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First (documented) observation of random walk

115] MAHb-HO NUNbHILLE: SK TifIbKU OCAUNINBE COHAYHEe
CBiTHO,

116] B aim 3a3npHe, po3yaxHyBLIU MPOMiHHSIM NiBMOPOK
NMOKOHO,

117] NMoBHO TOoAi NOPOLUMHOK NOGAYNM. B OCBITNEHIN CMY3i
118] NpatoTb poSsMU BOHU, MOPUBAIOTLCA B HanpsiMKax
Pi3HUX,

119] Haye B oaBiYHIN BiNHi, HECKIHYEHHI 3aB'A3YI0TbL OUTBM,
120] Bromu He 3HaKOu4M, Lini 3aroHn B 60pHi 3anoB3ATiN
121] To Ha4ye B Kyny 36MBalOTbLCA, TO pO306iraloTbCA 3HOBY.

Titus Lucretius Carus
De Rerum Natura, Book Il: “The Dance of Atoms”. 15t cent. BC




Reminder. Brownian motion: massive particle in a h eat bath

——ymv+ 2D L S-v

¢ | Langevin SDE m
dt

NE))=0(t —t : '

Stokes fricton ,_ 61 R . <§( E( ')> (t—1)  &t): Gaussian
coefficient m DV _ }’kaT — const

d d dx kpT
+ | approximation 20| D=L

my
D, -~ D
Diffusion af azf

¢ equation 5 = y , —0=<x<o, f(x,0)=0(x)

x2

1
_ X 2
G(x,1) mexp{ 4DJ |:> <x >=2Dt Normal diffusion law

¢ Wiener process: increments are (1) stationary, (2) Gaussian, (3) uncorrelated



Anomalous diffusion law: the hallmark of anomalous transport

. . L
Normal diffusion —r P
In artICUIar’ Ordlnar _»2 R. Klages, G. Radons, and I. M. Sokolov ﬂ
Brgwnian mogtion, Y) <R (t)> LIt Anomalous

or Wiener process: Transport

Anomalous diffusion

superdiffusion
@ /J>1 (fast)
<|§2(t)> Ot u#1
Ny <1 subdiffusion

(slow)

e Anomalous is normal

» Happy families are all alike; every unhappy family  is unhappy
In its own way

L. Tolstoi , Anna Karenina (the very first sentencg



Different sources of anomaly

= Qv ey TPy —

Long waiting times as arising
from random potential models
(energetic disorder)

Geometrical :>
constraints

usion on fractal structures,
. on percolation clusters
metrical disorder,

Inhomogeneous and/or
non-stationary
environment

led Brownian motion,




Generic types of variable diffusion processes

Heterogeneous diffusion process HDP Xx(t) Scaled Brownianﬂmotion SBM x(t)
1
dx dx _
P J2D(X) &(t) " V2D(1) €(t)
&t): white Gaussian noise, (&(t)E(t')) =o(t -t
D(x) O x[* power law dependent D(t) 0 t91
A. Fulinski (2013), Cherstvy, Ch, Metzler (2013) Lim and Muniandy (2002)

Invariance under the scale transformation

t - At, X - A x

<x2> ¢2H

¢ Doob’s Theorem (J.L. Doob, Stochastic Processes, 1953): Markovianity

¢ Smoothingatx=0,t=0 D(X) D(X0+ | X|)a D(t) O (TO +t)0"1



Outline
. INTRODUCTION AND MOTIVATION

e Brownian motion in inhomogeneous medium, examples a nd
motivation
e Brownian motion in non-stationary medium

 Turbulent diffusion and Richardson law

IIl. HETEROGENEOUS DIFFUSION PROCESSES

e Correlation properties: similar to FBM

e Time vs ensemble averages: similar but not identica  |to CTRW

lll. SCALED BROWNIAN MOTION
* Time versus ensemble averages: “between” BM and CTRW

« Confined and aging SBM: universal aging depression and strong effect
for a weak aging
e Ultraslow SBM and diffusion in granular gases

V. Z, and what was not mentioned



In collaboration with

Anna Bodrova, Moscow / Potsdam / Berlin

Andrey Cherstvy, Potsdam
Jae — Hyung Jeon, Tampere / Potsdam / Seoul
Hadiseh Safdari, Tehran / Potsdam

Ralf Metzler, pPotsdam



My personal motivation

Yurii Klimontovich, Moscow , USSR

Anomalous diffusion in turbulent plasmas (Bohm diffu sion)

Radu Balescu, Statistical Dynamics.
Matter out of Equilibrium. ICL, 2000:
For a space-dependent diffusion
coefficient the simple relation between

diffusion coefficient and mean squared

displacement breaks down and “strangely,
it does not seem to be mentioned in the
literature”.

George Rowlands, Cambridge, 2007:

“Do you really believe in all that ??7?”

Ralf Metzler and Andrey Cherstvy, Potsdam, 2013 : CTRW everywhere ???



' vy S = —y09v +/2D, (9 f(t)\ D, = y(X)mkgT ()

dx _ _kgT(x)
¢ overdamped e 2Dy (X) €(t) Dy =

my/(x)




Brownian particle diffusing near a wall

Reflects long-range nature of

OR
Lorentz (1907): ~ 1+ [ A>>R
(1907):  p(x) J"Stoh?s[ Sh]’ > hydrodynamic interactions

Brener (1961)

l,r
i
c
A R T

State-dependent diffusion in soft-matter systems

¢ Transport of macromolecules in a spatially inhomogeneous medium, such as a polymer gel
and a porous medium (Viramontes-Gamboa et al., 1995, Tong et al., 1997)

¢ Brownian motion of colloidal particles between two nearly parallel walls (Lancon et al, 2001)

¢ Affects interpretation of single-molecule force-extension experiments (Neto et al., 2005,
Goshen et al., 2005)

¢ ...and verification of FT in a colloidal suspension near a wall (Blickle et al., 2006)



Position- and time-dependent temperature profile in

heated/cooled system

D = D(T(r.t))
Fourier - Kirchhoff aT — /\a_T+ S(r,t)
equation ot or?
D(x)

T(r,t) « S(r,t): in principle, any required T(r,t) can be assumed

(Fulinski 2013)

a



Stochastic climate theory and modeling
Franzke et al., 2014

¢ State vector z splitted into slow x and fast y components
(scale separation in space and time)

o Functional form of reduced climate models
dx
E:F+Lx+B(x,x)+M(x,x,x)+UAfA M

The magnitude of fluctuations is
dependent on the state of the system

Intuitively: on a windless day, the fluctuations are very small,
whereas on a windy day not only the mean wind strong, but also the
fluctuations around this mean are large

¢ State-dependent noise is important for deviations from Gaussianity and
thus extremes



Stochastic climate theory and modeling (continued)

CAM noise model: univariate version as a physically plausible null
hypothesis for non-Gaussian climate variability

dx
E:_AX+£A+X§(M Sura, 2013

Linear model with state-dependent noise

Produce power-law tails

Capture some (experimentally observed) properties of SST and
SSH dynamics



More examples of space dependent diffusivities:

¢ Atmospheric diffusion of substances released from the infinite line source,
D(z) O z% a <1 (Koch, 1988)

¢ Transport of radionuclides in strongly inhomogeneous geological
formations, D(r) O InY2(r) (Goloviznin et al., 2010)

¢ Radiation-induced diffusion, D(x) U exp(-k x) (Kesarev et al., 2008)



Biomotivation. Physical causes of heterogeneous D(X):
Varying obstacle density, cyto-skeletal network, cy toplasm viscosity, porosity etc.

Heterogeneous diffusivity of

Geometry-mediated position-dependent mammalian cell cytoplasm
diffusivity in E.Coli

Experiment

18
16
14
12
10

Lo B L T G‘l
(s ?uud) Jua101J}300 ucIsnip juaseddy

L=

FRAP color intensity is related to effective porosity
26 kDa EYFP (¥ nm) diffusion
Substrate-adhered “fried-egg” like NLFK and HeLa cells

J. Elf et al., Proc. Natl. Acad. Sci. USA (2011) T. Kuehn etal., PLoS One (2011)



Infection pathways of AAV viruses

2007 BM: bare

(115 nm

1.00- BM: endosome
[0 Nnm

AD: endo
0.5<a<0.9

0-00-1 ! I ! I v 1 ' I ' I ' 1 ' I ' 1

000 005 010 015 020 025 030 035 040

endocytosis tis]

1&?__*%

BM: 53 viruses ND or BM: Azimuthal Traces
vgz AD: 51 viruses
o BM+drift: 9 viruses AD: Radial Traces

G. Seisenberger et al., Science 294, 1929 (2001)



Brownian motion in non-stationary medium

i dv Yy KeT (1)
Langevin SDE A D. = B
(tentative) dt 14 (t)V + 2DV (t) Cz (t) v =V (t)
X_ 55 m _kgT(t)
¢ overdamped i 2D, (t) &(t) D, = v

e Langevin equation for a particle in a heat bath with time-
dependent temperature (Bray and Casado, 1990)

<x2 t > Can be introduced for any
D,(t) = lim ——~ | anomalous diffusion process

oo t

Caution: “Time-dependent diffusion coefficient for
anomalous diffusion”

t
<X2(t)> = j D(t")dt'# Dy(t)t But: “almost” the same for D(t)0 t%1
0

¢ Magnetic resonance imaging — measured water diffusion in muscles and in brain,
D(t) ODw + const(i®, 6 > 0 (Novikov et al, 2013)



Granular gases and Ultraslow SBM

¢ Granular particles collide inelastically and lose a fraction of their kinetic energy during
collisions which transforms into heat stored in internal degrees of freedom

¢ No external forces, the gas evolves freely and gradually cools down

The first stage of its evolution, the granular gas is in the homogeneous cooling state

¢ characterized by uniform density and absence of macroscopic fluxes
Constant restitution — |q
E = |U1s /U
¢ Coefficient [v1a/ V12| 0<e<l D

"‘\

¢ Haffslaw  T'(t) =Ty/ (1 + 15/7'0)2

¢ Self-diffusion coefficient J Q

D(t) =3T(t)7.(t)/(2m) = Do/(1 +t/70) Ot

as ultraslow SBM

MSD: from ballistic motion to ultraslow diffusion

<R2 (f)> ~ t* (R*(t)) ~ ln(tj

Expected
ultraslow
SBM
behavior



Geophysical and environmental processes

forcing

The amount of fresh water
potentially available from

season in mountainous
regions

k-

Power-law time dependent drift
directed towards the total depletion
of snow mantle

Occur under the influence of external time-dependent and random

R.L. Bras, Hydrology MA, 1990
A. Molini et al, 2011

Stochastic hydrology: snowmelt dynamics

both snow accumulationand | ———,
rainfall during the melting @ _qkta’ n /Zkta E(t) A =0.25

N

Power-law diffusion
Positive excursions: precipitation events
Negative excursions: pure melting periods

¢ Variablity of the process is expected to increase proceeding into the warm

season




Communicated by Mitchell ). Feigenbaum, The Rockefeller Unive

PNAS

Intraday fluctuations in
the Euro-Dollar
exchange rate: 1-min-
interval tick data 1999-
2004

D(xt) =t D), u=—"
-

H=0.35

Variable diffusion processes exhibit
“clustering of volatility”

Nonstationary increments, scaling distributions, and
variable diffusion processes in financial markets

Kevin E. Bassler*™, Joseph L. McCauley**, and Gemunu H. Gunaratne*s1

*Department of Physics and "Texas Center for Superconductivity, University of Houston, Houston, TX 77204; ®). E. Caimnes Graduate School of Business and
Public Policy, National University of Ireland, Gakway, Ireland; and Sinstitute of Fundamental Studies. Kandy, 50 Lanka
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Fig. 1. Intraday increments in thie Eurc-Dollar exchange are nonstatio nary,
(2) Standard deviation alf) = V{5 of the increments of the daily Euro—
Dollar exchange as a function of the time of day {in Greemwich Mean Time).
Owur statistical analysic azsumnes that (1} follows the zame stochactic proces:
each trading day. The average indicated by the brackets (.} is taken over the
== 1,508 trading days between 1999 and 2004, and the standard error at each
point is typically 3%. Mote that, if the stochastic dymamics had stationary
increments, o) would be constant. Instead, it varies by more than a factor of
32 during the day, thus showing explicitly that the exchange rate has nonsta-
tionary incremenits: Motice also that o(t] scales intime during several intervals,
four of which are highlighted by colored lines that are power-lawr fits. Our
analysis focuses on the interwal | shown by the horizontal solid line. (b) Weekly
behawior of ot} for the same data. Observe that it exhibits an approximate
daily periodicity, thereby justifying our assumption of the daily repeata bility
of the stochastic process underlying the Euro-Dollar exchange rate.



Richardson (relative) diffusion in turbulence

The failure of the dispersal of a point-charge to serve as a mathe-
matical element, from which the dispersal of an extended system may be built
up, appears to be intimately connected with the fact that in the atmosphere
the dispersal goes on in patches. That is tosay, asmall dense cluster of marked
molecules, represented by the dot in fig. 1 which, by molecular diffusion alone,
would spread through the successive spherical clusters shown in figs. 2 and 3,
actually seldom passes through the large spherical stage 3, because it is first
sheared into two detached clusters as suggested in fig. 4. These are carried
far from one another, and are likely to be again torn into smaller pieces as in
fig. 5. Meanwhile each of the torn parts is gradually spreading by molecular
diffusion. These diagrams are, of course, merely illustrative fictions.

Lewis F. Richardson

1 .
2 e ®
Vo N
.
4
*
-
g

Fras. 1--5.

Proceedings of the Roval Sociery of London. Series A, Containing Papers of a

Mathematical and Phvsical Character, Vol. 110, No. 756 (Apr. 1, 1926), 709-737.




Classical example of superdiffusion

Richardson law: <F2(t)> 0t
. /
%’
2 v
< o
30T
0 5 10

LOG,, (SEPARATION L in cM)

L.F.

Richardson, Proc. Royal Soc. London, 1926

of 0
=&

ot al
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4/3 0"
0l



Classical example of superdiffusion <F2(t)> 0¢3

o
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a) Frenkiel and Kaiz (1956),
b) Seneca (1955),
c) Kellogg (1956)
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<r2(t)> versust (Gifford,
* 1957)
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Gave inspiration to:

Monin (1955, 1956) , Tchen (1959) :
Space -friaatboaatditissoreggasibon Lévy walks
1-¢(s 1
5 f(k,g=1"¥0

~pD= ~D(-8)Y3p(i',t) u 1-¢(ks)

Klafter, Blumen, Shlesinger (1987):

z//(r,t):Cr_ﬂé(r —t")



How to explain the Richardson diffusion ? <72(t)>oct3

B 7 7 /
nsbr - 2SN +divI =0) + J(I,)=-D(1) grad f(1,1)

%7 j Constructed by analogy

o .- o o 7 7 with diffusion equation
— (. Y=—-DU,0H)— (I ,t [=|/ ’
AT (’)aljf(’) . =[]

can not be derived or
strictly justified

Richardson (1926) :  D([,H)=D(l) < A3

p— <f (t)> o« 2
Batchelor (1952) : ID(1,t)=D(¢) oct? @j}

Can not be fixed
on dimensional

: aib _
Hentschel and Proccacia (1984) D(l,f)ct™ " , 2a+3b=4 grounds alone

D f)octi?3

BUT: The distribution functions are different, and experiment might be used to
distinguish between the choices



Part Il. Inhomogeneous medium: Heterogeneous
diffusion process (HDP)

— = /2D ()¢ (1) D(x) = Dolx|*
IP(x,1) 0 [m (MP()C t))]

Stratonovich interpretation: _
ot 0x
() f E gtew
X) = —_— t) the ener process
y ZD()C/) y() | p n2r e i T=10°
x[r! 7\ Sul Ak |
P (X . [) = GXp(— 7 ) e ) :H~Hjlfﬂj; o' | 0001
47 D()t (2/ p) D()[ ”#;KI ”*,’ ,*,l‘xg_?‘“l\\*;} s .
Ensemble averaged MSD (EMSD) | ’
2p . :
C(p+1/2) [2\" a<0 subdiffusion
2 — _
(x7(1)) = 72 —) (D)) P=2/C =) (4 superdiffusion
al/ p
a<?2




Correlation properties of HDP
2P T p T (=4 1)
VEI LN CEEY

p=2/2—-a)

(/’C(fl)«’f(.fjn — [Dorl](pﬂ)/i

l—p p

2 2

_ﬁ) a=0:

- 3
X [Do(ts — 1;)]" szFl( :5:1‘ : Brownian limit
2 — I

Reminder: consecutive {[By (t) =By (t=1)][By (t+7) =By (1)]) = (22H -1 —1) reH

Increments of FBM
= <0, O<H<1/2 (sub) ; > 0, 1/2<H<1 (super)

Consequitive
. —t/Do/t, p=1, < antipersistence
increments of ([x() —x@—D)]x(t+71)—x@)]) ~ { 5 ’ er;stence
HDP r<<t (Do7)*,  p=2. <« BEIS
1 Similar to FBM
-
oo ([x(t +8) — x(D)][x(8) — x(0)]) e H =3/4 —
v (T)Z = == é'l 0.4+ ‘\-\‘\\ /
x@+8) —x(PAx@) —xO) T |\ — 1Y HopP
R e T .o ey
0r ! F I ) e ————————
—02} \e——"" p=lf2

Cherstvy, Ch, Metzler, NJP 2013 /6



Nonergodic behavior of HDP

Time-ensemble 1 r—A
averaged MSD <52(A) > = — f ([x(t +A) — x(t)]2> dz
(TEMSD) Ir—AJo
2
U'(p+1/2) (2 b _
2 _ = P — _1P1
(7)) () Dige =Dab . Dy =T
Relation between TEMSD and EMSD: (SQ(A) ) — (A/T)l_p(xz(A))
CTRW - like behavior
Amplitude scatter PDF ¢ (& = 82/(82))
ol _ If:-“h \ A=10° ;N’l A=10'
, 2 ||y A
100f__ZZ | \u\ ;'," %Y\
Bt . 'l . | U .. | .
| | ‘ I I I 1 1‘0 (I)O OIOO I4 I5 ? E E
A A
BUT: ¢40) = O contrast to CTRW

Cherstvy, Ch, Metzler, NJP 2013, PCCP 2014



Ergodicity Breaking: EB  #0

_ —\2 5
232 2 +

((“ ?) - (3 )) CTRW: im EB=2 ¥R _g49

EB = (He, Buroy, T/A - 00 [(1+2p)
—\2 Metzler, Barkai,
(52 ) 2008)
: 2

(Rytov et al., 1966, HDP: lim EB:g, p=2
Barkai et al., 2008) T/A - 00

similar to CTRW

— , , , 3
Simulations \\\ oc(A/T) ! Theory
2 =
1 L
0 B 1
0 1 2

1 10 100 1000 1040 10°

A Cherstvy, Ch, Metzler, NJP 2013



ll. Nonstationary medium: Scaled Brownian Motion (S  BM)

X(t) =4/2D(t) &(t) Lim & Muniandi (2002)

— a-1 5 a > 1 superdiffusion
D(t) = aKt (1) ~ 2Kt o < 1 subdiffusion
2
P(x,t) = L exp| — A
477'Kat 4Kat
both
o - similar
ACF . t<s  (z(t)x(s)) = (x(t)?) o

ordinary
/ BM

Independent increments, t, > t, >t,  ([@(f2) — 2(t1)][z(t3) — z(t2)]) =0
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Nonergodic behavior of SBM

T-A

JZ(A) — 1 J‘ (X(t’ +A) _ x(t’))2 dt’ T: trajectory Iength
T-A 5
5 A CTRW:-like behavior
<5 (A)> ~2Kq Tl-a =2 Deff A D Ta—]_ increases, a > 1 (superdif)
eff ~— decreases, a < 1 (subdif)

(52(A> } — (A/T)"""(x2(A)) similar to CTRW and HDP

2

L o=0.5 ‘ ‘ I g [ 0=1.5
@ 10° F =1
a=1/2
& 10 t* P g Amf’
2 i
NLO s (\‘1010 F
MRT v
N A L‘;ma 2
Voo : v
MSD 1L
averaged TA MSD L averaged TA MSD
individual Tp;hr\ggg o individual TA;hI\QSD
2 ‘ . j , i neory
. 10° 10 10? 10° 10 10° 10" 102 10° 10*
time t, lag time A time t, lag time A
(Jeon, Ch, Metzler, PCCP Com 2014)
BUT: lim EB(A)=0 contrast to CTRW and HDP...
T 500

. and similar to BM EB(A) ~g$ , 0 (Thiel and Sokolov, 2014)

| Y



Quantifying non-ergodicity of SBM : EB at small, b ut finite A/T

it L) A Full analytical solution and
o &) Langevin simulations, A/ T << 1
% L A=10"10° 10
= | ( 2
a0 gza 1%, a>1/2
3% EB(A) - "
;%N " 4C(a) (%) . a<l/?2
10" : ' FTF‘#I*?#’?-T—F.-‘ | L
0 o : ; C(a=1/2)= o, C(0) = O

— Spurious discontinuity of EB at a = 1/2

10° -"-.‘ / EBa:]JZ(A)~%[Iog(T/A)+2IogZ—5/6]

4(772/6—1)

(log[T /4] +1)2

EBy=0(8) ~

(Bodrova, Ch, Cherstvy, Metzler, NJP 2015)




Confined SBM

0 0 0

— P(x,t) =—| kx+ D(t)— | P(x,t

Pt =— O3 )P0

< (t)> g a1 osq/k E
e EMSD: After the free anomalous P

diffusion behavior at short times we
observe a turnover to a power-law behavior
with negative or positive scaling exponent

poobiil

subdiff normal superdiff

e TEMSD: plateau at A >> 1/k

10"
10°
1o b
2 MSD {k=0.01)
10 MSD (k=0.1) =
TAMSD (k=001
TA MSD (k=0.1
theory
-3 L
03 i 2 3 4

0 10
time t, lag time A

10

MSD (k=0.01) @
10 b g MSD (k=0.1) =
TA MSD (k=001
TA MSD {kzmg
m”: : : o
10° 10! 102 16 104

time t, lag time A




Aging SBM: Initiated at t = 0 and measured from t

a
T+t,—A A
5a2 (A) = ﬁ tj (X(t' +A) - X(t’))2 dt’ <52(A)> ~ 2K, Tl—_a

« Universal aging depression

T > Identical to the aged subdiffusive
<5a (A)> ~ N, (ta/T)<5 (A)> , LIg>>A] CTRW and HDP !

Depression factor A, (2)=(1+2)7 -27

Limit of strong aging ta >>t <5a2(A)> ~ ZUKatg_lA
e Apparent restoration of ergodicity in the strong ag ing limit

(52)) :<x2(A)>a Subdiff CTRW, HDP, SBM

Cherstvy, Ch, Metzler, JPA 2014; Safdari, Ch, Jafari, Metzler, PRE 2015



Aging confined SBM

* Strong effect of a weak aging  t>> 1/k, t, << 1/k
<x2(t)> ~ al:a t? 1+ 2K g
a

O for subdiff

The leading long-time behavior
for 0 < a <1 is the plateau

<x2(t)> KT, t>>1/k
a

-> Even for very weak aging the EMSD becomes ta dependent " & = K
-> Stems from the initial free motion during the aging period

-> Superdiffusion: the leading order term shows the growth <X2(t)> ~ a’Kak_lta_1
a

e Universal depression again

<5a2(A)>~/\a(ta/T)<52(A)> Lty >>A>>1/k or A<<1/k

Ny (2)=(1+2)7 -27



Ultraslow SBM and Granular Gases

e Ultraslow scaled Brownian motion: “degenerate” SBM , a=0
Dy
(t)/dt = /2D(t)E(1) Dit) = 1+t/70
EMSD = 2f dt! / dt"/ D(t")D(t") =2Dymlog (1+1/7)  [logt

One more representative of the family of ultraslow random processes

e Granular gas in homogeneous cooling state

Haff’s law o(t) = %
2
0: temperature (1""[ / To)
Self-diffusion coefficient D(t) = 07 = Do Ott as ultraslow SBM
m (1+t/1p)
MSD: from ballistic motion to ultraslow diffusion Expected

ultraslow SBM

<R2 (IL)> ~ t2 <R2 (T)> ~ 111(tj behavior



Granular gases versus Ultraslow SBM

TEAMSD: from (§2(A)) ~ A2 tO <52(A)>:$ - <52(A)>:$In£

10°

Scaling A 10°
persuasively K
confirmed in MD

\%

TEA MSD
for ultraslow
SBM

A 10'E

i SZ(A):
—0=— 1t=1000
r —0— t=10000

simulations ot/

-3 R P T YT YT RPN B
10 -1 0 1 2 3

T-A

——R(t)~ log(t) ]

log-term is cancelled out

<52(A)> ~ 6DoToC ,8)?

A

C(B)="+ % + 1 ()

beyond SBM approximation

~ = 0.57T...

Euler’s constant

B= TO/TV W (Z) _ dInI'(z)

dz

Digamma function



Beyond the overdamped SBM
(t)/dt = /2D(t)E(t) ) dv/dt +v/7(t) = /2D(t) /o (t)§(2)

D(t) = —2 Tt)=TO)) (1 +t/n) Tyt = 771(0)y/T#)/To.

T(O)Tﬂ (1 — ti/TﬂJ;‘ﬂ—E
=— -nﬂ‘u{[]:}(lﬁ - 1) (1 + tE,/Tg:]-S .

52(B)=—— [ (x(t'+D)-x(t))*dt
T-n )

A As in granular gas, but in contrast to
T overdamped SBM: A T
<52(A)>

<52 (A)> 6Do7oC(B8)=



Summary: Markovian scale-invariant motions in inhom ogeneous
and non-stationary media

HDP D(x) O|x|%, a <2 SBM D(t) Ot%1 a0
) D B ) O0t%, a#0
¢ MSD (x°(1)) OtP, p=2/(2-a) dlogt, o =0
Power-law correlations,
¢ Correlations persistent forp > 1 uncorrelated increments
antipersistentp < 1
1-a .
¢ TE <52(A)> OA / Tl-(] (sim.CTRW) CAIT az0 (sim.CTRW)
MSD OA/MIn(T/A),a=0

T : trajectory length

¢ EB parameter My /A 0 EBZ0 limy /Ao EB=0

(sim.CTRW) (sim. BM, FBM # sim.CTRW)

¢  Aging behavior
Similar to CTRW

<5a2(A)>~/\a(ta/T)<52(A)> oty >>A

Ny (2)=(1+2)7 -27




Not mentioned here :

v More properies of confined SBM and HDP
(Jeon, Ch, Metzler, PCCP Com 2014; Cherstvy, Ch, Metzler, JPA 2014)

v Aging HDP and SBM
(Cherstvy, Ch, Metzler, JPA 2014; Safdari, Ch, Jafari, Metzler, PRE 2015)

v HDPin 2D
(Cherstvy, Ch, Metzler, Soft Matter 2014)

v First passage problem for HDP and SBM

(Cherstvy, Ch, Metzler, Soft Matter 2014; Safdari, Ch, Jafari, Metzler, PRE 2015; Cherstvy, Ch,
Metzler, in preparation)

v Viscoelastic granular gas: more similarity to SBM
with a = 1/6

(Bodrova, Ch, Cherstvy, Metzler, PCCP 2015)

v Beyond the overdamped SBM: weakly damped SBM and US BM
(Bodrova, Ch, Cherstvy, Metzler, NJP 2015; PCCP 2015; in preparation)



e Anomalous is normal

« Happy families are all alike; every unhappy family is
unhappy In its own way

Theory is far from the end, fortunately...



