Advanced Study Group 2015: Statistical Physics and Anomalous Dynamics of Foraging

Springer Series in Synergetics

Vicenc Méndez Daniel Campos Frederic Bartumeus

Stochastic Foundations in Movement Ecology

Anomalous Diffusion, Front propagation and Random Searches

🖉 Springer

STOCHASTIC FOUNDATIONS IN MOVEMENT ECOLOGY III:

Mean first passage times and the exploitationexploration tradeoff

Vicenç Méndez, Daniel Campos, <u>Frederic Bartumeus</u> Universitat Autònoma de Barcelona Centre d'Estudis Avançats de Blanes (CEAB-CSIC)

Stochastic Foundations in Movement Ecology III: MFPTs and the exploitation-exploration tradeoff

Sources:

- Raposo et al. PLoS Comput Bio (2011)
- Mendez et al. (2014) Chapter 6 and 9.
- Bartumeus et al. PLoS ONE (2014)
- Campos et al. Phys. Rev. E (2015)
- Bartumeus et al. Ecology Letters (submitted)
- Campos et al. (in preparation)

Collaborators:

- Raposo E., da Luz M.G.E., Viswanathan G.M. (Brazil)
- Campos D., Mendez V. (Spain)

Search Strategies

Animal Search Strategies: all types of rules

Relocation experiments

Learning, Trapline foraging

Relocation Experiments

Hoffmann 1983a,b Behav. Ecol. Sociobiol.

Search Rule Search Rule Participulation

Learning Experiments

Searcher perspective

Searcher perspective

Why to turn at all?

Mean First Passage Times

Turning behaviour in a random search

The condition for turning

Assimetry

Heterogeneous searcher-to-target distances

Examples:

- Revisitable targets (non-destructive)
- Perception errors
- Patchy/higlhy heterogeneous landscapes

Simon Benhamou Ecology Letters 2014 (Ideas and Perspectives)

Turning behaviour as a "sampling" strategy

EXPLOITATION

- To avoid missing nearby targets
- To improve 2D spatial coverage

We consider a 1D-random walker that can choose a direction (left/right) with equal probability and can take move lengths (ℓ) from a pdf $p(\ell)$

$$\int_{-\infty}^{+\infty} p(\ell) d\ell = 1, \ [p(-\ell) = p(\ell)]$$

We compute a statistical search efficiency as: $\eta = \frac{N_{\text{found}}}{I_{\text{tot}}}$

$$L_{\rm tot} = N_{\rm found} \langle L \rangle$$
, $\eta = \frac{1}{\langle L \rangle}$

$$N = N_{\text{found}} \langle n \rangle$$
, $\langle |\ell| \rangle (x_0)$, $\eta \approx (\langle n \rangle \langle |\ell| \rangle)^{-1}$

 \rangle average distance travelled between two targets found

- $\langle n \rangle$ average number of steps between two targets found
- $\langle |\ell| \rangle$ average step length between two targets found

 $\langle \gamma \rangle$ average distance travelled between two targets found

 $\langle n \rangle$ average number of steps between two targets found

 $\langle |\ell| \rangle$ average step length between two targets found

These 3 quantities depend on:

- An initial position $(x_0 = a)$
- A boundary condition: the average distance between targets ($x_0 = \lambda$)

Key concept of the calculations: a renewal approach

We note that:

$$\rho_n(x_n) = \int_{\ell_0}^{\lambda - \ell_0} \rho_{n-1}(x_{n-1}) p(x_n - x_{n-1}) dx_{n-1} , \quad \ell_0 \le x_n \le \lambda - \ell_0$$

The probability density for the walker to be at position xn in the interval [xn,xn+dx] after n steps can be defined as the probability density of being at the previous position xn-1 times the probability density of performing a step of length xn-xn-1. The integration accounts for all the possible previous positions xn-1 that lead to xn.

Raposo et al. PLoS Comput Bio (2011) Bartumeus et al. *PLoS ONE* (2014)

Flight distributions

where the theta function is such that $\Theta(|\ell| - \ell_0) = 0$ if $|\ell| < \ell_0$, and $\Theta(|\ell| - \ell_0) = 1$ otherwise

Flight distributions: two key parameters

Root mean square displacement

Asymmetric condition

Asymmetric condition

The Search Efficiency: factorizaiton

Asymmetric condition

 $\langle L \rangle = p_0 \langle L_0 \rangle + p_\lambda \langle L_\lambda \rangle$

Asymmetric condition

Ratio between the average numbers of encounters of the closest (first order revisit) and farthest (new and high order revisits) targets

$$Q = \frac{\langle N_0 \rangle}{\langle N_N \rangle + \langle N_H \rangle}$$

From asymetric to symetric condition...

A mixture of scales...with the right scales....beats Levy

Why to turn at all?

To solve exploitation-exploration tradeoffs

A) Reorientation behaviour (time-to-reorientation) can control movement scales.

B) If there is information about relevant landscape scales one should match reorientations to those particular scales.

C) The larger the uncertainty the larger is the number of scales needed to solve the exploitation-exploration tradeoff

Chaenorabditis elegans

- > Locomotion includes crawling or swimming and they perform stereotyped turns Omega / Reversals / Pirouettes / Pauses
- > Evidence of random movements and chemotaxis
- > Mutants (sensorial and motor) and engineering genetic techniques

Tracking system and behavioral annotation

W.Ryu Lab. U.Toronto, Canada

Behaviour

4 frames sec-

Turning behaviour in a random search

How to turn?

- Abruptly (reorientation)
- Smoothly (persistent curvature)

- Time between turns
- Curvature control (loops)

Search efficiency, space use, revisitability...

Simple relocation experiment: from food to no-food

Different temporal dynamics for different turn types

Toy model

Behavioural Annotation: Curvature

Human Search Strategies

10 minutes...10 coins...of 10 cents

Human Search Strategies: systematic rules

Human Search Strategies: systematic rules

Longitude

Human Search Strategies: systematic rules

Intensive-Extensive Tradeoff

П COVG PRCP ш

Search Anaylsis

WINNERS

- High perception
- Medium coverage
- High Extensive

LOSERS (2 types)

- Low perception
- High coverage
- Too intensive

MIDDLES

- High perception
- Good coverage
- Extensive (ballistic)

Marco, J. Msc. (UAB, 2014) Campos et al. 2015 (in preparation)

