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Motivation: Method
| |

* Kinetic Monte Carlo is widely used in many
scientific disciplines.

- Several methods to (more or less) efficiently
parameterize KMC models.

 Not so much work on speeding up kMC itself.

 Parallelization i1s commonplace in MD
simulations and as a way to ‘slave’
computationally-demanding  calculations  of
saddle points, attempt frequencies, etc, in kMC
methods.

- What about parallelization of KMC?
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Motivation: Application
I T —————————,

* Ising model can be used to map discrete-lattice
systems: lattice gas, binary alloys, magnetism,
etc.

- Ising system is interesting for studying second-
order phase transformations.

 Belongs to a universality class for systems with
long-range correlated disorder.

*Very large systems must be considered to
capture the kinetic behavior, particularly in 3D.
 No analytical solution for critical kinetics in 3D,

only slow converging numerical solutions.

* Many methods employed over the years.
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Ising system kinetics

Master equation:

P, = 3 OWo)p(o.t) = Walo i)

Transition rates for Glauber dynamics:

Wilo) = g 1 — o, tanh(28AE;)]

AFE1 follows from the Ising Hamiltonian
H(o) = —JZ 0i0; > AFE; = —JZ 0
(4,7) (4,7)
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Temperature behavior of Ising systems

ti critical
- At the critical paramagnetic iti

temperature Ttc,
domains of aligned
spins are created.

- These domains are
defined by a correlation
length ¢:

f X ‘T — TC‘V T>Tc T=Tc

- vis the ‘scale’ critical
exponent.

ferromagnetic

- Critical exponents not
converged for 3D.

T< Tc
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The net magnetization is the order

Earameter of the Ising sxstem

]- 2.0 T : 1 T
m(a) = — Z g; Average magnetization

N 4 Standard deviation

! 1.0
m(t) ot o
&=
The value of the critical e
exponents in 1D and ggmtm
2D is analytically known
and can be converged 0.1 ' ' '
for 4 and higher J 07 w' w® w' w?! w? 1
. 1
dimensions. tifee At
In 3D: no converged 1]
numerlc/gl 8h|(t)|§r7|n) —1
z = ——
v | d(logt) Serial KMC not sufficient
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Parallel kMC algorithms to study large

Kinetic sxstems

- Discrete event kinetics are inherently difficult to
parallelize.

- Traditional parallelization approaches based on
asynchronous Kkinetics (

).

- Causality errors arise with these approaches:
mutually affecting events occurring in different
domains.

- This requires ‘roll-back’ techniques to reconcile the
time evolution of different processors.

* This leads to implementation complexity and regions
of low efficiency.

+ Rigorous and semi-rigorous algorithms have been
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We use a novel synchronous parallel kMC

algorithm to studx very Iarge sxstems

Assume a spatial domain containing N wakkers:
Each walker defined by a ratezi, Riot = » 4
Perform spatial domain decomposition: *
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We use a novel synchronous parallel kMC

algorithm to studx very Iarge sxstems

Now, for parallel kMC, perform K (4) domain partitions and construct frequency lines:

R1
L] |
ql
2| | | Re
R3
% |
4 —
R4
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We use a novel synchronous parallel kMC

algorithm to studx very Iarge sxstems

Now, for parallel kMC, perform K (4) domain partitions and construct frequency lines:

R1
] |
qi
2 | | | kma
R3 X
5 |
% —
R4
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We use a novel synchronous parallel kMC

algorithm to studx very Iarge sxstems

Now, for parallel kMC, perform K (4) domain partitions and construct frequency lines:

R1
] |
qi
2 | | | kma
R3 X
: |
3 — |
% —
R4
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We use a novel synchronous parallel kMC

algorithm to studx very Iarge sxstems

Now, for parallel kMC, perform K (4) domain partitions and construct frequency lines:

R1
L |
gi The rok are the ‘dummy’ rates (no
2: | | | Rma event) that ensure synchronicity:
3 | | R|3 i Riae = 7T+ 70k
a | |
Rtot — Zrk < KRma,ac
4 | | | |
| | | R|4 k
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We use a novel synchronous parallel kMC

algorithm to studx very Iarge sxstems

Now, for parallel kMC, perform K (4) domain partitions and construct frequency lines:

R1
L |
gi The rok are the ‘dummy’ rates (no
2: | | | Rma event) that ensure synchronicity:
3 | | R|3 i Riae = 7T+ 70k
o | |
Rtot — Zrk < KRma,ac
4 | RI4 2
1 N
0tp ~ 7
e ot, < Kot
oty ~
Rtot
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We use a novel synchronous parallel kMC

algorithm to studx very Iarge sxstems

Now, for parallel kMC, perform K (4) domain partitions and construct frequency lines:

R1
o |
qi
2 | | | Rma
R3 X
s | :
“ —
R4
1 N
(515sz
me b ot, < KOt
oty ~
Rtot
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The rok are the ‘dummy’ rates (no
event) that ensure synchronicity:

Rmaa: = Tk +Tok
Rtot — Z Tk < KRma,ac
k

For optimum scalability,
perform domain
decomposition subject to the

following constraint:

E Tok

k

min

(=



Parallel kKMC algorithm

1 Perform spatial decomposition int§)K
domains.
2,

2 Define partlal gregate tt?s;_ | ach

k
3 Choose tmpmryxa&mgg}(qargipl rate as:
k

€2y,
4 Assign ‘nulfratedtig.gachr, such that:

Qik/Rmax
5 Sample event from each subdomain with
. In¢&
probability oty = =

LgwrenER e TEE BJ@Ht and'advance time by (2



Parallel boost

Utilization Ratio (UR):
probability of not having a

parallel timestep:
proportional to the
number of processors K

and the UR 0'7(’;0-3 g2 i T
]
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null event in a given kMC 1O g GrRERG ifcbert oo
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Solution of boundary conflicts via sublattice
decomposition

Boundary conflicts appear when
mutually-influencing events occur
simultaneously on different domains

! A simple solution is to use
: a sublattice
P : decomp(_)smon (chess
|;’ " : method in 2D)
Y ‘A /
(/\-—-" I TN
\ ! /
,/ : I %’
\ I \
‘+ B’ i — r =
d'* i I
H g A
Af ~ y A
L \
\\ - :, A Y T
I N ™
|
| Co-occurring events only on

identically-colored subcells
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Sublattice decomposition introduces a bias

 Reduced sampling space

introduces a systematic error Standard deviation of serial runs
(bias). 1.0
262144 particles W
bias = (m(o¢))p — (Mm(0¢))s - - e i T VT
- Bias can be controlled with oY RN A
system size and numbers of 7 K 2 paralel everis & paraliel events
oy 4 parake! evenis 18 parallel events ——
processors. &+
@ " 9097152 particles |
!
. 5 0.0 s P i‘-;gﬁ“'m"
* One must also include A |
intrinsic statistical gia
. 32 parakel events 512 parallel events ——
fluctuations of the parallel 1.0+ I e B0en e ovomtn —— |
] 256 paralel evants ——
runs: 15 ' —
Op = \/0% + 02 0.1 1 Y

time [107°%]
- We find that ob is always less than the standard
deviation of the serial calculations
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Calculation of critical exponent z

- =]
2.80

270 | 10224x.H Px5H2
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Weak scaling of parallel KMC algorithm is
+

Parallel efficiency B 1
governed by local MPI = l+alogK +b
calls: ;e | | | | | |
4
a0
e = - — _
80 k- ' A W v 7
70 | S o e
S i
Eﬁﬂ— + F 4+t &
= 60
2% spins per processor =+
40 eq. (13): a=0.03, b=0.53
221 spins per processor o
a0 L eq. (13) a=0.02, b=0.33
22 spins per processor i
20 . eq. {13]: a=IEII.EI1, h=ﬂl.1? . .
1 2 4 8 16 32 128 256

G4
Mumber of processors K
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Conclusions

- Parallel synchronous kMC algorithm suitable for

large systems.
Resolution of boundary conflicts
Good scalability
Controlled sampling errors

* Critical behavior of Ising systems is well reproduced
and converged to the state of the art.

- Current and future applications of the method include
solid solution precipitation, segregation, and in
general situations where large systems are required.
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