. . . MAQA - Z A4B
with the effective potential

p . R4 2= R4~ Ryl
R =V(r,R)+ [d 27 + A 0
Vat R=VER) [ ) evddn ) B3 0 [ (LA TN
including the exchange-correlation part noes 9
OF. - Cna <¢a (V f‘fv)‘ ¢,6> C n
ddm) = el (16) oR, ’
0

In the adiabatic theory the forces acting on the ions can be —Chnatn <6R Saﬁ) Cﬁn} (A12)

derived straightforwardly by differentiation of (A2) with (A3)
with respect toR4 |ead|ng to the equa“ons of motion the equations of motion for the adiabatic QMD. They have

(A=1,...,N,) to be solved simultaneously with Eq. (A10) and provide the
P L g7 classical dynamics of the ions on the Born-Oppenheimer

MiR, = — > ALB ground state surface.
IRa—R5| A7 It remains to show that the non-adiabatic equations of
9 (A7) motion (20) and (23) reduce to the adiabatic ones if elec-
—/dgTQ(f)aRA V(r,R)+F4 tronic transitions are neglected. In this case the initial con-

ditions for the amplitudes:/ (t=0) must be given by the
where the second term is the usual Hellman-Feynman forc@diabatic coefficient§,, with n = j (n = 1,..., N.) and

and the third term is formally given by their time dependence is the trivial one of a stationary single-
/d3/ Ov*(r': R) 5 Ee|[¢n] particle state
ORa  OYi(r';R) an(t) = exp(—ien(R)t) Can(R). (A13)
Y O (r';R) §Ee[1n] Note that for the solution of the time-dependent KS equa-
/ ORA  SUn(r'; R)} tions (20)R has to be considered time-independent which is

(A8) valid only if the second term on the r. h.s. of (20) remains
R small as compared to the first one, or in other words, if the
t+ Vet ¢n> time scales of the classical motion and that of the quantum
n system are completely separated. Under these circumstances
Oy, Eq. (20) reduces together with (A13) to the secular equa-
+ < n OR 4 >} tion (A10). Using this secular equation (and the correspond-
) ) . ing transposed one) multiplied by the inverse of the overlap
This force vanishes for thexactsolutions of (A4) only. If  pa¢rix (S—l)aﬁ from the left (and the right) one obtains for
the Kohn-Sham functions are expanded in a local bagi§ {0 1\on-adiabatic force (23b)

-{(on;

t+ Ver

Un((iR) = ¢a(ri R) Can(R) (A9) ) 0 ~~' ZaZp
MiR 4 = —
o ATAT T Z IRA—Rp|
the KS equations (A4) reduce to algebraic equations oce
Z {Haﬁ - Ensaﬁ} Cﬂn =0. (AlO) B Z Z { ( aﬁ) Cﬁn
ﬁ n
Without loss of generality one can assume real expansion —Cha <</>a R4 (Veff—V)‘ ¢5> Can

coefficientsCl,,,. The matrices 3 and S,z are defined as
in (21). Using the ansatz (A9), the force (A8) alters to

0
- ;azﬁ {Cna <8RA (ba

_ {Cmgn aﬁcﬁn +Cho (RT) angn} }

£+ Vi <z>ﬁ> Cn (AL4)

which is equivalent to (A12) becausRy; + (RT);, =

- 0
+ Cna [e% t+ V C n
<¢ eff aRA¢ﬁ> 3 52 Sap.
R, C)
+ < Cna HQBC,Bn
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