Attosecond steering of electrons with optimised strong field waveforms |
|
Stefan Haessler | |
Technische Universität Wien | |
Quasi-free field driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecond duration XUV emission in the process of high harmonic generation (HHG). The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer, and it has been predicted that this limit can be significantly exceeded by an appropriately ramped-up cycle-shape. Here, we present an experimental realization of such cycle-shaped waveforms and demonstrate control of the HHG process on the single-atom quantum level via attosecond steering of the electron trajectories. With our optimized optical cycles, we boost the field-ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration, to obtain greatly enhanced HHG efficiency as well as spectral extension compared to sinusoidal drivers. This application, which is only one example of what can be achieved with cycle-shaped high-field light-waves, has far-reaching implications for attosecond spectroscopy and molecular self-probing. |