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Enhanced high-order harmonics through periodicity breaks: From backscattering to impurity states
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Backscattering of delocalized electrons has been recently established [Phys. Rev. A 105, L041101 (2022)] as
a mechanism to enhance high-order harmonic generation (HHG) in periodic systems with broken translational
symmetry. Here we study this effect for a variable spatial gap in an atomic chain. Propagating the many-electron
dynamics numerically, we find enhanced HHG and identify its origin in two mechanisms, depending on the gap
size, either backscattering or enhanced tunneling from an impurity state. Since the gapped atomic chain exhibits
both impurities and vacancies in a unified setting, it provides insight into how periodicity breaks influence HHG
in different scenarios.
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I. INTRODUCTION

Since the first experimental demonstration of high har-
monic generation (HHG) from a bulk crystal [1], HHG in
solid-state systems has attracted considerable interest (see,
e.g., Refs. [2,3]), opening new possibilities to generate coher-
ent extreme ultraviolet (XUV) light [4,5] and to probe ultrafast
dynamics in the target systems [6–8]. HHG in a condensed-
matter environment shares similarities with its well-known
counterpart in atoms and molecules, but also differences and
richer physics due to the larger structural complexity and
variability [9–11]. For example, the solid-state HHG cutoff
was found to scale quasilinearly with the driving field strength
rather than quadratically as in atoms and molecules [1,12–
14]; under suitable conditions, solid-state HHG spectra ex-
hibit multiple plateaus due to the multiple conduction bands
[9,15–17]. The physical mechanism underlying HHG from
solids, although still being discussed actively from different
perspectives [18–25], is typically described within a band
picture in terms of intra- and interband processes [2,3,18]
acknowledging the delocalized nature of the participating
electrons. It has been demonstrated that a key concept in
strong-field laser physics—the three-step model [26,27]—can
be adapted to describe laser-solid interactions with the band
structures taken into account [12,18], which explains the sim-
ilarities to gas-phase HHG.

Several studies have utilized specific solid-state features
to increase the HHG efficiency, aided by the progress in
generating ultrashort XUV pulses and extracting ultrafast
dynamics in condensed matter. For example, experimen-
tal techniques utilizing nanostructures were reported to be
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capable of enhancing the HHG in semiconductors [28,29].
HHG enhancement can be achieved also by introducing
suitable dopants that increase the tunneling probability into
conduction bands [30,31], or by using two-color schemes for
the driving laser fields [32–34]. Recently, we have demon-
strated backscattering of delocalized electrons from system
edges as a mechanism to extend the HHG cutoff [35], which
brings the mechanism of producing high-energy electrons in
above-threshold ionization of atomic systems [36–38] into the
solid-state HHG context based on a band picture of delocal-
ized electrons. The backscattering mechanism should apply in
general to quasiperiodic systems, and therefore we expect that
many other sources of breaking the translational symmetry,
such as impurities, domain walls, or grain boundaries, will
also induce backscattering-type HHG.

In this work, we seek a general and systematic understand-
ing of how periodicity breaks, induced by different physical
circumstances, enhance high harmonics through backscat-
tering of delocalized electrons. To this end, we extend the
one-dimensional chain of atoms [35] to mimic donor-type
impurities [30] and vacancy defects [39]. We will show that an
internal boundary caused by the periodicity break, which ef-
fectively divides the entire system into subsystems, can indeed
contribute to the high harmonics through backscattering of
delocalized electrons similarly to the edge of the system. This
requires the subsystem sizes to be suitable for the backscatter-
ing mechanism, and it is desirable to have vacancylike gaps
between the subsystems in order to influence the backscatter-
ing effect efficiently. Alternatively, if the periodicity is broken
by a donor-type impurity, which makes the highest occupied
orbital an impurity state with isolated energy between the
valence and conduction bands, an overall enhancement of the
HHG can be achieved. This enhancement typically originates
from the contribution of the highest-occupied impurity state,
since the smaller energy gap between the conduction band and
the impurity state leads to a much larger tunneling probability.
With the model introduced in this work, we will reveal how
the HHG response changes through a continuous variation
of the impurity-state energy, which, therefore, provides more
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insights into the impurity-induced HHG enhancement demon-
strated in previous work [30].

The article is organized as follows. In Sec. II, we outline the
theoretical approach and describe in particular how the inter-
nal boundary is introduced with a single parameter. In Sec. III,
we give a brief description of the backscattering-type HHG
demonstrated in our previous work [35]. Then the main results
of this work are presented and discussed in Sec. IV, namely
how the evolution from impurity to backscattering-dominated
HHG dynamics with an increasing internal gap changes the
corresponding HHG spectra. Finally, Sec. V summarizes the
conclusions. Atomic units (a.u.) are used throughout unless
otherwise indicated.

II. THEORETICAL REALIZATION

We consider N nuclei with charge Z located at positions
{xi}. The corresponding ionic potential reads

vion(x) = −
N∑

i=1

Z√
(x − xi )2 + ε

, (1)

with a soft-core parameter ε to avoid singularities in the one-
dimensional (1D) treatment.

In Kohn-Sham (KS) density functional theory (DFT) [40],
the field-free electronic state is described by a set of KS
orbitals fulfilling{

−1

2

∂2

∂x2
+ vKS[n](x)

}
ϕ j (x) = ε jϕ j (x), (2a)

with the static KS potential

vKS[n](x) = vion(x) + vH[n](x) + vxc[n](x). (2b)

Note that we restrict ourselves to charge and spin neutral
systems, and therefore we use the spin-restricted scheme for
brevity. With Nocc = NZ/2 denoting the number of occupied
spatial orbitals, the total density is n(x) = 2

∑Nocc
j=1 |ϕ j (x)|2,

where the factor of 2 accounts for the spin degeneracy. The
Hartree potential reads

vH[n](x) =
∫

dx′ n(x′)√
(x − x′)2 + ε

, (3)

and the exchange-correlation potential is treated in the local
density approximation (LDA),

vxc[n](x) � vx[n](x) = −[3n(x)/π ]1/3. (4)

Hence, our model is self-consistently constructed once the
parameters Z , ε, and {xi} are specified. A typical configuration
for this model [16,17,30,39,41–46] is a chain with parameters
Z = 4, ε = 2.25, and {xi} equally spaced by a lattice constant
d = 7. In this work, we consider this regular chain configura-
tion as a prototype, and we introduce an additional variable
gap δ in the center of the chain. This leads to a system com-
posed of two subchains, which we refer to in the following as
a “double chain.” We assume the two subchains have the same
configuration, with the total number of atoms N chosen to be
even. The ionic positions for the double chain read

xi =
{[

i − N+1
2

]
d − δ/2, i = 1, . . . , N

2 ,[
i − N+1

2

]
d + δ/2, i = N

2 +1, . . . , N.
(5)

Note that δ = 0 corresponds to the special case of a regular
chain of N equidistant atoms (referred to as a “single chain”
or “gapless chain”), while δ �= 0 creates an internal boundary
that breaks the periodicity. We consider δ values in the range
of δ�−d , where the smallest value δ = −d means that the
two atoms with indices i = N

2 and i = N
2 +1 are on top of each

other at x = 0.
We let the double chain interact with a laser pulse linearly

polarized along the x-axis, which is described by a vector
potential within the dipole approximation,

A(t ) = A0 sin2

(
ω0t

2ncyc

)
sin(ω0t ) (6)

for 0 � t � 2πncyc/ω0 and A(t ) = 0 otherwise. Hereby, ω0 is
the angular frequency (photon energy) and ncyc is the number
of cycles. According to the TDDFT [40], the laser-driven
system is governed by the time-dependent KS equations

i
∂

∂t
ψj (x, t ) =

{
−1

2

∂2

∂x2
− iA(t )

∂

∂x
+ ṽKS[n](x, t )

}
ψj (x, t ),

(7a)

where the KS potential,

ṽKS[n](x, t ) = vion(x) + vH[n](x, t ) + vxc[n](x, t ), (7b)

is determined by the time-dependent density n(x, t ) =
2

∑Nocc
j=1 |ψj (x, t )|2. As in previous works [16,17,35], our con-

sidered laser interactions typically do not cause significant
changes to the density; therefore, we simply assume that
ṽKS[n](x, t ) in Eq. (7b) remains the same as the initial
vKS[n](x) in Eq. (2b). This frozen-KS approach has been
found to capture basically the same HHG features as the
dynamic-KS approach [16], and it implies an independent-
electron picture that has been frequently assumed in many
studies on HHG in solids based on TDSEs [14,15,33,47–49].
Details of the numerical methods for solving Eq. (7) can be
found elsewhere [17].

For the calculation of the HHG spectra, we compute the
total time-dependent current

Jtot(t ) = 2
Nocc∑
j=1

∫
dx Re

[
ψ∗

j (x, t )

(
−i

∂

∂x
+ A(t )

)
ψj (x, t )

]
.

(8)
The HHG spectral intensity is then evaluated as the modulus
square of the Fourier-transformed current,

Stot(ω) ∝
∣∣∣∣∫ dt W (t )Jtot(t ) exp(−iωt )

∣∣∣∣2

, (9)

where W (t ) is a window function of the pulse-envelope shape
introduced to improve the signal-to-noise ratio. When com-
paring the HHG spectra in systems with different numbers of
atoms, it is natural to compute the HHG per atom [17,35],

SN (ω) = N−2Stot(ω). (10)

III. BACKSCATTERING EFFECT ON HHG
IN A FINITE CHAIN

For our present context, we briefly state how edge
backscattering, as introduced recently [35], extends the HHG
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FIG. 1. (a) HHG spectrum SN for a finite chain of N = 32 vs the spectrum in the fully periodic limit N→∞, driven by a laser field with
parameters A0 = 0.21 and λ = 3.2 μm. The vertical dashed lines indicate the first cutoff for the periodic system [ω1, illustrated in (b)] and
the extended cutoff due to backscattering in the finite system [ω′

1, illustrated in (c)]. The shaded area indicates the backscattering-induced
enhancement of the high harmonics with energy above ω1. (b) Sketch of the k-space dynamics in the periodic system, for an electron excited
to the bottom of C1 at A(t0) ≈ −A0. The cutoff ω1 is given by the maximal C1–V2 band energy difference achieved at k1 = 2A0. (c) Sketch of
the k-space dynamics in the finite system, with an edge backscattering event in C1 at the vacuum level occurring at A(ts ) = −A0. The horizontal
dotted line represents the sign change of k(t ) due to backscattering. With a subsequent band-gap transition to C2, this sketch corresponds to the
maximally achievable harmonic energy in the backscattering case ω′

1 at k′
1 = ks+2A0−2π/d with C1(ks ) = 0.

cutoff and enhances the high harmonics generated by delo-
calized electrons. To this end, we present a comparison of
the HHG spectra for the fully periodic case N → ∞ and
for the backscattering case represented by a finite chain of
N = 32, as shown in Fig. 1(a). The laser parameters, cf.
Eq. (6), considered in this example are A0 = 0.21, ω0 =
0.014 25 (corresponding to a wavelength of λ = 3.2 μm), and
ncyc = 9.

Both spectra in Fig. 1(a) exhibit a peak around the energy
corresponding to the C1–V2 band gap, Egap ≡ C1(k = 0) −
V2(k = 0) = 0.24, indicating that the harmonics above this en-
ergy gap are dominated by interband processes. The spectrum
in the fully periodic limit manifests two plateaus: the first
plateau, which is the primary one, has its spectral intensity
significantly higher than the second one by approximately
six orders of magnitude. The first cutoff for the periodic
system can be estimated as the maximal C1–V2 band en-
ergy difference ω1 = C1(k1) − V2(k1) = 0.64 with k1 = 2A0

the largest momentum gain through unperturbed interac-
tion with the laser field, as illustrated in Fig. 1(b). Note
that the lowest valence band V1 does not participate ac-
tively in the HHG processes due to the large gaps to other
bands.

Turning to the finite chain of N = 32, the spectrum shows
an extended plateau, and the high harmonics with energy
above ω1 get noticeably enhanced; see the shaded area in
Fig. 1(a). Our previous study [35] has revealed that such an
effect is due to backscattering from the edge of the chain, and
it typically occurs when the chain length is comparable to the
full quiver excursion of the excited electron. Backscattering
allows the electron to acquire a larger momentum through the
sign change of k(t ) and opens a pathway to high-energy states
(e.g., in the second conduction band C2). The band energy
at backscattering should be below the vacuum level to avoid
ionization [35], which defines the maximal momentum at
backscattering ks = 0.285 fulfilling C1(ks) = 0. Therefore, the
maximally achievable harmonic energy due to backscattering
is ω′

1 = C2(k′
1) − V2(k′

1) = 1.0 with k′
1 = ks+2A0−2π/d , as

illustrated in Fig. 1(c). Note that the band picture has allowed
us to provide an intuitive understanding of the HHG spectral

features [35], albeit the band structure is only approximate for
finite chains.

The edge of a finite system is just a particular example of
broken translational symmetry. In this work, we will explore
whether enhancement of the high harmonics can be achieved
by other means of breaking the periodicity. For this purpose,
we use the double chain introduced in Sec. II, which is sim-
ple but insightful in capturing different types of periodicity
breaks. By varying δ, the gap between the two subchains,
we will systematically investigate how this internal boundary
influences HHG.

IV. HHG IN DOUBLE CHAINS

A. Integrated yield of the high harmonics

As detailed above, we are interested in the enhancement of
high harmonics with energies above the first cutoff ω1 for the
periodic system. To quantify the enhancement, we integrate
the harmonic yield beyond ω1, namely

YN =
∫

ω1

dω SN (ω). (11)

Figure 2(a) illustrates YN for single chains at laser parameters
that we also use in the following, where we will see that the
change of YN induced by the gap δ in a periodicity-broken
chain of N atoms is a convenient indicator of possible HHG
enhancement.

To investigate the dependence of YN on δ, a choice of
N promises most insight, where the separated chains with
N/2 atoms for large δ exhibit strong backscattering enhanced
HHG, while the double chain of length N at vanishing gap
δ = 0 is too long to do so. We see from Fig. 2(a) that pro-
nounced enhancement (e.g., where YN is higher than Y∞ by
more than one order of magnitude) occurs for single chains
containing between ∼15 and ∼60 atoms with the maximum
around 20 atoms. Therefore, we have chosen double chains
with a length roughly between 40 and 120 atoms in Fig. 2(b).
Since for the yield Y64 the double chain with vanishing gap
δ = 0 is almost too long for backscattering, while the sepa-
rated chains with 32 atoms are close to maximal enhancement,
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(c)

FIG. 2. (a) The integrated yield YN beyond the periodic system HHG cutoff ω1, as a function of N for single chains (i.e., in the special case
of δ = 0) driven by a laser field with wavelength λ = 3.2 μm. The horizontal dashed line indicates the value in the fully periodic limit N → ∞.
(b),(c) YN as a function of the gap δ in double chains. The curves in (b) show the results for different N at a fixed wavelength λ = 3.2 μm,
while those in (c) show the results for three different wavelengths with a fixed ratio of N/λ. All the calculations are done with a fixed vector
potential amplitude A0 = 0.21. The arrows on the right of panels (b) and (c) indicate the results obtained from isolated single chains with N/2
atoms, which correspond to the limit of δ → ∞.

we see here the deepest dip. The value of Y44 at the dip nearly
coincides with the value of Y84 at large δ, since there separated
chains with length 42 have almost the same number of atoms
contributing to backscattering-type HHG. The lowest curve
Y124 is basically flat for δ > 0 since even the separated chains
with 62 atoms are too large for significant backscattering, and
much more so the gapless chain with 124 atoms. We note that
at a separation of δ = 1.5d the limit of separated chains is
almost reached, whose HHG yields are indicated with arrows
and can be read off Fig. 2(a).

Turning now to negative δ, we see a radically different
behavior with a large enhancement of YN following a uniform
pattern with a slope almost independent of N . This suggests
a mechanism for enhancement different from backscattering.
To underline the difference, we present in Fig. 2(c) a scenario
where the conditions for backscattering are the same, since
a fixed ratio N/λ is chosen. Now, indeed the shapes of the
curves in the backscattering domain δ > 0 are almost the same,
while the slopes are quite different for negative δ. In this
scenario, the tunneling probability to the conduction band is
quite different since at fixed vector potential A0 a smaller
wavelength implies larger field strength and therefore larger
tunneling rates in agreement with the ordering of the three
yield curves.

We finally note that a close look at Fig. 2(c) reveals a
transition region −0.3d � δ < 0 whose character will become
clearer in the following.

B. HHG spectra

To understand better how the gap δ in the double chain
causes the enhancement of the high-harmonic yield YN , we
present in Fig. 3 the variation of HHG spectra with δ for
fixed N = 64 and λ = 3.2 μm. It clearly reveals two quali-
tatively different regions: Region I, covering all positive δ and
a smaller range of negative δ, is structured by characteristic
energies (white dashed lines) independently of the value of δ,
namely the energy of the band gap, Egap, and the standard (ω1)
as well as the backscattering enhanced (ω′

1) cutoffs. Region
II, adjacent to the first one covering the remaining range
of negative δ, exhibits a strong, structureless enhancement
of high harmonics without a clear cutoff, already familiar
from Figs. 2(b) and 2(c). The transition between both regions

happens roughly near δ = −0.3d but varies depending on the
harmonic energy. Interestingly, region I, where backscattering
with its characteristic enhanced cutoff ω′

1 is operative, extends
into negative δ, which could not be clearly deduced from
Figs. 2(b) and 2(c). It is also very obvious from Fig. 3 through
the minimum in the HHG yield at δ = 0 for energies beyond
ω1 that the gapless chain is too long to exhibit backscattering
harmonics, and therefore its HHG spectrum has the cutoff ω1

of the periodic system.
Since the spectral intensity varies significantly in region

II, it is difficult to identify possible cutoff energies directly
from Fig. 3. Yet, after uncovering the HHG mechanism in
that regime, we will be able to identify the corresponding
characteristic harmonic energies; see Sec. IV D below.

C. Mechanisms of HHG in double chains

The presence of the gap δ modifies the electronic properties
of the double chain, such as the KS potential and orbitals.
Details are given in the Appendix. For HHG, the emergence
of a vacuumlike region near the gap between subchains, which

FIG. 3. HHG spectra for the double-chain system of N = 64 with
the variable gap δ between subchains, for the laser wavelength of
λ = 3.2 μm and vector potential amplitude A0 = 0.21. This plot
corresponds to the curve with the darkest color in Figs. 2(b) and 2(c).
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FIG. 4. HHG spectra for some nonzero δ values selected from
Fig. 3 (N = 64, λ = 3.2 μm), compared with the spectrum for δ = 0.
The shaded area indicates the backscattering-induced enhancement
of the high harmonics with energy above ω1.

increases for increasing δ [Figs. 8(a) and 8(b)], is relevant. It
can reflect electrons similarly to an edge of an isolated single
chain. Towards more negative δ, the highest occupied orbital
becomes an impurity state, energetically isolated from the va-
lence band and closer to the conduction band [Fig. 8(c)]. With
these facts in mind, in the following we will identify the HHG
mechanisms from several representative HHG spectra.

1. The backscattering mechanism

As already inferred, the HHG spectra in region I,
δ�−0.3d , δ �= 0, can be attributed to the backscattering
mechanism. This is confirmed in the traditional representation
of Fig. 4, where we contrast some selected spectra in region
I with the one for δ = 0, which is taken as the reference with
absent backscattering.

The spectrum for the double chain of N = 64 with δ = d
shown in Fig. 4(a) is very similar to that for a single chain
of N = 32 shown in Fig. 1(a). This can be understood from
the effect of δ on the KS potential: As shown in Figs. 8(a)
and 8(b) in the Appendix, a vacuumlike region between the
two subchains can cause backscattering of electrons similarly
to an edge of an isolated single chain.

Note that the double-chain configuration with δ = d is
equivalent to introducing a vacancy in the center of a single
chain with N+1 atoms. Therefore, periodicity breaks in the
form of vacancies offer the possibility for the backscatter-
ing mechanism and therefore extended HHG plateaus. The
mechanism seems robust against possible lattice relaxations
around the vacancies since it does not require an exact fulfill-
ment of δ = d . For δ = 0.5d , the vacuumlike region between
subchains is not yet fully developed; see Fig. 8(b) in the
Appendix. The corresponding HHG spectrum in Fig. 4(b)
manifests the extended plateau characterized by the same
(backscattering-type) cutoff ω′

1, with the high-harmonic sig-
nals slightly weaker than in the case of δ = d .

Interestingly, the extended plateau due to backscattering
can be observed even for very small nonzero δ: The situation
of δ = ±0.05d shown in Figs. 4(c) and 4(d) can be considered
as a weak perturbation to the regular chain, which is consistent

with the fact that the harmonic signals in the primary plateau
part (up to ω1) only differ marginally from the δ = 0 case.
The observation of the extended plateau (from ω1 to ω′

1) for
δ = ±0.05d indicates that even a weak perturbation to the
translational symmetry can contribute to the backscattering-
type HHG, although the effect is less pronounced than that for
vacuumlike internal boundaries (e.g., δ � d).

2. The impurity-state mechanism

Gaps with δ < 0 give rise to impurity states that are en-
ergetically isolated from the bands (see the Appendix). In
particular, the highest-occupied orbital, referred to as HOMO
in the following discussion, is an impurity state with energy
εHOMO between the valence band V2 and the conduction band
C1, as shown in Fig. 8(c). Since this (new) gap between
the conduction band and the HOMO energy level, E ′

gap(δ) ≡
C1(k = 0) − εHOMO(δ), is smaller than the C1–V2 band gap
Egap defined in Sec. III, the HOMO has a larger probability to
tunnel to the conduction bands and can therefore significantly
contribute to HHG. Note that the impurity-driven HHG origi-
nates from the impurity state, which is localized in real space
[cf. Fig. 9(b)], in contrast to interband HHG (of both normal-
and backscattering-type) driven by delocalized transitions.

In fact, the overall enhancement of the HHG in region
II, −d � δ�−0.3d , is similar to the effect of donor-type
doping reported previously [30] with a fixed HOMO energy.
The double chain considered here, through the continuous
variation of the HOMO energy with the single parameter δ,
offers insight into how the impurity-state mechanism emerges
in the total HHG response. To uncover the role of the HOMO,
we separate the total current Eq. (8) into the contribution of the
highest occupied impurity orbital ( j = Nocc) and that of all the
other orbitals ( j = 1, . . . , Nocc−1), and then we calculate the
corresponding HHG spectra, respectively. Note that the two
contributions should be added coherently in calculating the
total HHG spectrum. Yet, if for the high harmonics of interest
the spectral intensity obtained from one contribution is much
higher than that obtained from the other one, we can conclude
that the former is dominant. Such a procedure can highlight
the importance of the highest occupied impurity orbital in the
donor-doped case (Ref. [30], Fig. 4).

Depending on the significance of the HOMO contribution
to the high harmonics, we can classify the HHG behavior into
three scenarios, visualized in Fig. 5 for δ = −0.1d , −0.3d ,
−0.5d , respectively.

(i) In the case of δ =−0.1d , as one can see in Figs. 5(a)
and 5(b), the enhancement of the high harmonics with energy
above ω1 is well characterized by the backscattering-type
HHG cutoff ω′

1, and it can be approximately described with-
out the HOMO contribution. Therefore, the backscattering
mechanism dominates the total HHG response, while the
impurity-state mechanism plays a negligible role in such a
scenario.

(ii) For the intermediate case of δ = −0.3d shown in
Figs. 5(c) and 5(d), we find that the HOMO contribution is
comparable to that of other orbitals. This means that both the
backscattering mechanism and the impurity-state mechanism
are important for the total HHG.
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FIG. 5. (a),(c),(e) HHG spectra selected from Fig. 3 at δ =
−0.1d , −0.3d , −0.5d , compared with the spectrum for δ = 0. The
shaded area indicates the enhancement of the high harmonics with
energy above ω1. The arrows with label E ′

gap indicate the gap between
the C1 band and the highest occupied impurity orbital. (b),(d),(f) The
HHG spectra calculated from only the highest occupied orbital (only
HOMO) and from all the other orbitals (without HOMO), for the
negative δ values in (a),(c),(e).

(iii) In the case of δ = −0.5d , Figs. 5(e) and 5(f) clearly
demonstrate the overall enhancement of the HHG, which
mainly stems from the HOMO contribution. Hence, the
impurity-state mechanism dominates the total HHG response
in this case.

The difference between cases (i) and (iii) lies in the δ-
dependent energy of the HOMO [see, e.g., Fig. 8(c) in the
Appendix]. The impurity-state energy εHOMO for δ = −0.1d
is only slightly higher than the top of the valence band, while
εHOMO for δ = −0.5d is about in the middle of the band gap.
This is also reflected in the shift of the spectral peak around
E ′

gap as observed through a comparison of Figs. 5(a), 5(c),
and 5(e).

It is well known that the tunneling probability, which is
crucial for the HHG, is exponentially sensitive to the energy
gap [50]. Hence we expect the behavior of the HHG spectra
as well as the yield YN for the impurity-state mechanism to be
rationalized with the δ-induced change in the tunneling rate.
This will be further analyzed below.

D. Quantitative analysis of the impurity-state mechanism

Having identified the impurity-state mechanism for δ < 0
with the HHG spectra from the partial current, i.e., with-
out the HOMO and with only the HOMO contribution, now
we apply this procedure to calculate the corresponding YN

distinguishing both contributions. For the δ < 0 cases at the
three different wavelengths λ presented in Fig. 2(c), we make
a comparison between the YN curves computed with all the

FIG. 6. (a) Solid lines: YN calculated from the full HHG spectra
(including the contributions of all the occupied orbitals), which are
the same as the results in the region of δ < 0 shown in Fig. 2(c).
Square markers: YN calculated with the HOMO contribution ex-
cluded from the HHG spectra. (b) Circle markers: YN calculated with
only the HOMO contribution included in the HHG spectra. Dashed
lines: the tunneling exponential factor Eq. (12).

orbitals and without the HOMO contribution in Fig. 6(a). The
obvious discrepancy in the range of −d � δ�−0.3d confirms
that the HOMO contribution stemming from the impurity-
state mechanism is essential for the total HHG response in
this regime.

To comprehend the trend of YN curves in the regime of the
impurity-state mechanism, we attempt to link the change in YN

to an analytical estimate of the tunneling rate. According to
the tunneling theory formulated by Keldysh [50], we consider
an exponential factor for the overall HHG intensity given by
the tunneling rate,

R ∝ exp

(
−π

2

√
m∗�3∗
F0

(
1 − ω2

0m∗�∗
8F 2

0

))
, (12)

where F0 = A0ω0 is the peak field strength of the laser, m∗
is the reduced effective mass of the electron and hole, and
�∗ denotes the band gap. Note that such a form was derived
for direct valence- to conduction-band transitions [50]; here
we simply assume that it applies also for tunneling from the
impurity state to the conduction band by treating the impurity
level as a flat band with an infinite effective mass for the hole.
Hence for our scenario, m∗ is the effective mass of the electron
at the bottom of the C1 band, which takes the value 0.167, and
�∗ = E ′

gap(δ) is the energy gap between the conduction band
and the impurity level, which depends on δ monotonically [see
Fig. 8(c) in the Appendix].

In Fig. 6(b), the δ dependence of the tunneling exponen-
tial factor R, is compared with YN calculated with only the
HOMO contribution. Except for −d� δ�−0.7d , where YN

gets slightly attenuated when further narrowing the energy gap
E ′

gap(δ), we find that the tunneling exponential factor R(δ) can
roughly capture the general slopes of YN calculated with only
the HOMO contribution. Note that the δ dependence of the
energy gap �∗ = E ′

gap(δ) is almost identical for the different
N values considered here. Therefore, the difference in the
slopes of the R(δ) curves is due to the change of F0 when
varying the wavelength with A0 fixed.

In fact, the region −d� δ�−0.7d where the trend of YN

cannot be described solely with the tunneling factor R(δ)
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FIG. 7. HHG spectra with intensity scaled according to the tun-
neling rate for −d � δ�−0.3d; see the text for details. The dashed
lines indicate the minimal energy difference between C1 and the
highest occupied impurity state, and the maximal energy difference
between C2 and the highest occupied impurity state, respectively.

corresponds to very strong excitation, which leads to depletion
of the HOMO. This depletion effect is apparent from the
population of the HOMO at the end of the laser pulse. For
example, the remaining population of the HOMO in the case
of λ = 3.2 μm is ∼95% for δ = −0.6d , ∼55% for δ =−0.7d ,
and further drops to ∼5% for δ = −0.8d . Depletion of the ini-
tial state is known to pose a limitation for the HHG efficiency
in atoms and molecules, and this is also true for the impurity-
state HHG in our scenario. Note that in the depletion regime,
the frozen-KS approach may become less reliable. However,
additional calculations we have performed with a dynamically
updated KS potential for the δ-range of Fig. 6 reveal small
differences only in the saturation regime δ�−0.7d , where
depletion is strongest.

Lastly, we identify the characteristic energies for HHG
spectra in the region of −d � δ�−0.3d with the help of
the tunneling exponential factor. As demonstrated above, the
HHG spectra in this region are dominated by the HOMO
contribution, and the δ-induced change in the HHG signals
is to a large extent captured by R(δ). Hence we multiply the
HHG spectrum for each δ in the region of −d � δ�−0.3d by
a factor of R(−0.3d )/R(δ) to scale the spectral intensity to a
similar level. As δ varies from −0.3d to −d , the energy gap
E ′

gap decreases, and we expect that the impurity-state HHG
cutoff follows a similar trend of shifting to lower energy.
Indeed, one can see from the intensity-scaled spectra that the
impurity-induced overall enhancement has a “tail,” which ba-
sically follows the maximal energy difference between C2 and
the impurity level, E ′

max(δ) ≡ C2(k = 0) − εHOMO(δ), shown
as the right dashed line in Fig. 7. Also, the shifting trend of
the spectral peak around the energy gap E ′

gap(δ), indicated by
the left dashed line in Fig. 7, is better visualized than in Fig. 3.

V. CONCLUSION

Solving the many-electron dynamics in double chains
based on DFT, we have demonstrated enhancement of high-
order harmonics due to periodicity breaks in the system. Our
double-chain model, with a variable separation δ between the
subchains, offers a unified framework for studying the influ-
ence of broken translational symmetry in different scenarios:

For example, a negative δ gives rise to occupied impurity
states similarly to the donor-type doping case, while a particu-
lar choice of setting δ equal to the lattice constant implements
the situation of vacancy defects.

We have identified two mechanisms responsible for the
HHG enhancement. One is backscattering of delocalized elec-
trons: the internal boundary caused by nonzero δ values
divides the delocalized electrons into subsystems, and plays
the role of reflecting the electrons similarly to the system
edge. The backscattering-type HHG (featured by an extended
cutoff) exists even for tiny |δ| values characterizing a weak
perturbation to the translational symmetry, and this enhance-
ment effect builds up significantly as δ increases to positive
values close to the lattice constant. This implies that vacancy-
type internal boundaries, with subsystem sizes suitable for the
backscattering mechanism, can boost the efficiency of high
harmonics.

The other mechanism is HHG originating from an impurity
state, which is localized in real space and has an isolated
energy between the valence and conduction bands. If the
impurity-state mechanism dominates the total HHG response,
one typically sees an overall HHG enhancement due to the
significant increase of the tunneling excitation into the con-
duction band. We have found that when the gap between the
conduction band and the impurity state becomes smaller, the
HHG enhancement can be roughly characterized by a tunnel-
ing exponential factor until it gets attenuated by the depletion
effect.

This study confirms and extends our previous finding that
HHG in a solidlike environment is sensitive to suitably broken
translational symmetry. This opens a promising perspective in
the rapidly expanding research area of solid-state HHG.

APPENDIX: THE KS POTENTIAL AND FIELD-FREE
ELECTRON STATES OF DOUBLE CHAINS

To facilitate the understanding of the HHG behavior dis-
cussed in Sec. IV, this Appendix illustrates the δ-induced
changes in the field-free properties of double chains. Most
of the observations below, such as the δ-induced internal
boundary in the KS potential around x = 0, the impurity-state
energies for δ < 0, and the general trend of changes in the
bulk-state energy levels, are insensitive to the different sys-
tem sizes N considered in this work. Basically, enlarging the
number of atoms N just leads to more wells in the potential
and denser energy levels in the bands. For good visibility of
these quantities, we choose a relatively small N = 48 in Figs. 8
and 9 below.

1. δ-induced periodicity break in the KS potential and
emergence of impurity states

First, we look at the static KS potential Eq. (2b), which
determines all the orbital energies. For a regular chain of
equidistant atoms, the KS potential is periodic with the atoms
located at the potential minima. This can be seen from the
special case of δ = 0 in Fig. 8(a) or the zoom-in view in
Fig. 8(b). A finite δ breaks the (quasi)translational symmetry
of the KS potential, thereby introducing an internal boundary
that is of different character for positive and negative δ values,
respectively.
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FIG. 8. (a) The KS potential for the double chain of N = 48 as
a function of δ. The ionic positions for δ = −0.5d , 0, and 0.5d are
shown as black dots. The white areas correspond to vacuumlike re-
gions in which vKS(x) ≈ 0. (b) Zoom-in view of (a) around the center
of the system (x = 0). (c) Selected orbital energies as a function of δ.
The labels “LUMO,” “HOMO,” and “HOMO−1,” as conventionally
used in molecular physics, stand for the lowest unoccupied, the
(first) highest occupied, and the second highest occupied orbitals,
respectively.

Starting from the regular chain case at δ = 0, increasing δ

implies an increasing separation of the subchains with the KS
potential at x = 0 approaching zero in the limit of δ → ∞. The
internal boundary emerges near the gap between the subchains
at x = 0, which gives rise to a vacuumlike region for δ� 0.7d
shown as the white area in Fig. 8(b). The KS potential in this
region is approximately zero, similar to the vacuum region
outside the system; cf. the white area in Fig. 8(a).

For negative δ, on the other hand, the two subchains are
squeezed closer to each other, resulting in a deeper potential
around x = 0. The two atoms located close to x = 0 with
indices i = N

2 and i = N
2 +1 in Eq. (5) can be seen as an impu-

rity introduced in the whole system, which represents for the
smallest value of δ = −d a doubly charged ion and therefore
the deepest potential for all choices of δ.

Due to the change in the KS potential, the KS orbitals
are modified accordingly, manifesting different behaviors for
δ > 0 and δ < 0. For example, a positive δ hardly modifies the
energy gap between unoccupied and occupied orbitals, while a
negative δ gives rise to occupied impurity states energetically
located within the band gap. This is shown in Fig. 8(c): When
varying δ from 0 to −d , the energy of the highest occupied
orbital (HOMO) becomes well separated from the HOMO−1
level, and the energy gap between unoccupied and occupied
orbitals gradually diminishes. The HOMO in this case is an
impurity state, which is spatially localized around the internal
boundary, in contrast to bulk states, which are delocalized over
the entire system.

2. δ-induced changes in eigenenergies and wave functions

Next, we present a more detailed view of the δ-induced
changes in eigenenergies and wave functions exemplified by

FIG. 9. (a) Energies of occupied orbitals with indices from
j = N+1 to 2N as a function of δ for the double-chain system of
N = 48. This index range includes all the states in the second valence
band. The inset provides a zoom-in view of the shaded area. The
arrows on the right with labels “ 1©” and “ 2©” indicate the “outer”
and “inner” edge states, respectively; see the description in the text.
(b),(c),(d) Wave functions of the eight highest occupied orbitals
plotted at their corresponding energy levels, for δ = −0.3d , 0, and
0.3d , respectively. Note that the highest occupied orbital in the case
of δ = −0.3d is localized in real space and has its energy isolated
from the valence band.

the occupied orbitals with energy indices from j = N+1 to
2N . For a regular chain (e.g., in the special case of δ = 0),
this index range j = N+1, . . . , 2N includes all the bulk states
in the second valence band (V2 in Fig. 1) and a pair of
edge states with energy slightly below this band [17]. These
orbitals are dominantly responsible for the high harmonics
obtained from the total current Eq. (8), while the other lower-
lying states with indices from j = 1 to j = N only make a
negligible contribution to the HHG [16]. The behavior re-
vealed below remains qualitatively the same for states in other
bands.

Figure 9(a) shows how these orbital energies change with
δ; note that the missing part of the HOMO energy level has
already been shown in Fig. 8(c). The near-degenerate edge
states below the C2 band, indicated by the arrow with label
1©, have their energy (−0.51) almost unaffected by δ. Here

we refer to these states as “outer” edge states, since they are
spatially localized around the chain-end atoms with indices
i = 1 and i = N in Eq. (5). An impurity state in the case of
δ < 0, as mentioned above, is spatially localized around the
internal boundary at x = 0, which has a rather different spatial
character in contrast to the “outer” edge states. Hence, when
decreasing δ from 0 to negative values, the impurity states
gradually emerge from the “in-band” bulk states, and their
location is always centered at the internal boundary (x = 0).
This is the reason for the (avoided) energy-level crossing
behavior near δ � −0.2d at the bottom of Fig. 9(a).
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When increasing δ from 0 to positive values, we find
that other near-degenerate states emerge with their energy
approaching the “outer” edge states. These states for δ > 0,
indicated by the arrow with label 2©, are spatially localized
around the atoms with indices i = N

2 and i = N
2 +1 in Eq. (5).

Therefore, we refer to them as “inner” edge states only for
δ > 0 where the two subchains are separated from each other.
Note that our double-chain model with a specific choice of
δ = d is equivalent to a single chain with a vacancy in the cen-
ter, and the corresponding “inner” edge states were counted
as “defect-state orbitals” in earlier work on vacancies [39]. By
varying δ, the gap between the subchains in our model, we can
intuitively understand why these vacancy-defect states appear:
They essentially originate from the subchain edges near the
internal boundary when separating the subchains, and their
energy will converge to the “outer” edge state in the limit of
δ→∞.

A nonzero δ also causes changes in the bulk-state energy
levels, namely near-degenerate pairs of states are formed [see,
e.g., the inset of Fig. 9(a)]. This trend for δ > 0 can be simply
understood by considering the limit of δ→∞ where the sub-

chains are well isolated and have identical energy levels. In the
δ < 0 case, as the electron density near the internal boundary is
largely contributed by the localized impurity states, this effec-
tively divides the bulk-state electrons into subsystems, which
also leads to the near-degenerate behavior of the bulk-state
energy levels. Yet, unlike the case of δ > 0, the subsystems
for δ < 0 cannot be well isolated, thus the corresponding near
degeneracy is less pronounced.

To further illustrate how the near degeneracy appears, we
show in Figs. 9(b)–9(d) the position-space wave functions
of several highest occupied orbitals for three representative
cases δ = −0.3d , 0, and 0.3d . For δ = ±0.3d , each pair of
near-degenerate bulk states shares a similar wave-function
envelope, and this envelope always shows a dip at x = 0, in
agreement with the existence of the internal boundary there.
In the special case of δ = 0, the near degeneracy in bulk states
is completely lifted, since the two subchains perfectly merge
into a single chain. One can also observe in Fig. 9(b) that the
highest occupied orbital in the δ < 0 case is indeed an impurity
state, which can be easily identified from its position-space
character.
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