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Abstract: We explore the possibility for orientation recovery in
single-molecule coherent diffractive imaging with diffusion map.
This algorithm approximates the Laplace-Beltrami operator, which
we diagonalize with a metric that corresponds to the mapping of
Euler angles onto scattering images. While suitable for images of
objects with specific properties we show why this approach fails for
realistic molecules. We introduce a modification of the form factor in
the scattering images which facilitates the orientation recovery and
should be suitable for all recovery algorithms based on the distance
of individual images.
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1. Introduction

X-ray free electron lasers (XFELs) hold the promise to image in a single laser-shot a
large macromolecule or even a cell. Nano-scale images of specially prepared samples
whose orientation with respect to the detector is known were already reconstructed
in the beginning of XFELs with a soft-XFEL [1] sampling images from many single
laser-shots. One of the biggest successes in XFEL imaging so far have been the char-
acterization of biological molecules in the form of nano-crystals through serial fem-
tosecond crystallography [2], where multiple copies of the molecule in the crystal with
fixed relative orientation create the enhancement of the single shot diffractive image
necessary for reconstruction [3, 4]. Also, the a priori orientation of dipolar molecules
to be exposed to the X-ray flashes has made progress [5–8]. Further, the reconstruction
of icosahedral and helical samples has been achieved [9, 10] and the overall structure
of artificial and natural nano-scale objects has been determined successfully [11,12] by
exploiting correlations of images from different orientations.

In general, however, single-molecule coherent diffractive imaging without crystal-
lization or prior orientation of the molecules in a sample has been proven to be very
difficult since the orientation of a molecule in the gas phase varies from shot to shot
and the averaging of images from similar orientations requires a reliable orientation
recovery of each image.

A universal approach to classify orientations is the method of common lines. From
the position of these lines in the scattering images the orientation can be calculated [13].
However, due to the low number of scattered photons, these lines cannot be found. For
this method to be successful a photon flux 1000 times higher than currently available
is needed [14]. Several proposals for reconstruction addressing the problem of these
faint single-shot images, have been made: The EMC method proposed by Elser [15]
maximizes a logarithmic probability function of the scattered intensity. Furthermore,
it is possible to calculate the orientation from the correlations of the scattering im-
ages [16, 17], unfortunately this method does not work in three dimensions [18]. In
another proposal, a model of the molecule is fitted to its scattering images by rotating
parts of it [19]. Finally, a number of so called embedding strategies try to retrieve the
orientation a posteriori by first determining how different the images are. This amounts
to identifying a parameterization of the rotation (low-dimensional set of parameters) in
the high dimensional set of many diffraction patterns.

In this paper we will introduce a systematic enhancement of the diffractive scatte-
ring images which optimizes the “distance” between images to be specified below and
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facilitates therefore the orientation retrieval for all embedding algorithms which work
with a distance measure of images. To illustrate the difficulties, motivate, formulate
and apply the enhancement, we will use in the following explicitly diffusion map [20],
as proposed recently [21, 22].

2. Diffusion map

Diffusion map is an algorithm which uncovers the low-dimensional structure (here 3
Euler angles) of a high-dimensional data set (in our case a set of scattering images), of-
ten referred to as latent manifolds [23]. The basic ideas is to define so-called “diffusion
distances” between two members Xi and Xj of the data set by setting up a diffusion
matrix describing the probability of transitions between all members in the data set.
The probabilities are obtained from the heat kernel, i. e., the transition from Xi ! Xj is

Pi! j = e�Di j
2/D

2
with Di j ⌘ |Xi �Xj|, (1)

where D is a parameter which corresponds to a typical distance in the data set. One
should choose D large enough to prevent gaps in the data set and small enough to
suppress transition for large distances Di j and prevent short-cuts. Di j is the Euclidean
distance between the elements i and j of the data set. For scattering images composed
of M pixels this is the distance between two M-dimensional vectors containing the
intensities as vector components. The diffusion matrix with properly defined diagonal
elements is also referred to as graph Laplacian [13].

Having set up the diffusion matrix one can describe a diffusion process starting from
Xi and Xj, respectively, and compare the corresponding contributions. The similarity of
the contributions is the “diffusion distance”. The decisive point in the dimensionality
reduction is that in order to describe the diffusion process it is sufficient to determine
the lowest eigenvalues and corresponding eigenvectors of the graph Laplacian.

Diffusion map can be applied to a set of scattering images, defined in Eqs. (3) be-
low, in order to retrieve their orientations [21, 22]. The elements of the distance matrix
Di j, which is the essential ingredient of the graph Laplacian, are obtained from the Eu-
clidean distance of two vectors whose components are given by scattering intensities
per pixel. Having set up the graph Laplacian, its eigenvector of the lowest eigenvalues
are used to a define a rotation matrix for each image. This procedure has been described
in detail before [21].

Indeed, the Laplacian for a given data set is an approximate representation of the
full Laplacian, usually referred to as Laplace-Beltrami operator (LBO). In the limit
of a data set with infinitely many elements it converges to the LBO [13]. Apart from
the parameter D in Eq. (1) it is the coverage of the low-dimensional manifold, i. e.,
the number and the distribution of the underlying parameters, which matters. In order
to exclude any influence of this distribution we will in the following study the LBO
directly and not the graph Laplacian. As an additional benefit the numerical diagonal-
ization is considerably cheaper than for the graph Laplacian. For the latter one has to
calculate all distances Di j, which is quite expensive for 106 images each consisting of
M=105 pixels, just to give a concrete example.
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3. Metric and Laplace-Beltrami operator

3.1. General

The Laplace-Beltrami operator (LBO) reads [24]

L̂(~g) = 1
J(~g)

3

Â
µ,n=1

∂µJ(~g)
⇥
gµn(~g)

⇤�1∂n with J(~g)⌘
q

det
��gµn(~g)

�� (2)

with the three Euler angles ~g = {j,q ,x} and the partial derivatives ∂n ⌘ ∂
∂gn

. The
metric gµn(~g) measures how much scattering images change if the Euler angles are
changed. Clearly, the change depends on the actual orientation given by~g .

In the following the metric for scattering images is considered. A single scattering
image for a molecule, approximated as a set of N individual atoms, is specified by the
atomic positions~r j and the atomic form factors f j(k) as

S~g(~k) =
N

Â
jl

f jl(k)eı~kR~g~r jl , (3a)

f jl(k) = f j(k) fl(k), ~r jl =~r j �~rl. (3b)

The rotation matrix R~g , cf. Eq. (6) for an explicit expression, defines the molecule’s
orientation. The scattered wave vector is given by~k = k1~e1+k2~e2, with~e1 and~e2 being
two orthogonal unit vectors in the detector plane, and k =

��~k
��.

The (squared) Euclidean distance between two images S~gi
(~k) and S~g j

(~k) is given as
the integral

Di j
2 =

Z

W
d2

k
⇥
S~gi

(~k)�S~g j
(~k)

⇤2
, (4)

over the image area W in k-space, which is defined by the incoming wavelength and
the size of the detector. Typically W implies |kx|, |ky|  kmax. The distance between
two infinitesimally close images at orientation~g in 2nd order of the Euler angles reads
Dd~g(~g) = d~g g(~g)d~g and defines the metric for µ,n = 1 . . .3

gµn(~g) =
1
2

Z
d2

k
⇥
∂µS~g(~k)

⇤⇥
∂nS~g(~k)

⇤
. (5)

Assuming Gaussian electron densities and kmax!• one can perform the k-integration
analytically which leads to an explicit expression for the metric gµn , given in Eq. (15)
of appendix A. With the metric gµn the LBO (2) is uniquely defined.

3.2. Reference metric

To see whether the metric of a particular molecule and the corresponding LBO will
allow for a classification by means of diffusion map we have to compare the eigenvec-
tors of the 9 lowest eigenvalues with those from a reference LBO [21]. An obvious and
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generic choice for this metric is the mapping from Euler angles to the rotation matrix.
With the zyz-convention for Euler angles the rotation matrix reads

R~g = R
(z)
x R

(y)
q R

(z)
j (6a)

R
(z)
a =

0

@
cosa �sina 0
sina cosa 0

0 0 1

1

A , R
(y)
a =

0

@
cosa 0 �sina

0 1 0
sina 0 cosa

1

A (6b)

Then, the reference metric is given analytically

g
[R]
µn =

0

@
1 0 cosq
0 1 0

cosq 0 1

1

A . (7)

The corresponding LBO is the Hamilton operator for spherically symmetric rigid rotor
[25]. Its eigenfunctions are the Wigner D-matrices D

j

mm0(~g) with the eigenvalues e j

mm0 =
j( j+1).

Since the scattering problem implies a projection onto a 2-dimensional detector
plane (spanned by ~e1 and ~e2), one might consider a second reference metric for the
matrix PR~g with P accounting for this projection. E. g., if the detector lies in the xy-
plane the projection matrix is P = ((1, 0, 0), (0, 1, 0), (0, 0, 0)), which corresponds to
the metric

g
[P]
µn =

0

@
1
4 [3+ cos(2q)] 0 cosq

0 1
2 0

cosq 0 1

1

A . (8)

The LBO based on g
[P]
µn , which incorporates the projection step, is also diagonal in the

Wigner D-matrix basis, but its eigenvalues ē jmm0 = j( j+1)�m
02 are no longer degen-

erated with respect to m and m
0.

This suggests to diagonalize the LBO with the molecule-specific metric gµn in the
basis of Wigner D-matrices and calculate the principal angles [26] between the 9 lowest
eigenvectors (excluding the lowest one for j=0) and the 9 functions D

1
mm0(~g), since

these 9 eigenvectors are sufficient [21].

3.3. Analysis

Before quantifying the LBO we would like to give an intuitive explanation why the
metric differs considerably from both reference metrics (7) and (8), respectively. To
this end we separate out in the metric the term which depends on the difference in
atomic vectors Pµn (with the exact expression given in Eq. (15) in appendix A)

gµn ⇠
N

Â
jlmn

e�k2
jlmn

(~̃r jl�~̃rmn)2
h
~r jlAµn~rmn +Pµn(~r jl �~rmn)

i
, (9)

where the indices jlmn run over all N atoms in the molecule and the rotated and pro-
jected coordinates are ~̃r jl . The k jlmn, which are inverse to the extension of the con-
tributing electron shells, determine the effective range over which the scattering image
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a)  κ=2/d

θ=0

b)  κ=2/d

θ=π/8

c)  κ=2/d

θ=π/4

d)  κ=8/d

θ=π/8

Fig. 1. Sketches of a diatomic molecule consisting of two atoms with a form factor
fk(k) = exp(�k

2/[4k]2) and an inter-atomic distance d at different orientations
given by q , the angle between intra-molecular axis and normal of the detector
plane. For each orientation a cross section of the corresponding scattering image
Skd(k) = fk

2(k)[1+ cos(kd sinq)] for weak (a–c) and strong (d) localizations is
shown.

decays. It turns out, that in general Pµn is the part which modifies the metric in such
a way that a successful recovery becomes impossible. Its influence can be suppressed
for~r jl =~rmn since Pµn(0) = 0, cf. Eq. (15c). This can be effectively achieved through
localised Gaussians for k jlmn ! •. In this limit the Gaussians in (9) approaches a Kro-
necker symbol d jmdln and the metric simplifies to

lim
k!•

gµn(~g)⇠ Â
jl

~r jlAµn(~g)~r jl. (10)

The sum (10) resembles the metric of the differences from the projected coordinates for
point-like electron densities which is generally better suited for orientation recovery.

This may be illustrated, e.g., with Platonic solids. For their projected coordinates, the
metric (10) converges to the reference metric g

[P]
µn from Eq. (8). For other sets of coordi-

nates the eigenvalues and -vectors of the metric (10) cannot be calculated analytically,
but their lowest eigenfunctions are also linear combinations of Wigner D-matrices. This
changes if the width of one dimension of the coordinates is about three times the width
of the other two dimensions (prolate deformation). In this case the rotation around the
long axis does not change the projected distances of the coordinates and at least one
angle out of the three Euler angles is lost. Then only the orientation of the long axis
can be reconstructed.

3.4. The diatomic molecule as an example

There is an intuitive interpretation for the expressions (9) and (10), respectively, con-
sidering a diatomic molecule. Scattering images (more precise cross sections of those
images) are shown in Fig. 1 for different values of q , the angle between the intra-
molecular axis and the normal of the detector plane. For increasingly diffuse electron
densities (realised by decreasing k), the density projected onto the detector will overlap
for almost normal orientation (q ⌧ p/2). Consequently, the resulting scattering image,
cf. Fig. 1(b), will be very similar to the one where the intra-molecular axis is normal to
the detector plane, cf. Fig. 1(a). This similarity is responsible for the term P in Eq. (9).
For larger angles, cf. Fig. 1(c), interference oscillations start to emerge. Most impor-
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Fig. 2. Metric gk(q) of the diatomic molecule (blue-solid line) as given in Eq. (11)
for three ratios of k/d in comparison with the reference metric gref (gray-dashed)
from Eq. (12).

tantly, these oscillations develop already for smaller angles if the electron density is
stronger localized at the atoms as shown in Fig. 1(d).

This interpretation can be quantified in terms of the metric of a diatomic molecule.
With atoms at~r1 = {+sinq ,0,�cosq}d/2 and~r2 = {�sinq ,0,+cosq}d/2 this met-
ric reads

gk(q) = cos2q
⇣�

8[kd]2 sin2q �1
�
e�4[kd]2 sin2q +1

⌘
. (11)

Metrics for three values of k are shown in Fig. 2, where b) and c) are the metrics from
Fig. 1. The reference metric in this case is

g
[R](q) = cos2q , (12)

since the projected distance is proportional to sinq . Looking at the extrema for the met-
ric for the scattering images (11), namely gk�1(q)µ cos2q and gk⌧1(q)µ cos2q sin2q
it becomes clear that only tightly bound electron, i. e. large k , will allow for a success-
ful orientation. The deviation for finite k emerge at q ⇡ 0 and q ⇡ p as can be seen
in Fig. 2(b). This corresponds to the case when the molecular axis is parallel to the de-
tector normal. For very small values of k , cf. Fig. 2(c), the deviation spreads over the
whole range q = 0 . . .p , preventing a successful orientation recovery.

4. Recovery of the recovery

4.1. Application to Chignolin

In a realistic molecule the extension of the electron density is comparable to the inter-
atomic distances and thus not small. Therefore situations as sketched in Fig. 1(b) will
occur frequently. This explains that the principal angles for Chignolin are so large (4
out of the 9 are about 90�) that the 2D scattering images, which are cuts through the
3D Fourier space, cannot be placed at the right positions and the calculation of a 3D
scattering image fails. The inspection of the metric indicates a solution for this problem.
Since one cannot localize electrons in a molecule, one has to modify the scattering
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Fig. 3. Angles (colorcoded) between the subspaces spanned by the Wigner D-
matrices and the eigenfunctions of the Laplace-Beltrami operator of Chignolin
as function of maximal tranfer momentum kmax and the parameter K in the image-
modification factor CK(k) given in Eq. (13).

image. Indeed, there is a possibility to improve the metric, which can be considered as
an artificial localization of electrons. Multiplying the scattering images by

CK(k) = ek
2/[4K]2 (13)

artificially enlarges the k jlmn as required by (10). The form of the modification factor
(13) is motivated by a molecule consisting of just one type of atoms with a form factor
f , for which the scattering image would read S~g(~k) = f

2(k)Â jl eı~kR~g~r jl . In this case
(13) would exactly compensate the prefactor in the scattering image. In general, the
multiplication by CK(k) enhances the large-angle part of the scattering image.

We support this claim with the protein Chignolin (studied before in this context [22]).
Results as a function of the maximal scattered wave vector kmax (whereby kmax ⇡ 3.2
corresponds to a photon frequency of 12 keV) and the parameter K in the modification
factor CK(k) from Eq. (13) are shown in Fig. 3. There we have considered sufficiently
high photon numbers to avoid effects from shot noise. The first parameter was chosen
to have different resolution of the electronic density in real space. As just discussed, a
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Fig. 4. Equipotential surfaces of the reconstructed electron density (note that the
density around the hydrogen atoms does not show since it is smaller than the
chosen equipotential value) and ball-and-stick-model of Chignolin.

more diffuse form factor corresponds to a more localized atomic electron density. If the
resolution in real space given by 2p/kmaxis not sufficient to resolve a narrow electron
density then the image density appears to be much wider and Pµn in Eq. (9) does not
vanish.

It can be seen clearly that this procedure offers a huge improvement over the un-
modified version. For kmax > 2.5 there is always a K that results in a success of the
orientation classification. For kmax < 2 this success can not be guaranteed, because the
resolution is too small. In the white area in Fig. 3 the metric could not be calculated,
since CK(k) becomes too large for

��~k
��⇡ kmax.

4.2. Reconstruction of the molecular electron density

Once the orientation recovery was successful using the modified diffraction images,
reconstruction can begin with the oriented, original images. For the construction of the
3D Fourier image, 107 scattering images in different orientations are used. The normal
of the detector plane is initially always along the z-axis and its grid-points are denoted
by~ki. It is important to note that when the molecule is rotated by R~g from (6), the grid-
points~ki on the detector plane have to be rotated by R

�1
~g , in order to lie on the right

spot in the 3D Fourier-space (active vs. passive rotations). The procedure for forming
the 3D scattering image is described in detail in appendix B.

For the phase-inversion the hybrid input-output algorithm [27] with a fixed support
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is chosen. This algorithm calculates the phase of the 3D scattering image S(~K) by
successive projections on the Fourier and real space. The fact that the absolute value
of S(~K) is known is used in every step and only the latest calculated phase is kept. The
real space projection is a bit different from the standard procedure where the calculated
density is set to zero outside of the support. Instead it is seen as a driving force for the
next projection on the Fourier space. Those are standard steps and the reconstructed
electron density is shown on top of the molecule in Fig. 4. The agreement with the
ball-and-stick-model is really good.

5. Conclusions

Analyzing the metric which links rotated X-ray images, we have identified too diffuse
form factors as a source for the failure of the diffusion map algorithm to be able to orient
scattering images. Enhancing these images for orientation by rescaling the width of the
form factor to make it more compact has enabled us to orient the images and reconstruct
from the successfully oriented original images the molecule, explicitly demonstrated
for Chignolin.

We expect this enhancement of the X-ray images to be applicable in orientation
recovery methods which use image differences for manifold reduction, e.g., also in the
isomap algorithm recently used to reconstruct a time sequence of nano-images in a soft
X-ray FEL [28]. Since essentially all kernel-driven manifold reduction algorithms are
equivalent [29], this should hold for a large class of algorithms. One caveat, however,
refers to the quality of the single shot images: If the wings of the form factors have
extremely low photon-count they are very noisy and it may not be possible to amplify
them by rescaling such they become a meaningful input for the orientation recovery.

In the long run it be would interesting to also compare methods based on very differ-
ent ideas [16–19] regarding their potential for structure determination from randomly
oriented samples.

A. Scattering metric

To allow for an analytical expression for the metric given in Eq. (9) Gaussian form-
factors f j(k) = n je�k

2/[4k j]2 are used corresponding to an electron density

r j(r) =
⇥
n j/s j

3⇤e�4ln2r
2/s j

2
(14)

containing n j electrons with a radial extension s j (it is k j =
p

ln2/s j). After some
lengthy but straightforward calculation one arrives at an explicit expression for the
metric

gµn(~g) = 8p
N

Â
jl,mn

n jlmnk jlmn
4e�k2

jlmn
[(d1, jlmn)

2+(d2, jlmn)
2]

⇥
h⇥
~r jlA

µn~rmn

⇤
�2k jlmn

2
2

Â
s,t=1

ds, jlmndt, jlmn

⇥
~r jlA

µn
st ~rmn

⇤i
, (15a)
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whereby the abbreviations

n jlmn ⌘ n jnlnmnn (15b)

k jlmn
2 ⌘ 4ln2/(s j

2 +sl
2 +sm

2 +sn
2) (15c)

ds, jlmn ⌘~esR~g [~r jl �~rmn] (15d)

A
µn
st ⌘ [∂µR�~g ]~es ⌦~et [∂nR~g ] (15e)

A
µn ⌘ [∂µR�~g ]P[∂nR~g ] (15f)

have been used. Recall that ~es with s = 1,2 are two orthogonal unit vectors spanning
the detector plane.

B. Forming the 3D scattering image

According to the Fourier-projection-slice theorem, the projection of the molecular den-
sity on the detector plane is just a 2D cut through the 3D Fourier-space. When the
normal of each cut is known (R�1

~g ~ez), they can be placed at the correct angle in the
3D Fourier-space. Since the resulting grid is irregularly spaced, an interpolation on a
regular one is necessary. At first the two planes closest to the regular grid-point ~Kj are
determined by minimizing the absolute value of the scalar product

d ji =
1

|~Kj|
~KjR

�1
~gi

~ez. (16)

The Euler angles of these two planes are denoted by~g j1 and~g j2 .
On each plane the point closest to ~Kj is chosen (denoted by~k j1 and~k j2 ) for the linear

interpolation of the three dimensional scattering image

S(~Kj)=

8
><

>:

S~g j1
(~k j1)+

⇥
S~g j2

(~k j2)�S~g j1
(~k j1)

⇤ |~k j1�~Kj|
|~k j1�~Kj|+|~k j2�~Kj|

, if (~k j1�~Kj) · (~k j2�~Kj) 0

S~g j1
(~k j1)±

⇥
S~g j2

(~k j2)�S~g j1
(~k j1)

⇤ |~k j1�~Kj|
|~k j1�~k j2 |

, otherwise.

(17)

In the first case the point ~Kj is between the points~k j1 and~k j2 and a standard interpola-
tion is used. For the second case the opposite is true and the value at ~Kj is extrapolated
and with the right direction is chosen by the ± sign.
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