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Abstract
For ultrashort VUVpulses with a pulse length comparable to the orbital time of the bound electrons
they couple to, we propose a simplified envelopeHamiltonian. It is based on theKramers–
Henneberger representation in connectionwith a Floquet expansion of the strong-field dynamics but
keeps the time dependence of the pulse envelope explicit. Thereby, the envelopeHamiltonian captures
the essence of the physics—light-induced shifts of bound states, single-photon absorption, and non-
adiabatic electronic transitions. It delivers quantitatively accurate ionization dynamics and allows for a
physical insight into the processes occurring. Itsminimal requirements for construction in terms of
laser parametersmake it ideally suited for a large class of atomic andmolecular problems.

1. Introduction

Interaction of strong lightfields with bound electrons continues to produce new experimental phenomenawhile
theory is looking for appropriate approximations since this dynamics, even for a single active electron, is not
analytically solvable. Nevertheless, the interactionwith femtosecond pulses in the infrared domain is by now
well understood as long as a single-active-electron description is suitable.More recently, the domain of slow
photo-electrons has become a centre of attention through the discovery of substantial photo-electron yields with
a couple of eV kinetic energy in atoms andmolecules exposed tomid-infrared laserfields [1–4].

In parallel advanced optical techniques allow for the generation of attosecond light pulses so short that their
pulse durationT can reach the period of a bound electronTν they couple to. Also here, in simulations a
surprisingly large yield of low energy electronswas found [5, 6] despite the fact that the carrier frequencyωwas
high enough to elevate the photo electronswell into the continuumby single-photon ionization (SPI).However,
dynamics gets involved for this regime of light–matter coupling, characterized by the hierarchy of time scales

T T T (1)∼ >ν ω

with T 2π ω=ω , since the time envelope of the laser pulse with lengthT becomes dynamically important.
This is the reasonwhy so far electron dynamics in this regime [7] could only be described fully numerically
although the dominant single-photon absorption suggests the possibility for a suitable perturbation theory.

In the followingwewill formulate the basis for such a perturbative approach by introducing the envelope
Hamiltonianwhich condenses possible non-adiabatic electron transitions due to the short pulse envelope into a
singlematrix element with zero-photon absorption similarly to thematrix elements for n-photon transitions.
Solved fully numerically, the envelopeHamiltonian captures accurately the ionization dynamics aswill be
demonstrated in comparisonwith the numerical solution of the time-dependent Schrödinger equation for two
examples, as will be detailed in section 2.Moreover, for suitable parameters, the envelopeHamiltonian also
suggests itself for perturbative treatment developed in section 3, inwhich n-photon transitions (including zero-
photon transitions !) appear asmatrix elements of solutions for the system time-averaged over an optical cycle,
as will be shown in section 4.
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2. The envelopeHamiltonian 2
2.1. Cycle-averaged time-dependentKramers–Henneberger (KH) potentials
Weuse atomic units unless stated otherwise and start from theHamiltonian in theKH frame [8]

( )V x tr e
1

2
( ) , (2)x

2�� = − + + ω

whereV is the potential inwhich the electron is bound and xω is the classical quiver position in a linearly
polarized laser field along x, marked by the unit vector ex. TheKH frame has been extensively used in the context
of stabilization [9, 10] and recently to interpret strong-field photo-ionization data of atoms [11].

To facilitate the analytical derivations of the cycle-averaged time-dependent KHpotentials, ultimately
leading to the envelopeHamiltonian, we define the laser field F(t) in terms of the quiver amplitude entering (2),

F t
x

t
( )

d

d
, (3)

2

2
= − ω

with xω specified analytically as

x t t t a( ) ( )cos( ), (4 )α ω δ= +ω

t b( ) e . (4 )t T
0

4 ln 2( )2α α≡ −

Thus F(t) describes a finite pulse with durationT (full width at halfmaximum), and it represents a proper
electromagnetic pulse [12]with vanishing dc component t F t x t td ( ) d ( ) d 0∫ = ∣ =ω −∞

+∞ and vanishing

displacement t A t x td ( ) ( ) 0∫ = ∣ =ω −∞
+∞ . For the pulse to remain in the non-relativistic domain, we

characterize it with themaximumfield strength F F(0) cos0 δ= which leads to the prefactor

F

T

1

1 8 ln 2 ( )
(5)0

0

2 2
α

ω ω
=

+
in (4b) following directly from (3).

While theHamiltonian (2) contains of course all dynamics implicitly, we aim at a formulationwhich brings
out explicitly the relevant physical processes—light-induced shifts of the bound states, and non-adiabatic as well
as n-photon induced electron transitions.Wefirst construct aHamiltonian

t V t ar( )
1

2
( , )e , (6 )n

n n

n

n
n t2 i

max

max

max

�� ∑= − + ω

=−

+
−

where theV tr( , )n are single-cycle averaged Fourier-components of the potential in (2),

( )V t
T

t V t t br r e( , )
1

d ( )cos( ) e . (6 )n

T

x
n t

0

i∫ α ω δ= ′ + ′ +
ω

ω ′ω

Note, that (6) is not the usual Floquet representationwhichwould absorb the entire time dependence in the
Fourier phases e n ti ω with time-independent coefficientsV V r( )n n= . Yet, formally, it represents a faithful
formulation of the full Hamiltonian in the limit nmax → ∞.What has been achievedwith (6) is the separation of
the time dependence due to the oscillatory electric fieldwith carrier frequencyω and due to the envelope of the
short pulse, still contained in the time-dependent potentialsV tr( , )n .

2.2.Minimal expansion length n 2max =
The expansion (6) is of course only useful, if a few terms (a few photons) are sufficient to describe the dynamics
in question accurately. For weak pulses ( 0)0α → of any pulse duration the linear regime of single-photon
absorption is approached suggesting n 1max = as theminimal expansion length.However, to achieve agreement
of nmax with the full Hamiltonian for 00α → , the expansion length n 2max = (maximally two-photon
exchange) is required.

To see this we expand the single-cycle-averaged potentialsV tr( , )n to 2nd order in 0α

V t V
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2
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where x y zr ( , , )= . Inserted into equation (6a) the full potential without single-cycle averaging is recovered to
order 0

2α :
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Since already the non-adiabatic term (7a) with zero-photon exchange contains the same interaction potential as
the term (7c) with two-photon exchange, it is necessary to have aminimumexpansion length of n 2max = in
(6a) to achieve agreement with the full  in the limit 00α → . Therefore, we define the envelopeHamiltonian as

2 in (6)with n 2max = . This implies physically, that 2 describes correctly two extreme and seemingly
opposite limits, namely very short and very long pulses. The latter is equivalently characterized by a large photon
frequency or an optical period being short compared to the pulse durationT T≪ω . Note that 2 is sufficient
for long pulses, even for large 0α , since the continuum–continuummatrix elements are typically small.

2.3. Pulse-length dependent ionization from the envelope and the fullHamiltonian
Given that 2 is exact for 00α → it should also be a good approximation forfinite 0α as long as one photon
takes a bound electron into the continuum. This is indeed the case as the following examples of a negative ion
shows. It is described by amodel potential [13]

V x
a x a a

x a a
( )

exp ( )

( )
(9)

1 1
2

2
2

1
2

3
2

⎡⎣ ⎤⎦= −
− +

+

with a 24.8561 = , a 0.160 932 = and a 0.252 253 = .With these parametersV(r) supports one bound state of
energy 0.0277bε = − a.u. Figure 1 shows the ionization probability as a function of pulse lengthwith almost
perfect agreement between the full dynamics (blue-solid) and the one obtainedwith the envelopeHamiltonian

2 (green-dashed). The inset offigure 1 shows the same observable, however, calculated for a 3D system [14]
with

V Vr( ) e , (10)rr
0

( )0
2= − −

where the parametersV 0.383 10870 = and r 2.50260 = yield the same binding energy bε as in the 1D case. One
sees the same excellent agreement of the full results with those obtainedwith 2 .

This agreement is particularly astonishing for pulse lengths around the period of the bound electron1

T 69.1b = a.u., which represents exactly the dynamical regimewe are targeting since the optical period is
T 20=ω a.u., cf (1). Obviously, thismatch of time scales results in a plateau structure whichwewill explain
below formulating an adiabatic time-dependent perturbation theory (aTDPT) for time-dependent basis
functions. Although aTDPT is not necessary for using the envelopeHamiltonian 2 , it allows one towork out
and separate themechanismswhich lead to ionizationwith (6) in an intuitive way.

Figure 1. Ionization probability P as function of pulse lengthT for theKHHamiltonian (blue-solid) according to equation (2) and for
the envelopeHamiltonian (green-dashed) 2 according to equation (6). Note, that both results are very similar and therefore difficult
to distinguish in the graph. Themain figure shows a 1D systemwith potential (9) discussed in detail below. The inset shows an
additional calculation for a 3D systemwith the potential (10). The laser parameters are F{ , } {0.5, 0.314}0 ω = and
F{ , } {4.5, 0.942}0 ω = for the 1D and the 3D case, respectively.

1
Wedetermine Tb from the classical period at the quantized energy bε of the respective bound state, T x m V xd (2 [ ( )])b b

1 2∮ ε= − .
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3. Adiabatic time-dependent perturbation theory (aTDPT)

In fact, despite the presence of a strong field in terms of the ponderomotive energy theV n, 1n ∣ ∣ ⩾ can be treated
as perturbations for suitable initial andfinal states, and aTDPT gives itself accurate quantitative results and
simplifies the treatment of short pulses beyond the solution of 2 since it requires only the solution of

t V tr( )
1

2
( , ), (11)0

2
0�� = − +

while the other termsVn in (6) can be treated perturbatively.We expand thewave function2 into eigenstates
t( )β∣ 〉of t( )0 atfixed t

c t te ( ) ( ) e , (12)t tE ti ( ) i ( )⨋ψ β∣ 〉 = ∣ 〉χ
β β− − β

where t( )β∣ 〉denotes both, bound and continuumeigenstates. The phase t( )χ reflects the fact that eigenstates
are defined up to a phase which can be time-dependent in our case andwhich is used to simplify the coupled
differential equations for the coefficients c t( )β . Details can be found in the appendix. In 1st-order time-
dependent perturbation theory for the coefficients cβ andwith initially only the bound state tb( )∣ 〉occupied, i.e.
c t( ) 1b

(0) = and c t( ) 0b
(0) =β≠ , the differential photo-ionization probability is given as usual by

c tlim ( )P
tk k

d

d
(1) 2= ∣ ∣→∞ .With the envelopeHamiltonian 2 the contributions to the cross section

P
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k
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d
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can be disentangled according to the number of photons n exchangedwith t( )0 and described by thematrix
elements

M t t t
t

t bk k( , ) d , b( ) e (13 )
t

t
0

i ( )0∫= − ′ ′ ∂
∂ ′ ′ ϕ

−∞
′

and for one- and two-photon transitions, n 1, 2= ± ± ,

M t t t V t t ck k r( , ) i d , ( , ) b( ) e (13 )n

t

n
ti ( )n∫= − ′ 〈 ′ ′ ′ 〉 ϕ

−∞
′

with the phases

t k E t n t d( ) [ 2 ( ) ] . (13 )n
2

bϕ ω= − −

While equation (13a) looks familiar on a first glance, it exhibits clear differences compared to standard TDPT:
without an explicit time-dependence of the basis functions t( )β∣ 〉, thematrix element for non-adiabatic
transitions (13b) vanishes. A bitmore subtle is the energy difference in the phases nϕ : while the energy
characterizing the final ionized state is not time-dependent, E k 2k

2ε= =β , the energy of the initial bound

state is actually a time average E t t t t( ) d ( )
t

b
1

b∫ ε= ′ ′− while t t[ ( ) ( ) ] b(t) 00 b ε− ∣ 〉 = .

4. Contributions to the ionization yield from the perspective of aTDPT

Wewill now analyze the pulse-length dependent ionization yield offigure 1 inmore detail and concentrate for
simplicity on the 1D case. As it turns out, the plateau-like shape of the ionization yield can be understood is a
direct consequence of the pulse-length dependent behaviour of the different contributionsMn to the cross
section, as illustrated infigure 2, which takes a closer look on the ionization dynamics, including the photo-
electron spectrum for a pulse length ofT=100 a.u. infigure 2(b). Although it represents amore differential
property as compared to the total ionization yield, the same good agreement between the full dynamics and that
of the envelopeHamiltonian can be seen.

The non-adiabatic contribution to the ionization probability P M k( , )k
0

d

2 0
2∫≡ ∣ ∞ ∣π , is shown infigure 2

(blue-dotted line). It becomes substantial forT Tb< , i.e., when the pulse length is shorter than the period of the
electron. As a consequence, the electron cannot follow the pulse anymore and undergoes non-adiabatic
transitions leading to accumulation of amplitude in the continuum.On the other hand forT Tb> the electron

dynamics is adiabatic andM0 does not lead to ionization. The SPI described by P M k( , )k
1

d

2 1
2∫= ∣ ∞ ∣π is due to

V1 and grows linearly for largeT in accordance with a single-photon process. The total ionization probability
reached is no longer small compared to unity and depletion of the ground statemust be taken into account,

2
The expansion of the time-dependent wavefunction in adiabatic states has been proposed first by Born and Fock [15].
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leading to P P P˜ 1 exp( )1 1 1→ ≡ − − and shown as red-dashed line infigure 2. Remarkably, the incoherent sumof
both probabilities P P0 1+ (thick grey-solid line infigure 2(a)) approximates very accurately the full ionization
probability P(T) from the coherent superposition of amplitudes (13a) (green-dashed infigure 2(a)). Typically,
this is the case if the differential probabilities P k M kd d ( , )n n

2= ∣ ∞ ∣ peak at very differentmomenta k such that

the overlap integrals k M k M kd ( , ) ( , )n m*∫ ∞ ∞ for n m≠ vanish.
This is indeed the case, as the photo-electron spectrum infigure 2(b) reveals: non-adiabatic transitions

produce low-energy electrons [16]whose probability P Ed d0 (blue-dotted) is well separated from the
contribution P Ed d1 (red-dashed)mainly due to single-photon absorption. The latter peaks close but not at the
CW laser photo-line at E ( ) 0.2864bε ω= −∞ + = . This is the result of two competing effects. Firstly, there
is a red-shift due to the finite width of the SPI peakwhich is convolutedwith the exponentially decreasing dipole
matrix element in (13c). Secondly, there are thewell-known light-induced shifts of the energy levels, notably the
initial bound state bε gets lifted upwards leading to a blue-shift of the SPI peak. In the limit of T 1ω ≫ the red-
shift disappears, while the blue-shift is only influenced by the quiver amplitude.

The SPI peak does not only shift if generated by an intense short pulse, it also getsmodulated as a result of
interference of photo-electron emission in the rising and fallingwing of the pulse [17, 18] recently also found in
molecules [19, 20] and termed dynamic interference. Spatial interference, i.e. ionization fromdifferent position
of the oscillating potential [9], during the peak of the pulse can be interpreted as the onset of stabilization.
However, formulating the ionization yield—a quantity naturally defined at asymptotically long times—during
the laser pulse is an intricate problem,which can easily be solved be defining cycle-averaged ionization yields.

4.1. Pulse-dependent photo-ionization rates
The adiabatic perturbation theory for parametrically time-dependent perturbations suggests to formulate
photo-ionization rates (involving true photon absorption) during the laser pulse as photo-ionization rates per
optical cycle. To this endwe simply define the probability for SPI (here for clarity in the 1D case) at time t by
integrating the single-photon transitionmatrix element M k t( , )n over energy and an arbitrary numberN of
laser periods Tω

P t
k

t k t V x t t( )
d

2
d , ( , ) b( ) e , (14)n

NT

n
t k n t

0

i 2 ( )
2

2⎡⎣ ⎤⎦∫ ∫π= ′ ω ε′ − −ω
β

wherewe havefixed all pulse-envelope related time dependencies including that of the bound state energy bε as a

parameter. Then E t t( ) ( )b bε= , since E t t t t t( ) [1 ] d ( ) ( )
t

b
0

b b∫ ε ε′ ≈ ′ ″ =
′

. For largeN the residual time

dependence t′ in the phase of the integral in (14) produces a δ-function ( )k n t2 2 ( )2
bπδ ω ε− − while the

second (complex conjugate) integral gives then trivially NTω. Thefinal result for the SPI rate is then

Figure 2. Ionization probability (a) P T E p E( ) d ( )T∫= as function of pulse lengthT and (b) p E P E( ) d dT = as a function of photo-
electron energy atT=100 a.u. As infigure 1 the other laser parameters are F 0.50 = and 0.314ω = . Results are shown for the
potential (9) for the envelopeHamiltonian 2 (green-dashed) according to (6), as well as for partial contributions fromnon-adiabatic
transitions P0 (blue-dotted) and from single-photon transitions P̃1 (red-dashed), both are defined in the text, as well as their
incoherent sum P P̃0 1+ (thick grey-solid).We show P P˜ 1 exp( )1 1≡ − − instead of P1 in order to account for saturation. The arrow in
(a) points to the pulse duration shown in (b). The one in (b) points to the SPI energy bε ω+ of the unperturbed system. Same laser
pulse parameters as infigure 1.
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t
P t

NT k
k t V x t t k t V x t t( )

( ) 1
( ) ( , ) b( ) ( ) ( , ) b( ) (15)n

n
n n

2 2⎜ ⎟⎛
⎝

⎞
⎠Γ = = + + −

ω

with k t n t( ) [2 2 ( )]b
1 2ω ε= + . Similarly, one can proceed for n-photon ionization rates and the results for

one- and two-photon transition probabilitiesMn, n 1, 2= are shown infigure 3. For sufficiently large quiver
amplitude of the classical trajectory (4)—variedwith the help of the pulse length, see (5)—a double-hump
structure appears corresponding to two distinctmaximal ionization probabilities before and after the pulse
maximum. The intermittent decrease of the ionization probability leading to this double hump is a signature of
stabilization around themaximumof the laser pulse.

It affects single- aswell asmulti-photon ionization as can be seen infigure 3 but requires a large enough pulse
amplitude and therefore does not occur forT=5. Figure 3 also illustrates, why the envelopeHamiltonian is such
a good approximation: two-photon ionization (green line) does happen, but is already quite small, such that
n-photon absorptionwith n 3⩾ can be neglected. The reason is not aweak field—in fact the ponderomotive
energy forT being large is with 0.63 a.u. quite large compared to the binding energy E 0.03b ≈ a.u. Small,
however, is the probability for absorption of a (subsequent) photon in the continuumwhich is required for
multi-photon absorption. This explains, why termsVn up ton=2 are sufficient to capture the full dynamics. Of
course, separating off the time dependence of the laser envelope is crucial: if this is not done, all time dependence
is contained in the Fourier amplitudes e n ti ω . In this case an expansion to nmuch larger than the number of
absorbed photons is necessary to capture a fast changing envelope.

While themodulation, seen infigure 2 and described in detail elsewhere [17, 18], occurs due to interference
within the single-photon contribution M1

2∣ ∣ , there is also an effect due to the coherence between the SPI and the
non-adiabatic amplitude, but only for pulse lengths comparable or shorter than the optical periodTω, where the
SPI peak becomes very broad and starts to overlapwith the non-adiabatic electron peak (see inset offigure 2(a)).

5. Summary and outlook

Wehave formulated a systematic separation of the time-dependence of the dynamics of an electron, bound to a
target and subject to a short, intense light pulse. By Fourier expanding the electron’s potential in theKH frame
with a single optical cycle as support in the time-domain, we have obtained time dependent potentialsV tr( , )n ,
n 0, 1, 2,= ± ± …as Fourier components which reflect n-photon exchange processes. Based on formal
considerations of agreementwith the exactHamiltonian for small quiver amplitudes 0α , we have defined the
envelopeHamiltonian 2 as promising approximation containing theVnup to n 2∣ ∣ ⩽ .We tested 2 on a
single active electron in negative ion in one and three-dimensions and have seen that 2 provides not only an
excellent description for 10α ≪ , but also of electron dynamics for pulses withT T 1∼ω and 10α > , where
neither the small 0α expansion can justify the envelopeHamiltonian, nor an adiabatic variation of the pulse
envelope T T( 1)≫ω . For the parameters offigure 2(a)with F 0.50 = andT 20=ω this situation corresponds to
pulse lengths from about 3 a.u. ( 1.120α = ) to 200 a.u. (T T 10∼ω ).

Onemay of course ask, if the excellent quantitative and qualitative description of the short-pulse ionization
dynamics provided by the envelopeHamiltonian is restricted to the potential (9) for which it has been
demonstrated here—which, for technical reasonswas chosen to be short-range (negative ion)which also
implies for our choice that there is only one bound state. For this reason, we present infigure 4 the result for a

Figure 3.Photo-ionization probabilities per optical cycle t( )nΓ as a function of time from the envelopeHamiltonian 2 for various
pulse durations according to (15) and F 0.50 = and 0.314ω = .

6
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Gaussian binding potential of the formW x W x( ) exp( ( ) )0
2σ= − − whose parameters with a ground state of

bε = −0.1 and corresponding electron period ofT 34.1b = have been chosen such that the hierarchy of time
scales (1) is fulfilledwith the same laser pulsewe have been using forV(x) from (9). The potentialW supports in
contrast toV also an excited state which is indeed also populated during the laser pulse interaction. Again, the
descriptionwith the envelopeHamiltonian is almost perfect.We have done similar calculation for other
scenarios with short rangeHamiltonians alwaysfinding excellent agreement with the full numerical solution.
We expect our approach to be equally accurate for long range potentials. The formulation of the envelope
Hamiltonian itself does notmake any use of dimensionally restricted dynamics.Moreover, we have seen that the
incoherent superposition of non-adiabatic and SPI probabilities relies on the fact that both processes peak at
different photo-electronmomenta rendering the overlap integral of the respective amplitudes small. This effect
will be eventually amplified but certainly not diminishedwhen full 3D dynamics is considered. If the non-
adiabatic contribution is equally important for realistic parameters of the light in 3D situations—leading to
plateau-like structures in the ionization yield—remains to be seen in future studies.

So far the time-dependence for the envelope of the laser pulse in a Fourier representation of theKH
Hamiltonian has been proposed only for adiabatically slowly varying envelopes in the literature [16], where this
is a natural ansatz. In this work, we have formulated an envelopeHamiltonian and applied it successfully to the
opposite limit, namely envelopes which vary fast as compared to the optical cycle and even the natural time scale
of the bound electron. The success of the envelopeHamiltonian has two roots: firstly, with the time-dependent
Floquet formulation of (6) different photo processes can be separated according to the number of photons
absorbed: fromnon-adiabatic transitions requiring no photons (only a fast changing laser envelope) to single or
eventuallymultiple photon ionization contributions. Thereby, each photon leads to a blue-shift of the spectral
appearance of the corresponding photo electrons byω, separating the contributions well in energy for pulses not
too short. Secondly, despite the strong field two- andmore-photon absorption is unlikely since it has to happen
in the continuum. This allows for the formulation of a perturbation theory in the number of absorbed photons
based on (6).

Complementary to a full time-dependent numerical solution, the present work offers aHamiltonianwhose
different interaction parts represent n-photon transitions (as one is used to for longer laser pulses) and in
addition a new interactionwhich contains non-adiabatic transitions due to the short pulse length.Many
applications of the envelopeHamiltonian for quite different physical scenarios fulfilling the hierarchy of time
scales (1) are feasible. Given the lack of accurate approximations for the electron dynamics under ultrashort
pulses, attosecond pulse interaction appears particularly attractive for aTDPTwith the envelopeHamiltonian as
introduced here. Apart fromoffering an alternative for a numerical treatment it offers an transparent
interpretation of ultra-fast light–matter coupling.
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Figure 4.Photo-ionization and excitation using the potential W x W x( ) exp( ( ) )0
2σ= − − with W 0.20 = and 2.65σ = and the same

laser pulse parameters as in figure 2. Results obtainedwith the envelopeHamiltonian 2 (dashed lines) and the fullHamiltonian
(solid) are given as a function of pulse lengthT. The energy of the 1st excited state is E 0.0131 = − .
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Appendix

Here, we sketch the general formulation of an aTDPT for t U x t( ) ( , )0 = + , split into an unperturbed
Hamiltonian

t V tr( )
1

2
( , ), (A.1)0

2
0�� = − +

which is itself parametrically time-dependent and a time-dependent perturbationU tr( , ). Let j t( )∣ 〉 and tk,∣ 〉
be an eigenstate of theHamiltonian t( )0 forfixed time t from the discrete and continuos part of the spectrum,
respectively

t j t j t t a( ) ( ) ( ) ( ) (A.2 )j0 ε=

t t t bk k
k

( ) , , with
2

. (A.2 )k k0

2 ε ε= =

Together the j t( )∣ 〉 and tk,∣ 〉 form a complete orthonormal basis set

j t j t j t t t tk k k k k( ) ( ) , ( ) , 0, , , (2 ) ( ), (A.3)jj
3δ π δ′ = = ′ = − ′′

whichwe label in the following for simplicitywith greek letters.Consequently ⨋β t t( ) ( ) 1β β∣ 〉〈 ∣ = holds.Note that
the eigenenergies t( )jε aswell as all basis functions are time-dependent but the continuumenergies k 2k

2ε = of
course not.

We expand the solution t( )ψ of the Schrödinger equation

t t t t U t tr r r( ) ( , ) ( ) 0 with ( , ) ( , ) i (A.4)0
⎡⎣ ⎤⎦  ψ+ = ≡ − ∂ ∂

as

t t c t( ) e ( ) ( )e , (A.5)t tE ti ( ) i ( )⨋ψ β= χ
β β− − β

where t( )χ is the usual phase freedomwhich is in our case time-dependent andwill be chosen later to obtain a
simple formof the differential equations for the coefficients cβ. For continuum states kβ = wehave E t( )k kε≡
as usual, but for the bound states jβ = the energies for the phase factor are given by E t t t t( ) d ( )j

t

j
1∫ ε≡ ′ ′− .

If we insert the ansatz (A.5) into (A.4) and project from the left onto β∣ 〉we obtain

c t c t t Q t c t ai ˙ ( ) ( ) ˙ ( ) ( ) ( )e , (A.6 )t E t E ti ( ) ( )⎡⎣ ⎤⎦⨋χ= − +β β β
ββ β′ ′ − −β β′

where

Q t t t t br( ) ( ) ( , ) ( ) (A.6 )β β≡ ′ββ′

with  from (A.4).
The coupled equations A.6a provide a full solution to (A.4).However, ifU x t( , ) is only aweak perturbation,

we can solve (A.4) to a good approximation by a single iteration, wherewe assume that only 1st-order transitions
(linear inU or in , respectively) occur.With an initial occupation of a bound state b∣ 〉 and all other states
unoccupied it is

c t c t( ) 1, ( ) 0, (A.7)b
(0)

b
(0)= =β≠

andwe obtain by a single iteration of (A.6a)

c t Q t t c t Q t c t ai ˙ ( ) ( ) ˙ ( ) ( ) ( ) ( )e (A.8 )t E t E t
b
(1) bb

b
(0)

b
b (0) i ( ) ( )b⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦⨋χ= − + β

β
β≠

− −β

c t t c t Q t c t

Q t c t b

i ˙ ( ) ˙ ( ) ( ) ( ) ( )e

( ) ( )e . (A.8 )

t E t E t

t E t E t

(1) (0) b
b
(0) i ( ) ( )

b
(0) i ( ) ( )

b
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦⨋
χ= − +

+
β β

β

β
ββ

β

− −

′≠
′

′
− −

β

β β′

If we choose Q˙ bbχ = we obtain from (A.8a) c t˙ ( ) 0b
(1) = implying c t c t( ) ( ) 1b

(1)
b
(0)= = and from (A.8b) for

bβ ≠

c t t Q t( ) i d ( )e . (A.9)
t

t E t E t(1) b i ( ) ( )b
⎡⎣ ⎤⎦∫= − ′ ′β

β
−∞

− ′ ′ − ′β

The result (A.9) of this aTDPT agrees formally with that of the standard TDPT execpt for two (subtle)
differences: (i) the basis states entering thematrix element Qββ′, cf (A.6b), are explicitly time-dependent and (ii)
so are the energies E t( )β for the bound states, e.g., bβ = .
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The lowest-order (time-dependent) correction to the bound states is ( )0
2 α , where 0α is the effective quiver

amplitude (5). Taking only terms up to order 0α we get

( )c t t U tr˜ ( ) i d ( , ) b e , (A.10)
t

E ti b∫ β= − ′ ′β ε
−∞

− − ′β

which coincideswith the result of standardTDPT in textbooks. In general, the population of a state t( )β∣ 〉 at any
time t is given in aTDPTby (A.9), provided that the systemwas initially in state b∣ 〉.
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