Atomic Physics WorkshopRashid Nazmitdinov, Universitat de les Illes Baleares Interplay between Zeeman interaction and spinorbit coupling in a twodimensional semiconductor system Manuel ValinRodriguez^{1} and Rashid G. Nazmitdinov^{1,2} The effects produced by different spindependent interactions in semiconductor structures under magnetic field are currently in the forefront of experimental and theoretical efforts in mesoscopic physics. The explosive activity is motivated by the desire for a deep understanding of quantum coherence phenomena. The other driving force is the hope that the spintronics research would provide novel, lowdissipative microelectronic devices. In twodimensional (2D) semiconductors, the bulk inversion asymmetry of the crystalline structure gives rise to the spinorbit interaction between electrons, described by the Dresselhaus term, ${\cal H}_D={\beta}\left(p_x\sigma_xp_y\sigma_y\right)/{\hbar}$. Here, the $\sigma$'s are the Pauli matrices, and $\beta$ is the intensity of this interaction. The other spinorbit interaction is due to the inversionasymmetry of the confining potential. It is called the Rashba interaction which has the form ${\cal H}_R={\alpha}\left(p_y\sigma_xp_x\sigma_y\right)/{\hbar}$, where $\alpha$ is the corresponding strength. In numerous papers, only the interplay between the Zeeman and one of the spinorbit terms (Rashba or Dresselhaus), or between the Rashba and the Dresselhaus term are considered. In this contribution we analyse the interplay between Dresselhaus, Rashba, and Zeeman interactions in a 2D semiconductor under the action of a magnetic field. When a vertical magnetic field is considered, we predict that the interplay results in an effective cyclotron frequency that depends on a spindependent contribution. For inplane magnetic fields, we found that the interplay induces an anisotropic effective gyromagnetic factor that depends on the orientation of the applied field as well as on the orientation of the electron momentum.  

