Publications
Department Biological Physics
Dissertations
Frank Jülicher

Max-Planck-Institute
for the Physics of Complex Systems
Nöthnitzer Straße 38
01187 Dresden
Germany

Tel. +49 351 871-1202
Fax. +49 351 871-1299
e-Mail: julicher@pks.mpg.de
Curriculum Vitae
List of Publications
Research Interests

Theory of Biological Systems and Processes

The main focus of our research are theoretical approaches to understand dynamic processes in cells and tissues. Work on active cellular processes includes the study of cellular oscillations, cellular signaling and the cytoskeletal dynamics during cell division and cell motility. We furthermore study the biophysical basis of hearing. Finally, we investigate the biophysical properties and dynamics of tissues and epithelia. Based on the properties of individual cells and of cellular signaling systems, we are interested in the dynamics of developmental processes, for example wing development in the fruit fly.

Research topics include:

Active cellular processes
Cellular oscillations
Swimming of microorganisms
Cell locomotion

Physics of the cytoskeleton and of motor proteins
Active gels and fluids
Collective behaviors of motor proteins
Self-organization phenomena in the cytoskeleton

Physics of Cell Division

Tissues and developmental processes
Cellular packings in epithelia
Cellular rearrangements during growth and development
Morphogen signaling and morphogen gradient formation

Biophysics of hearing
Active mechanics of hair cells
Cochlear waves
Signal amplification by nonlinear oscillators

Research Highlights
Discontinuous switching of position of two coexisting phases

We investigate how the positions of a condensed phase can be controlled by using concentration gradients of a regulator that influences phase separation. We find a novel first order phase transition at which the position of the condensed phase switches in a discontinuous manner. This mechanism could have implications for the spatial organisation of biological cells and provides a control mechanism for droplets in microfluidic systems.

S. Krüger, C. A. Weber, J.-U. Sommer, F. Jülicher
New J. Phys. 20, 075009 (2018)
[
PDF (1,2 MB)]
Critical Point in Self-Organized Tissue Growth

We present a theory of growth control inspired by biological tissues during development. We identify a critical point of the feedback dynamics where a graded profile of a secreted molecule regulates growth. At this critical point, growth is spatially homogeneous and concentration profiles exhibit exact scaling with size. We propose that the observed approximate growth homogeneity and scaling in the fly wing imaginal disk are signatures of this critical point.

D. Aguilar-Hidalgo, S. Werner, O. Wartlick, M. Gonzalez-Gaitan, B. M. Friedrich
and F. Jülicher
Phys. Rev. Lett. 120, 198102 (2018)
[
PDF (2,9 MB)]
Chemical event chain model of coupled genetic oscillators

We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We study the quality of noisy oscilations in different parameter regimes. we show that key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

D. J. Jörg, L. G. Morelli and F. Jülicher
Phys. Rev. E. 97, 032409 (2018)
[
PDF (1,2 MB)]
Highlights 2017
Highlights 2016
Highlights 2015
Highlights 2014
Highlights 2013
Highlights 2012
Highlights 2011
Highlights 2010
Highlights 2009
Highlights 2008
Highlights 2007
Last updated: September 21, 2018