Combining molecular dynamics and on-the-fly kinetic Monte Carlo to investigate radiation damage in solids

Marc Robinson, Nigel Marks
Nanochemistry Research Institute, Curtin University, Perth WA 6845, Australia

Karl Whittle, Greg Lumpkin
Australian Nuclear Science and Technology Organisation, Kirrawee DC
NSW 2232, Australia

Louis Vernon, Steven Kenny, Roger Smith
Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
Overview

• **Introduction into radiation damage.**
 ▶ Motivation.
 ▶ Time-scale problem.
 ▶ Requirement for atomistic simulation.
 ▶ General methodology.

• **Applications:**
 ▶ Simulating self-irradiation effects of plutonium\(^1\)\(^-\)\(^3\).
 - Defect formation and migration in Ga-stabilised \(\delta\)-Pu.
 ▶ The effect of structure on radiation damage\(^4\).
 - Comparison of radiation response of the rutile, brookite and anatase polymorphs of TiO\(_2\).

Materials for nuclear applications must all share one important property:

“The ability to maintain functionality during exposure to extreme levels of irradiation”

Two key goals:
- To develop new ‘nuclear materials’ for future reactors or waste forms.
- To determine the life expectancy and failure mechanisms of materials currently in service.

Requires an in-depth understanding of the atomistic processes that attribute to macroscopic changes in properties.

Time scale problem

Ballistic Phase
- High Energy ~keV
- Collision Cascade
- Thermal Spike

Time scales:
up to ~20 ps

Recovery Phase
- Defect migration and recombination.
- Activated processes - “Rare Events”

Time scales:
ns up to seconds, d/w/y

but events may overlap...
Ballistic Phase

- Recoil event from a **Primary Knock-on Atom (PKA)**
- High energies, typically ~keV (dependent on the simulated process)
- Requires dynamics
 - \textit{Ab initio} methods unsuitable.
- Requires atomistic lattice effects
 - Phase field or continuum models inappropriate.
- Molecular dynamics is well suited to modelling the ballistic phase:
 - Time-scales: \(\sim O \) (ns)
 - Length scale: \(\sim O \) (nm)
 - Ensembles (thermo/barostats)

Simulation: 5 keV cascade in fcc Pu @ 300 K. 1.1M atoms 15 ps
Molecular Dynamics

• Molecular Dynamics (MD) is a powerful tool that can be used to investigate the ballistic phase at the atomic level response.

• In addition, MD has allowed in depth studies into all areas of radiation damage
 ▶ Self-irradiation effects (decay).
 ▶ Ion implantation (e.g SWIFT heavy ion).
 ▶ Sputtering.
 ▶ Defect aggregation at grain boundaries or interfaces.
 ▶ Dislocation dynamics and diffusion.
 ▶ Bubble formation.

• Serves as an alternative to analytical models of defect production (KP, NRT) or models based on the binary collision approximation (SRIM)
Ballistic Phase

- Important requirements for modelling the ballistic phase using MD:
 - **Interatomic potential**
 - Must **depict nuclei-nuclei interactions** correctly - i.e. ZBL screened coulomb potential.
 - **Variable time-step**
 - Due to the **high atomic velocities**.
 - **Sampling**
 - Due to the **chaotic nature** of the atomic collisions, important to gain a high level of sampling of PKA **energies**, initial **directions** of impact, **thermal vibrations**, atomic specie.
 - **Defect analysis**
 - Vacancy/Interstitial (Frenkel pairs), Anti-sites, Dislocations, Schottky defects
Recovery Phase

• Modelling the recovery phase is made significantly harder by the highly inhomogeneous nature of the residual lattice:
 ▶ After the ballistic phase, the remaining lattice is potentially highly disordered.
 - Frenkel pairs, voids, dislocations.
 ▶ The presence of impurities or fission products.
 - Bubble formation (H, He, Xe, Kr).
 ▶ Nuclear materials and fuels are typically complex and multi-component
 - Structural vacancies, partial occupancy (i.e. disordered Pyrochlores/Fluorites).
 - Interfaces or grain boundaries (ODS steels, fuel cladding).

• Removes the possibility of using on-lattice KMC due to the variation in local environment surrounding each defect.
Recovery Phase

- The recovery phase itself can be broken down into:
 - Transitions where the **end state is known**.
 - Examples:
 - Simple vacancy/interstitial hops.
 - Direct recombination.
 - Methods:
 - Climbing image NEB\(^1\), String methods
 - Transitions where the **end state is unknown**
 - Examples:
 - Complex defect migration.
 - Long range recombination.
 - Methods:
 - Dimer\(^2\), ART\(^3\), RAT\(^4\)
 - These techniques can also be used in on-the-fly KMC methods.
 - Migration and recombination pathways.

Application 1

Simulating radiation damage in Ga-stabilised Pu.
Simulating radiation damage in Ga-stabilised δ-Pu.

- Understanding the aging due to self-irradiation in fcc plutonium.
- FCC plutonium is unstable at RT so is alloyed with a small percentage of Ga (up to ~12%)

Aim

- To study the radiation response of Ga-stabilised Pu.
 - Cascade simulations, displacement threshold energy calculations
- To investigate the effect of Ga on defect diffusion.
 - Transitions barrier calculations and OTF-KMC of defect migration.

Tuesday, 27 March 2012
Application - Ga stabilised Pu

- Methodology:
 - MD cascades
 - Modified Embedded Atom Method (MEAM) for PuGa in LBOMD.
 - 0.2 - 10 keV PKA energies.
 - 10 lattices equilibrated to 300K for between 10-15 ps.
 - 12 PKA directions chosen from the FCC irreducible volume.
 - Thermal and periodic boundaries.
 - MD runs of 20 ps.
 - LTSD
 - Simple transitions, manual setup, MEP defined using CNEB.
 - Transition searches using Dimer/RAT methods
 - On-the-fly KMC - Dimer/RAT followed by CNEB

Application - Ga stabilised Pu

- **Lattice Structure**
 - FCC phase Pu with arbitrary 5% substitutional Ga.

 ![Ga-Pu lattice structure](image)

 Substitutional Ga lowers the PE of surrounding Pu matrix

- Ga ordering determined using lattice Monte Carlo
 - Results in no 1st nearest neighbour (1NN) Ga-Ga bonds

 ![Ga-Ga radial distribution function](image)

Impact on LTSD techniques - resultant crystal structure highly inhomogeneous
Application - Ga stabilised Pu

- A first look at the ballistic phase
- The effect of Ga on: Threshold displacement energy E_d.
 “Minimum energy required to displace an atom as to create a Frenkel (vacancy-interstitial) Pair”
 - Low energy cascades (< 200 eV) initiated in an irreducible volume.

- Overall increase in E_d for the Ga PKA
Application - Ga stabilised Pu

- Cascade Results

<table>
<thead>
<tr>
<th>Pu 5 at. % Ga 5 keV Cascades Defect Analysis</th>
<th>Ga</th>
<th>Pu</th>
<th>Mixed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacancies</td>
<td>1</td>
<td>298</td>
<td>N/A</td>
<td>299</td>
</tr>
<tr>
<td>Interstitials</td>
<td>2</td>
<td>303</td>
<td>N/A</td>
<td>305</td>
</tr>
<tr>
<td>Anti-Sites</td>
<td>123</td>
<td>131</td>
<td>N/A</td>
<td>254</td>
</tr>
<tr>
<td>Defect Categories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lone Interstitials</td>
<td>0</td>
<td>246</td>
<td>N/A</td>
<td>246</td>
</tr>
<tr>
<td>Lone Vacancies</td>
<td>0</td>
<td>250</td>
<td>N/A</td>
<td>250</td>
</tr>
<tr>
<td>Lone Anti-Sites</td>
<td>8</td>
<td>19</td>
<td>N/A</td>
<td>27</td>
</tr>
<tr>
<td>1NN Di-Vacancies</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2NN Di-Vacancies</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Tri-Vacancies</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1NN Di-Interstitials</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>2NN Di-Interstitials</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Tri-Interstitials</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1NN Di-Anti-Sites</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>2NN Di-Anti-Sites</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tri-Anti-Sites</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anti-site + Mono-Vacancies</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Anti-site + Mono-Interstitials</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Split-Interstitials</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Split-Vacancies</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Vacancy-Interstitials</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Unclassified Tri-Defects</td>
<td>0</td>
<td>3</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 6.1: Analysis of outlying defect clusters in Pu-Ga outside the core region after 3 pseudospinor cascades into Pu-Ga at 5 keV. Note the small number of Ga vacancies or interstitials yet the abundance of anti-site defects suggesting nearly all Ga displaced during the cascade finish occupying lattice sites.

Large build up of 1NN mixed specie anti-site defects.
- Interstitial barriers << vacancy barriers
- The creation of vacancies by the displacement of Ga atoms is highly unfavourable.
Application - Ga stabilised Pu

- On-the-fly KMC of Pu split-interstitial

- Due to the low energy barriers associated with split-interstitials, diffusion occurs quickly \simns.

- Defect migrates through a succession of Pu atomic replacements

- But what about the effect of the substitutional Ga? ...
Application - Ga stabilised Pu

- On-the-fly KMC of Pu split-interstitial

- Due to the low energy barriers associated with split-interstitials, diffusion occurs quickly ~ns.

- Defect migrates through a succession of Pu atomic replacements

- But what about the effect of the substitutional Ga? ...

Simulated time: 842.24 ns
Application - Ga stabilised Pu

- On-the-fly KMC of Pu split-interstitial

- By rendering the Ga-Pu polyhedra, it becomes clear that the interstitial migration is confined to Pu rich regions.
Application - Ga stabilised Pu

- On-the-fly KMC of Pu split-interstitial

- By rendering the Ga-Pu polyhedra, it becomes clear that the interstitial migration is confined to Pu rich regions.
Application - Ga stabilised Pu

- On-the-fly KMC of Pu mono-vacancy.
 - The same is also true for vacancy migration, with the migration pathway avoiding Ga-rich regions.
 - As the lowest energy barriers for vacancy transitions are higher than interstitial, the time scale for migration is significantly increased.
Conclusions:

- We have built up a picture of radiation damage in Ga-stabilised Pu, showing the effect of Ga on:
 - Ballistic phase - Threshold displacement energies.
 - Higher value of E_d for the Ga PKA.
 - Ballistic phase - Cascade damage.
 - No outlying Ga defects
 - Build up of 1NN ‘anti-sites’ i.e. Pu-Ga switching during the cascade
 - Recovery phase - Transition barriers.
 - High energy barriers associated with introducing vacancies and interstitials intro Ga rich regions.
 - Recovery phase - Diffusion mechanisms.
 - Pu defect migrations is confined to Pu-rich zones, bounded by Ga-Pu polyhedra.

Todo: Cascade overlap, effect of GB, varying at.% Ga, migration of complex defect structures. - requires robust LTSD methods!
Application 2

The effect of structure on radiation damage: A case study in TiO$_2$
Application - TiO$_2$

- **Rutile** application as a nuclear waste form, i.e. Synroc, and has a high tolerance to radiation damage.

- The **Anatase** and **Brookite** polymorphs behave differently with **Anatase** exhibiting a much higher susceptibility to radiation damage.

Tuesday, 27 March 2012
Application - Ga stabilised Pu

Aim

- To study the low energy radiation response of the low pressure polymorphs of TiO$_2$
 - Reproduce trends found in experiments.
 - Investigate the atomic level differences in radiation response.

- A transferable and generalised method of simulation and analysis of low energy radiation events.
 - As a method of calculating the threshold displacement energy, E_d.
 - To determine defect production mechanisms and recovery processes.
 - Quantitative insight into resultant defect structures.
 - To generate comparable results between crystal structures and/or potentials.
Methodology:

- **MD cascades**
 - **Matsui-Akaogi (MA)** buckingham potential\(^1\) with ZBL in the DL_POLY3 MD code.
 - Low energy cascades < 200 eV.
 - 10 lattices equilibrated to **300K** for between 10-15 ps.
 - 100 PKA directions chosen from a **uniform spherical distribution**.
 - Thermal and periodic boundaries.
 - MD runs of **20 ps**.

- **LTSD**
 - Simple transitions, manual setup, MEP defined using CNEB.
 - Transition searches using Dimer/RAT methods
 - On-the-fly KMC - Dimer/RAT followed by CNEB

\(^1\) M. Matsui and M. Akaogi, Molecular Simulation 6, 239-244 (1991).
One of the goals was to produce a **generalized and transferable** methodology to study initial defect formation and extracting quantities such as threshold displacement energy E_d.

- Main area to automate: the determination of **PKA directions**

The Thomson Problem

"Minimum energy configuration of point charges on the surface of a conducting sphere"

No analytical solution for large N, requires **numerical constrained minimisation**.
One of the goals was to produce a **generalized and transferable** methodology to study initial defect formation and extracting quantities such as threshold displacement energy E_d.

- Main area to automate: the determination of **PKA directions**

The Thomson Problem

"Minimum energy configuration of point charges on the surface of a conducting sphere"

No analytical solution for large N, requires **numerical constrained minimisation**.
• Finding solutions to the Thomson Problem.
 ▶ Steepest Decent
 ▶ MD
 ▶ Conjugate Gradient
 ▶ Broyden–Fletcher–Goldfarb–Shanno (BFGS & LBFGS)

• Exponential Increase in local minima as N increases
 ▶ Requires basin-hopping techniques to find global minima.
Application - TiO$_2$

- Finding solutions to the Thomson Problem.
 - Steepest Decent
 - MD
 - Conjugate Gradient
 - Broyden–Fletcher–Goldfarb–Shanno (BFGS & LBFGS)

- Exponential Increase in local minima as N increases
 - Requires basin-hopping techniques to find global minima.
Relax and thermalise \(N_l \) lattices to \(T \) Kelvin.

Determine unique PKAs: \((\text{Ti, O}_1, \text{O}_2)\)

Choose \(E_{\text{min}}, E_{\text{max}} \) and step size \(\Delta E \).

Generate \(N_d \) PKA directions from solutions to the Thomson Problem

In each lattice, for each unique PKA, energy and direction, run MD collision cascades for \(t \) ps.

Analysis of recovery time as a function of PKA energy/specie

Transition searches / OTF-KMC

Post analysis: DFP, FP separations ...

On-the-fly analysis: Frenkel pairs, replacements ...

Application - \(\text{TiO}_2 \)
The importance of high sampling to generate representative results

- Defect formation probability (DFP) - The probability of defect formation at a given PKA energy over all directions and lattices.

*Error bars represent 95% confidence interval in SEM
Application - TiO_2

- Quantitative analysis of the ballistic phase:
 - DFP as a function of PKA energy

Rutile

\[
DFP(E_{pka}) = \begin{cases}
\frac{1}{\beta}(E_{pka}^\alpha - E_d^\alpha) & \text{if } E_{pka} > E_d \\
0 & \text{if } E_{pka} \leq E_d
\end{cases}
\]

<table>
<thead>
<tr>
<th>Polymorph</th>
<th>O PKA</th>
<th>Ti PKA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_d)</td>
<td>(E_{0.5})</td>
</tr>
<tr>
<td>Rutile</td>
<td>19</td>
<td>201</td>
</tr>
<tr>
<td>Brookite</td>
<td>19</td>
<td>105</td>
</tr>
<tr>
<td>Anatase</td>
<td>15</td>
<td>121</td>
</tr>
</tbody>
</table>

*Energies in eV

*\(E_{0.5}\) - the energy required to achieve 50% DFP

- Defect formation is **probabilistic over a large energy range**, up to at least 300-400 eV.
- Although the \(E_d\) is lower for O, defect formation is more probable from Ti displacements at higher energies.
- **Defect formation requires more energy** in Rutile over the energy range studied - particularly from Ti PKAs.
Application - TiO2

- Taking an in-depth look into Rutile - Defect cluster analysis

- Highlights the differences in sublattice response.
- Provides a good foundation for studies of defect migration and FP recombination \textit{i.e.} KMC

Tuesday, 27 March 2012
• **DFP** categorised by the **atomic specie** of the defects.

Across all polymorphs

- Predominantly **O defects** created by **O PKAs**.
- Even proportion of **Ti and O defects** from **Ti PKAs**

• **Implications for TRCS** (or other methods that rely on anion vacancies)
 - Method traditionally only detects **first emission** i.e. **O defects from O PKAs**
 - Second emission relating to **O defects from Ti PKAs**.
 - *Only if energy gap is sufficiently large*
Application - TiO$_2$

- Quantitative analysis of the ballistic phase - Comparison with experiment:
 - Experimental values of E_d for the O PKA are significantly lower than observed from the MD simulations, for example:
 - TEM
 - ~ 33 eV1
 - TRCS (Time-resolved Cathodoluminescence Spectroscopy)
 - ~ 39 eV rutile 45-50 eV for other oxides2.

- Reasons for discrepancies
 - TEM
 - Relies on observable defect structures (saturation of point defects)
 - Always overestimate E_d.
 - TRCS
 - Displaces O atoms with electron beam - observes decay of excited F-centers.

Tuesday, 27 March 2012
Application - TiO$_2$

- What can happen in 25 ns? (Rutile)
 - Simple O Frenkel pair annihilation - separation around 4 Å

- At small separations O FP recombination occurs on the ps time scale.
- At what separation do we see a marked increase in FP recombination barrier?
Application - TiO$_2$

- What can happen in 25 ns? (Rutile)
 - Simple O Frenkel pair annihilation - separation around 4 Å

- At small separations O FP recombination occurs on the ps time scale.
- At what separation do we see a marked increase in FP recombination barrier?

Single barrier process 0.07 eV
O Frenkel pair annihilation - separation of around 6 Å.

Migration along the c-axis

Single barrier process 0.18 eV
Application - TiO$_2$

- O Frenkel pair annihilation - separation of around 6 Å.

Migration along the c-axis

Single barrier process 0.18 eV
Application - TiO$_2$

- O Frenkel pair annihilation - separation of around 6 Å.

Migration along the c-axis

Single barrier process 0.18 eV
Mechanism of O split-interstitial migration in rutile

- Migration through the shared edge of the polyhedra along the c direction (z axis).

• TODO: Is this migration possible in anatase and brookite?
In the presence of a local vacancy, the mechanism has a very low single barrier for annihilation.

- In bulk the transition is a two stage process with barriers around 0.12 eV.

- 0.12 eV

- CNEB

- 0.16 eV

Tuesday, 27 March 2012
In the presence of a local vacancy, the mechanism has a very low single barrier for annihilation.

In bulk the transition is a two stage process with barriers around 0.12 eV.
In the presence of a local vacancy, the mechanism has a very low single barrier for annihilation.

In bulk the transition is a **two stage process** with barriers around 0.12 eV.

![Graph showing energy vs separation with a peak at 0.16 eV](image)
In the presence of a local vacancy, the mechanism has a very low single barrier for annihilation.

- In bulk the transition is a two stage process with barriers around 0.12 eV.

![Diagram of TiO₂ structure and energy levels](image)
Application - TiO$_2$

- In contrast, Ti octahedral interstitials migrate at much higher barrier down the Z-axis channels.
 - Migration passes through 2 symmetrically equivalent octahedral sites with a barrier of 0.85 eV.

- Unlike the O split-interstitials that migrate through a concerted motion, the mechanism for the Ti interstitial is a simple linear transition.
Current conclusions:

- **Ballistic phase - Displacement threshold energy**
 - Reiterates the probabilistic nature of defect formation at low energy
 - \(O\) values of \(E_d\) were found to be lower than experimental, but can be attributed to low energy recombination barriers.

- **Ballistic phase - Quantitative defect cluster analysis**
 - Different response from each sublattice, \(O\) PKA generates strictly \(O\) defects, Ti PKA produces a multitude of defects
 - Representative defect proportions useful for future long time scale simulations

- **Recovery phase - Transition barriers / Diffusion mechanisms**
 - Relatively long range and low barrier \(O\) FP recombination transitions.
 - \(O\) split-interstitial migration along the rutile c-axis, with very low energy barriers.

TODO:

- The effect of the connectivity of the \(\text{TiO}_6\) polyhedra on defect migration:
 - Is migration impeded by change from edge to corner sharing?
 - Is the presence of the z-axis channel in rutile the main factor behind its increase in tolerance?

- Full scale OTF-KMC in each polymorph on the resultant defect clusters - particularly the di-vacancies and di-interstitials.
Requirements for Future Work

- A robust method of accessing time-scales beyond MD.
 - Automated
 - Handle multiple complex defect structures
 - Highly disordered lattices
 - Large systems (as PKA energy increases)

Thanks to ...