Broadening of Frank-Condon steps in molecular transistors

Karsten Flensberg

Niels Bohr Institute
University of Copenhagen

Laboratory of Atomic and Solid State physics,
Cornell University

ADMOL Dresden 2004
Outline

- **Introduction**
 - Experimental motivation
 - Mechanisms for electron-phonon coupling
 - Frank-Condon steps in IV curve
 - Thermal broadening of Frank-Condon steps
- **Broadening of Frank-Condon steps I**
 - Finite Q factor of the vibrational mode
 - How to model dissipation in quantum system
 - From classical to quantum behavior
 - Realistic model of environments
- **Broadening of Frank-Condon steps II**
 - Strong tunneling coupling to the leads
 - Known results in the single particle approximation
 - Beyond the SPA:
 - Broadening suppressed near the Fermi level
- **Summary and outlook**
Single molecular devices with electron-vibron coupling
Sequential tunneling limit

C$_{60}$

Co(tpy-$(\text{CH}_2)_5$-SH)$_2$
More recent experiments

Zhitenev, Meng, Bao, PRL (02)

Pasupathy et al., condmat/0311150

(see poster 19 by Gregers Kaat)

Single molecular devices with electron-vibron coupling
Strong coupling to the leads: **Coherent transport**

Talks Monday by van Ruitenbeek and van der Zant

Semi-strong coupling devices showing Kondo effect

The Kondo effect in C\textsubscript{60} single-molecule transistors

Lam H. Yu and Douglas Natelson
Department of Physics and Astronomy, Rice University, 6100 Main St., Houston, TX 77005
(Dated: October 27, 2008)

condmat/0310625

Coulomb blockade and the Kondo effect in single-atom transistors

Jiwoong Park\dagger,†, Abhay N. Pasupathy††, Jonas I. Goldsmith§,
Connie Chang*,†, Yuval Yaish*,†, Jason R. Petta*,†, Marie Rinkoski††,
James P. Sethna*,†, Héctor D. Abreuña§, Paul L. McEuen†† & Daniel C. Ralph†

Strongly damped oscillator: Phonon blockade

Single-Electron-Phonon Interaction in a Suspended Quantum Dot Phonon Cavity

E. M. Weig, R. H. Blick, T. Brandes, J. Kirschbaum, W. Wegscheider, M. Bichler, and J. P. Kotthaus

Tunneling in: costs classical displacement energy
Tunneling out: the energy has dissipated and tunneling is blocked
Mechanisms of electron-vibron coupling: Center of mass or internal vibrations

Force due to:
1. image charges
2. static E fields

Simple model:
\[\frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 x^2 + \lambda nx \]

\(n = \text{occupation} \)
Frank-Condon steps in IV curve

Quantum:

\[P_n = |\langle 0|n \rangle|^2 \]

\[P_n(g) = \frac{e^{-g}g^n}{n!}, \quad g = \frac{1}{2} \left(\frac{\ell}{\ell_0} \right)^2, \quad \ell_0^2 = \frac{\hbar}{m\omega_0} \]

Classical:

Displacement energy:

\[E_d = \lambda \ell \]
Non-equilibrium current: weak tunneling limit = rate equation

\[
\frac{dP_0}{dt} = -P_0 \Gamma_{10} + P_1 \Gamma_{01} = 0
\]

\[
P_0 + P_1 = 1
\]

\[
P_1 = \frac{\Gamma_{10}}{\Gamma_{10} + \Gamma_{01}}
\]

\[
I = -e \left(P_0 \Gamma_{10}^{\text{left}} - P_1 \Gamma_{01}^{\text{left}} \right)
\]

Fermi’s golden rule:

\[
\Gamma_{10}^{\text{left}} = \frac{2\pi \Gamma}{\hbar} \sum_{i,f} \left| \langle f | e^{i\hat{p}l} | i \rangle \right|^2 \frac{e^{-E_i/kT}}{Z_0} n_F(\epsilon_0 + E_f - E_i - eV_l)
\]

displacement operator thermal distribution of $|i\rangle$ left Fermi function
Weak tunneling current formula

\[I = \frac{e}{\hbar} \frac{\Gamma_L \Gamma_R \tilde{n}_L \tilde{n}_R n_L n_R}{\Gamma_L \tilde{n}_L n_R + \Gamma_R \tilde{n}_R n_L} \left(e^{(\varepsilon_0 - eV_R)/kT} - e^{(\varepsilon_0 - eV_L)/kT} \right) \]

\[n_L = n_F(\varepsilon_0 - eV_L), \quad \tilde{n}_L = \sum_{n=-\infty}^{\infty} P_n(g) n_F(\varepsilon_0 - eV_L + n\hbar\omega_0) \]

\[P_m(g) = \exp(-g \coth(b)) e^{mb} I_m \left(\frac{g}{\sinh(b)} \right), \quad b = \frac{\beta\omega_0}{2} \]

Other rate equations approaches: Boese and Schoeller, Europhys. Lett. 54, 668 (01); Mitra, Aleiner, Millis, condmat/0302132; McCarthy et al., PRB (03).
IV curves

Symmetric device

\[\frac{kT}{\hbar \omega_0} = 0.025 \] and \[0.1 \]

\[g = 1 \]

\[\frac{\Gamma_L}{\Gamma_R} = 1 \]

\(I/I_N \)

\(-1 \)

\(-0.5 \)

\(0 \)

\(0.5 \)

\(1 \)

\(V/\omega_0 \)

\(-8 \)

\(-4 \)

\(0 \)

\(4 \)

\(8 \)

Asymmetric device

\[g = 1 \]

\[\frac{\Gamma_L}{\Gamma_R} = 0.05 \]

\(I/I_N \)

\(-1 \)

\(-0.5 \)

\(0 \)

\(0.5 \)

\(1 \)

\(V/\omega_0 \)

\(-8 \)

\(-4 \)

\(0 \)

\(4 \)

\(8 \)

\(V/\omega_0 \)

\(-8 \)

\(-4 \)

\(0 \)

\(4 \)

\(8 \)
V-V\textsubscript{g} plots

\[\varepsilon_0 = eV_g + \alpha eV_L \]

Symmetric

Asymmetric

\[\frac{\Gamma_L}{\Gamma_R} = 0.05 \]

C\textsubscript{60} (Park et al. 2000)
Mechanisms for broadening of steps

Two possible mechanisms:

1. The molecular motion is damped
 \Rightarrow finite lifetime of phonons

2. Strong tunnel coupling between molecular levels
 and electronic stats of the leads
 \Rightarrow finite lifetime of electronic state
Broadening of the Frank-Condon steps I: Coupling to dissipative environments

Classical friction: finite Q factor

\[\ddot{x} + \omega_0^2 x + \omega_0 \dot{x} / Q = 0 \]

Quantum mechanical: coupling to a continuum of harmonic oscillators (Caldeira, Leggett model)

\[H = H_0 + x \sum_i C_i y_i + \sum_i \left(\frac{p_i^2}{2m_i} + \frac{1}{2} m_i \omega_i^2 y_i^2 \right) \]

\[\frac{1}{Q} = \sum_i \frac{C_i^2}{2m_i^2 \omega_i^4} \delta(\omega_0 - \omega_i) \]

Q: What happens to the Frank-Condon steps when Q is finite?
Tunneling with a dissipation

\[x \rightarrow x - \ell \quad y_i \rightarrow y_i - \ell_i \]

\[P_{fi} = |\langle f | \text{displacement} | i \rangle|^2 \]

\[P(E_f - E_i) \]

Distribution of available tunneling energies

\[P(E) = \int_{-\infty}^{\infty} e^{iEt/\hbar} \exp \left(\frac{2g}{Q\pi} \int_{-\infty}^{\infty} \frac{d\omega}{\omega} \frac{e^{-i\omega t} - 1}{1 - e^{-\hbar \omega/kT}} \frac{\omega^4}{(\omega^2 - \omega_0^2)^2 + \omega_0^2 \omega^2/Q^2} \right) \]

Related to classical response function! (Feynman-Vernon)

External force: \[F(t) \Rightarrow x(\omega) = R(\omega)F(\omega) \]

New rate equations:

\[P(E) \quad \text{replaces the discrete Frank-Condon function} \quad P_n(g) \]

From quantum to classical

Two parameters: \(Q \) and \(g \)

Classical energy after the tunneling event:

\[
\lambda \ell = g \hbar \omega_0
\]

- Time to “finish” tunneling:
 \[
 \frac{\hbar}{\lambda \ell}
 \]
- Time to relax to new classical state:
 \[
 \frac{Q}{\omega_0}
 \]

Cross-over from quantum to classical when:

\[
\frac{Q}{\omega_0} = \frac{\hbar}{\lambda \ell} \quad \Rightarrow \quad Q_q = \frac{1}{g}
\]
Estimate of Q factor?

For C_{60} on Au:

$$Q \sim \frac{m \lambda}{M a'} , \quad \lambda = \frac{v_s}{\omega_0}$$

$Q \sim 1 - 10$
IV curves with dissipation, $Q > Q_c$

$kT = 0 \quad g = 1$

Power law at small energies: $V^{2g/Q\pi}$

- $Q = 20$
- $Q = 10$
- $Q = 5$
- $Q = 2.5$
- $Q = Q_c = \frac{2}{\pi}$
IV curves with dissipation, $Q < Q_{c^{1/2}}$

Classical displacement energy

PHONON BLOCKADE
More realistic calculation (frequency dependent Q factor)

Two kinds of modes:
- Bulk phonons
- Surface modes (similar to seismic waves, so-called Rayleigh Waves)

(with Stephan Braig, Cornell)
Continuum model of electrode

Lagrangian:

\[\mathcal{L}(\vec{r}, t) = \frac{1}{2} \rho \left[(\partial_t \vec{u})^2 - (v_i^2 - 2v_i^2) \left(\nabla \vec{u} \right)^2 - v_i^2 (\nabla \times \vec{u})^2 - 2v_i^2 \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} \right] \]

Boundary conditions:

\[T_{zr} \bigg|_{z=0} = 0, \quad T_{zz} \bigg|_{z=0} = -\mathcal{F} f(r) \]

Force:

\[\mathcal{F} = k_M \left[x - \int_0^\infty 2\pi r f(r) u_z^0(r) dr \right] \]
IV curves based on “realistic” model

Frequency dependence of Q

Fit parameters: left and right tunneling rates.
Fixed parameters: elastic coefficient of Au
Determined from experiments: oscillator frequency and size of molecule
Broadening of the Frank-Condon steps II: Strong tunnel coupling

Exact solution for a single electron (no Fermi sea):
All levels are broadened by the same Lorentzian

(Amounts to a decoupling of electronic and vibronic degrees of freedom)

SPA approximation used in our papers:
Kuo and Change, PRB (02); Lundin and McKenzie PRB (02); Alexandrov and Bratkovsky, PRB (03).
\[G^R(d, t) \rightarrow G^R(d, t) \exp \left[g \left(e^{i\omega_0 t} - 1 \right) \right] \]
Many-body problem

Next tunneling “in” remembers previous events

\Rightarrow electron-phonon-electron interaction

Approximation needed:

Treat the lead electrons as a Fermi distribution at all times

Other many body treatments beyond SPA:
König, Schoeller, Schön, PRL 76, 1715 (96). P. Kral PRB (97).

SCBA:
Nitzan Tuesday talk
Resonant tunneling, non-interacting

Lorentzian

\[A(\xi) = \frac{\Gamma}{(\xi - \varepsilon_0)^2 + (\Gamma/2)^2} \]

\[\Gamma = 2\pi |t_0|^2 \rho \]

“Two contributions”

Decaying out:

\[\Gamma_{\text{out}} = \Gamma \left[1 - n_F(\varepsilon_0) \right] \]

Decaying in:

\[\Gamma_{\text{in}} = \Gamma n_F(\varepsilon_0) \]
Resonant tunneling, with vibrations

Sum of Lorentzians:

\[A(\xi) = \sum_n |f_{n0}|^2 \frac{\Gamma_n}{(\xi - \varepsilon_0 - E_n)^2 + (\Gamma_n/2)^2} \]

“Two contributions”

Decaying out:

\[\Gamma_{n,\text{out}} = \Gamma \sum_m |f_{mn}|^2 [1 - n_F(\varepsilon_0 + E_n - E_m)] \]

Decaying in:

\[\Gamma_{n,\text{in}} = \Gamma \sum_m |f_{m0}|^2 n_F(\varepsilon_0 + E_m - E_0) \]

\[n_F = 0 \quad \text{single particle approximation (exact results)} \]
Details of calculation

Hamiltonian

\[H = \varepsilon_0 \hat{d} \hat{\hat{d}} + H_{\text{leads}} + H_{\text{osc}} + \sum_k \left(c_k^\dagger e^{i p \ell} + d_k^\dagger c_k e^{-i p \ell} \right) \]

Green's function

\[G^R = -i \theta(t) \langle \{ (e^{i p \ell} \hat{d})(t), d^\dagger e^{-i p \ell}\} \rangle = \sum_{n n' m m'} G^R_{n n' m m'} \langle n | e^{i p \ell} | n' \rangle \langle m' | e^{-i p \ell} | m \rangle \]

Use propagator for many-body eigenstates in presence of leads

\[G^R_{n n' m m'} = -i \theta(t) \langle \{ | n \rangle \langle n' | \hat{d}(t), d^\dagger | m' \rangle \langle m | \} \rangle \]

Set up equations of motion:

\[i \partial_t G^R_{n n' m m'} = \ldots \quad \text{need:} \quad [H, | n \rangle \langle n' | \hat{d}] \]

Truncate EOMs: neglect correlations in the leads

\[c_{k'}^\dagger c_k^\dagger \hat{d} \approx \langle c_{k'}^\dagger c_k^\dagger \rangle \hat{d} \]
Tunneling spectrum on resonance

Differential conductance

Current

\[\frac{g}{\hbar \omega_0} = 2 \]

\[\frac{\Gamma}{\hbar \omega_0} = 0.5 \]

\[\varepsilon_0 = 0 \]

On resonance
Reduction of width

\[g = 2 \]
\[\frac{\Gamma}{\hbar \omega_0} = 1 \]
\[\varepsilon_0 = 0 \]

Differential conductance

Width:

\[\Gamma \mapsto \Gamma \left| \langle 0|0' \rangle \right|^2 \]
Tunneling spectrum, off resonance

Approaches the SPA when off resonance!

\[
\begin{align*}
g &= 2 \\
\frac{\Gamma}{\hbar \omega_0} &= 0.5 \\
\varepsilon_0 &= 1.5\hbar \omega_0
\end{align*}
\]
Summary and outlook

1. Dissipative molecular motion:
 \[\Rightarrow \text{Cross-over from quantum to classical regime at } Q \sim Q_q \]
 \[\Rightarrow \text{Realistic model with gold electrodes gives good agreement} \]
 \[\Rightarrow \text{Experimentally } Q \approx 5 \text{ (but frequency dependent)} \]

2. Tunneling broadening
 \[\Rightarrow \text{Single particle approximation only valid far from the Fermi surface} \]
 \[\Rightarrow \text{Frank-Condon steps sharpest near zero energy} \]

3. Outlook
 \[\Rightarrow \text{Does the sidebands survive into the Kondo regime?} \]
 \[\text{No suppression expected because fixed charge state!} \]
 \[\Rightarrow \text{Internal vibrations: asymmetric IV curves because of polaron formation or confirmational changes.} \]