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What is a biological invasion?

@ Is one of the most important phenomena in Ecology

@ An invader is a new species (animal, plant, microorganism,...)
introduced in a new territory where it spreads and reproduce.
Invasion concludes when the new species drives the native
species to the extinction

© It affects Biodiversity and has important economical
consequences

INVASION CURVE 7

management ONLY

Public awareness typically begins

AREA INFESTED
CONTROL COSTS—>

- -Detection

Introduction Prevention oy

Eradication SIMPLE
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Well-known invasions

@ Plants: An estimated 18.6 km? of public natural areas are
lost to invasive exotic plant species every day.

Cheatgrass Invasion

Native Shadscale/Bunchgrass Invasive Cheatgrass
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Well-known invasions

@ Plants: An estimated 18.6 km? of public natural areas are
lost to invasive exotic plant species every day.

Cheatgrass Invasion

Native Shadscal e/Bunchgr'ass Invasive Cheatgrass

Or in our own garden

o~
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Well-known invasions

@ Grey Squirrel invasion in Britain in 1900
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Well-known invasions

@ Grey Squirrel invasion in Britain in 1900

THE REQHAS LOST-S0 ACCEPT THE GREY
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The physics behind Bl

A Bl can be regarded as a Reaction-Transport process

Random Walk:
It needs to account for:

o Dispersal process: Species do not diffuse but jump from one
to another point. Jump length's are random variables

o Waiting/rest phases: Jumps are interrupted by pauses of
random duration

Reproduction:

o It takes place during the pauses
@ Obey the classical kinetics laws

V. Méndez Non-Markovian Reaction-Transport: Modelling Bl



Old model

The Oldest model: Fisher's model

Assumptions:

@ Animals move by diffusion. There are no pauses, i.e., it is a
Markovian process
@ Reproduction obeys a logistic growth
The model obeys the Reaction-diffusion equation:
52
where p(x,t) is the number density of individuals.
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Old model

The Oldest model: Fisher's model

Assumptions:

@ Animals move by diffusion. There are no pauses, i.e., it is a
Markovian process

@ Reproduction obeys a logistic growth
The model obeys the Reaction-diffusion equation:

where p(x,t) is the number density of individuals.

We can sum up both rates because they are Markovian
(independent) processes
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Generalizations of the Fisher's model

Reaction-Dispersal

Assumptions:

@ Animals jump according to a dispersal kernel ®(z). Pause's
duration are exponentially distributed, i.e., it is a Markovian
process

@ Reproduction obeys a logistic growth

The model obeys the Reaction-dispersal equation:

o = [/ o= 2, 0(E)dz — plat)| +

—00
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Generalizations of the Fisher's model

Reaction-Dispersal

Assumptions:

@ Animals jump according to a dispersal kernel ®(z). Pause's
duration are exponentially distributed, i.e., it is a Markovian
process

@ Reproduction obeys a logistic growth

The model obeys the Reaction-dispersal equation:

- [/ Pl 0z ol )| +

—00

We can sum up both rates because they are Markovian
(independent) processes
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Long-distance dispersal

Dispersal kernels in biological invasions:

1
O(z) = %e—|z|/a (Laplace)

1
O(z) ~ |27 0<n< 5 (Power law)

®(z) ~ e (/%) ¢ <1 (Stretched exponential)

e—an(z/zo)/a
D(z) ~ f(Log-normal)
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Generalizations of the Fisher's model

Diffusion with memory

Assumptions:
@ Animals move by diffusion but there is memory, inertia or
correlation between jumps. It is a non-Markovian process
@ Reproduction obeys a logistic growth

The diffusion equation with memory, inertia or correlation between
jumps obeys the Telegrapher’s equation:

02/) op 0?p
S+ =D
"o T ot~ Vs
How can it be obtained?
@ By combining continuity equation + 9J — () and the

Cattaneo equation for J, 72/ ()L +J= —Dgz

V. Méndez Non-Markovian Reaction-Transport: Modelling Bl



Diffusion with memory

@ Following the derivation by Goldstein and Kac based on the
balance equations for particle moving to the right and to the
left and introducing a persistence probability.

@ From Continuous-Time Random Walk formalism by
considering a waiting-time PDF of the form ¢(t) = te™*/7 /72
and the diffusion limit for the dispersal kernel.
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Diffusion with memory
@ Following the derivation by Goldstein and Kac based on the
balance equations for particle moving to the right and to the
left and introducing a persistence probability.
@ From Continuous-Time Random Walk formalism by
considering a waiting-time PDF of the form ¢(t) = te™*/7 /72
and the diffusion limit for the dispersal kernel.

More details in:
V. Méndez, S. Fedotov and W. Horsthemke, Reaction-Transport

Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities
(Springer-Verlag, Berlin, 2010)
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How to include reactions?
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How to include reactions?

Some authors simply add the reaction rate term to the rhs of the
Telegrapher's equation:

5?p  Op 0?p
cr. Y _pZr
"oz Yo T Coar T
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How to include reactions?

Some authors simply add the reaction rate term to the rhs of the
Telegrapher's equation:
5?p  Op 0?p

cr. Y _pZr
o2 T o 522 "

Comment

They "forget” that diffusion with memory is no longer a Markovian
processes. There is no macroscopic of mesoscopic derivation. It
exhibits a undesirable property: It does not reduce to the kinetic
equation in the homogeneous case: When p(z,t) = p(t) it follows

d*p  dp
Tzt
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How to include reactions?

Recently, some authors (N. Isern and J. Fort, Phys. Rev. E 80,
057103 (2009)) proposed the finite-time difference equation

p(‘% t+T)_IO($7 t) = [p(IL‘, t+T)_:0(:L'v t)]m+[p($7 t—I-T)—,O(SL', t)]g

where m means migration and g growth.
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How to include reactions?

Recently, some authors (N. Isern and J. Fort, Phys. Rev. E 80,
057103 (2009)) proposed the finite-time difference equation

p(‘% t+T)_IO($7 t) = [p(IL‘, t+T)_:0(:L'v t)]m_‘_[p(l‘v t—I-T)—,O(SL', t)]g

where m means migration and g growth.

The premise that the growth and dispersal processes remain
uncoupled during a finite time interval and contribute simply
additively to the total change of the density holds only if the
dispersal process is Markovian
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How to include reactions?

However, the authors do the following:

plat+T) = pleln = [ pla =208z pla.)

—0oQ
oYy
2! Oz2
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How to include reactions?

However, the authors do the following:

plat+T) = pleln = [ pla =208z pla.)
02 5%
~ ot

and Taylor-expanding up to O(T?)

lp(z,t +T) = p(z,t)]y =T (gﬁ)g + 12? (882;)9
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How to include reactions?

However, the authors do the following:

plat+T) = pleln = [ pla =208z pla.)

—0oQ
oYy
2! Oz2

~

and Taylor-expanding up to O(T?)
Op T? (0?%p
T)— = —= N

Identifying (%) = rp(1 — p) and Taylor-expanding the LHS up
g
to O(T?)
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How to include reactions?

they obtain

Fp  dp & ,
T@‘FE —D@+F(P)+7F (p)F(p)

where F(p) = rp(1 — p), D = 0%/2T and 7 = T/2.
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How to include reactions?

they obtain

Fp  dp & ,
T@‘f‘a —D@+F(P)+7F (p)F(p)

where F(p) = rp(1 — p), D = 0%/2T and 7 = T/2.

This equation has some undesirable behaviors:
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How to include reactions?

@ It does not reduce to the kinetic equation in the homogeneous
case
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@ The kinetic term has extra equilibrium states corresponding
F’(p) = 0 without physical meaning
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How to include reactions?
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case

@ The kinetic term has extra equilibrium states corresponding
F’(p) = 0 without physical meaning

@ The density p can eventually take negative values for pure
death processes
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How to include reactions?

@ It does not reduce to the kinetic equation in the homogeneous
case

@ The kinetic term has extra equilibrium states corresponding
F’(p) = 0 without physical meaning

@ The density p can eventually take negative values for pure
death processes

For additional undesirable properties of this equation see: V.
Méndez, D. Campos and W. Horsthemke, Phys. Rev. E 90,
042114 (2014)
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How to include reactions?

CTRW
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How to include reactions?

CTRW

Generalized Master Equation for the mean field density p(z,t)

%):/OtK(tt’) [/_Zp(m—x t— )D()dr — pla, )| dt’

where K (t) is the memory kernel defined in the Laplace space as

K(s) = 13@&)) and ¢(t) is the waiting-time PDF

@ Markovian CTRW: ¢(t) is an exponential distribution

@ non-Markovian CTRW: ¢(¢) is NOT an exponential
distribution
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Reaction-CTRW
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Reaction-CTRW

Can we add a non-linear reaction kinetic to the RHS of the
non-Markovian ME?
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Reaction-CTRW

Can we add a non-linear reaction kinetic to the RHS of the
non-Markovian ME?
In general, the answer is

V. Méndez Non-Markovian Reaction-Transport: Modelling Bl



Reaction-CTRW

Can we add a non-linear reaction kinetic to the RHS of the
non-Markovian ME?
In general, the answer is NO!!

Consider a reaction kinetics % = F(p) where F(p) is a positive
non-linear function of p

Define
F(p)=r(p)p
with
r(p) =r+(p) —r-(p)

where 74 (p) are the per-capita growth and death rates.
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Reaction-CTRW

@ Model A: the waiting-time of the newborn individuals is the
same as that of their progenitors. After the waiting time all of
them jump to new positions. The Reaction-CTRW equation

reads
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Reaction-CTRW

@ Model A: the waiting-time of the newborn individuals is the
same as that of their progenitors. After the waiting time all of
them jump to new positions. The Reaction-CTRW equation

reads
Op ! / * 1oy [ r(p(a—a w))dv / /
o= [ Ka=O) [ pta—a gl
o P( ) ftw (z,v dv] dt’ +F( )
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Reaction-CTRW

@ Model A: the waiting-time of the newborn individuals is the
same as that of their progenitors. After the waiting time all of
them jump to new positions. The Reaction-CTRW equation
reads

dp ! / > 1oy [ r(p(a—a w))dv AP
5% /K(tt)/ plz — o t)elv (ple=2"0)dv gy (11 qy

o P( ) ft/7 (z,v dv] dt' +F( )

@ Model B: the waiting-time of the newborn individual is reset
to zero. So newborns and progenitors jump independently.
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Reaction-CTRW

@ Model A: the waiting-time of the newborn individuals is the
same as that of their progenitors. After the waiting time all of
them jump to new positions. The Reaction-CTRW equation
reads

dp ! ! > 1oy [ r(p(a—a w))dv N .
5% /K(tt)/ plz — o t)elv (ple=2"0)dv gy (11 qy

o P( ) ft/7 (z,v dv] dt' +F( )

@ Model B: the waiting-time of the newborn individual is reset
to zero. So newborns and progenitors jump independently.
The Reaction-CTRW equation reads

@ — ' _ 4 - oy~ [l (p(z—a! w))dv /
= [ re-0)[[" sa—are ! B!
ot 0 oo

. p(w,t’)e*.ff’ r <p(z7v))dv:| dt/+F([}),
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Invasion velocity

For most populations F'(p) is logistic, i.e, F'(p) = rp(1 — p) with r
the intrinsic growth rate and 1. (p) =r, r_(p) = rp.
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Invasion velocity

For most populations F'(p) is logistic, i.e, F'(p) = rp(1 — p) with r
the intrinsic growth rate and 1. (p) =r, r_(p) = rp.

@ We assume the existence of a travelling wave from an initial
condition with compact support connecting the un-invaded
state (p = 0) to the invaded state (p = 1)
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Invasion velocity

For most populations F'(p) is logistic, i.e, F'(p) = rp(1 — p) with r
the intrinsic growth rate and 1. (p) =r, r_(p) = rp.

@ We assume the existence of a travelling wave from an initial
condition with compact support connecting the un-invaded
state (p = 0) to the invaded state (p = 1)

@ Since the invasion wave propagates into the unstable state we
can determine the invasion velocity by analyzing the motion of
the tail of p(x,t).
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Invasion velocity

@ Introduce the hyperbolic scaling x — x /¢, t — t/e to analyze
the tail
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Invasion velocity

@ Introduce the hyperbolic scaling x — x /¢, t — t/e to analyze
the tail
o Define the new field p®(z,t) = p(x/e, t/e)
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Invasion velocity

@ Introduce the hyperbolic scaling x — x /¢, t — t/e to analyze
the tail

o Define the new field p®(z,t) = p(x/e, t/e)

o Consider the WKB ansatz p(z,t) = exp|—G*(z,1)/¢€]
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Invasion velocity

@ Introduce the hyperbolic scaling x — x /¢, t — t/e to analyze
the tail

o Define the new field p®(z,t) = p(x/e, t/e)

o Consider the WKB ansatz p(z,t) = exp|—G*(z,1)/¢€]

@ The action function G(z,t) = lim._,0 G(x,t) = 0 defines the
front position
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Invasion velocity

@ Introduce the hyperbolic scaling x — x /¢, t — t/e to analyze
the tail

o Define the new field p®(z,t) = p(x/e, t/e)

o Consider the WKB ansatz p(z,t) = exp|—G*(z,1)/¢€]

@ The action function G(z,t) = lim._,0 G(x,t) = 0 defines the
front position

@ For Model A H
—7r o
- =o(p) -1
K(H —r)
For Model B
o) -
k@)

with H = —0G /0t and p = 0G/0x

R(H) = /0 T e U (1)t B(p) — /0 " e d(2)da
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Invasion velocity

@ The invasion velocity is finally obtained as

2(5)
v=min | —
Hp \ ' p
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Invasion velocity

@ The invasion velocity is finally obtained as

2(5)
v=min | —
Hp \ ' p

@ The invasion velocity depends on the dispersal kernel ®(x),
the waiting-time PDF and the intrinsic growth rate r
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Invasion velocity

@ The invasion velocity is finally obtained as

2(5)
v=min | —
Hp \ ' p

@ The invasion velocity depends on the dispersal kernel ®(x),
the waiting-time PDF and the intrinsic growth rate r

e The dispersal kernel ®(z) can be obtained by fitting the
frequency histogram of jump distances from a mark-recapture
experiment
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Invasion velocity

@ The invasion velocity is finally obtained as

2(5)
v=min | —
Hp \ ' p

@ The invasion velocity depends on the dispersal kernel ®(x),
the waiting-time PDF and the intrinsic growth rate r

e The dispersal kernel ®(z) can be obtained by fitting the
frequency histogram of jump distances from a mark-recapture
experiment

@ The waiting-time PDF and the intrinsic growth rate r
can be obtained from Life statistics
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Invasion velocity

Life Statistics:
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Invasion velocity

Life Statistics:

@ Let ap and ay be the initial and final age of female's fertility
period

@ Survival function : I(t) number density of newborn females
surviving to age t
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Invasion velocity

Life Statistics:
@ Let ap and ay be the initial and final age of female's fertility
period
@ Survival function : I(t) number density of newborn females
surviving to age t
e Fertility function: m(t) rate of offspring produced by a female
at age t
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Invasion velocity

Life Statistics:

@ Let ap and ay be the initial and final age of female's fertility
period

@ Survival function : I(t) number density of newborn females
surviving to age t

e Fertility function: m(t) rate of offspring produced by a female
at age t

e Maternity function: (t)m(t)
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Invasion velocity

Life Statistics:

@ Let ap and ay be the initial and final age of female's fertility
period

@ Survival function : I(t) number density of newborn females
surviving to age t

e Fertility function: m(t) rate of offspring produced by a female
at age t

e Maternity function: (t)m(t)

@ The intrinsic growth rate 7 is solution to the Euler's equation

af
/ eMU(Bmt)dt = 1

0
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Invasion velocity

@ The waiting-time PDF is the time between two successive

generations o
t)m(t
wlt) = T 1(tym(t)dt

ao

V. Méndez Non-Markovian Reaction-Transport: Modelling Bl



Invasion velocity

@ The waiting-time PDF is the time between two successive
generations
L(t)m(t)
[ i(t)ym(t)dt

@ ¢(t) cannot be an exponential distribution. It is peaked. The
invasion process is non-Markovian

p(t) =
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Invasion velocity

@ The waiting-time PDF is the time between two successive
generations
L(t)m(t)
[ i(t)ym(t)dt

@ ¢(t) cannot be an exponential distribution. It is peaked. The
invasion process is non-Markovian

p(t) =

@ For invasion in 2D

®(p) =27 /000 r®(r)lo(rp)dr
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Example: Muskrat Invasion

@ Muskrats (Ondatra zibethica) were introduced in north

Europe in 1905
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Example: Muskrat Invasion

@ Muskrats (Ondatra zibethica) were introduced in north

Europe in 1905

@ The observed invasion velocity was 11 km/yr between 1905
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Example: Muskrat Invasion

@ Model A is adequate for species that take their brood with
them during the first stages of their life
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Example: Muskrat Invasion

@ Model A is adequate for species that take their brood with
them during the first stages of their life

@ From histograms of dispersal distances, fertility and survival
as function of the age we can estimate 7, and ®(r). The
invasion speed predicted by Model A is 8.74 km/yr.
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Conclusions

@ Bl is a non-Markovian Reaction-Dispersal process
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Conclusions

Bl is a non-Markovian Reaction-Dispersal process
Bl needs to be modeled with care
Some authors make use of non-physical models

The CTRW provides a good framework. There are two
possibilities
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Conclusions

@ Bl is a non-Markovian Reaction-Dispersal process
@ Bl needs to be modeled with care

@ Some authors make use of non-physical models

o

The CTRW provides a good framework. There are two
possibilities

The invasion velocity of Model A is adequate to model Bl
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Thank you!
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