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A simple fact: Nature works on disparate time

scales

Riiiite A direct manifestation: In nature, dynamics often proceed in the

simulations of
rare events form of rare events.
using the
gentlest
ascent

@ Focus : exploring a smooth energy surface for local minima,
dynamics saddles starting from one initial point

Amit Samanta

@ Goal : set of dynamical equations that converge to saddle points

Rare events
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@ Goal : set of dynamical equations that converge to saddle points

© Challenge :

@ problem nonlocal in nature but only local information available
(1-form Fokker Planck, Witten Laplacian, etc not useful)

@ follow minimum eigenmode close to saddle point - but can easily
become unstable (degenerate eigenvalues)

@ how to move out of basin of attraction - need better sampling
techniques
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@ no global convergence
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@ Goal : set of dynamical equations that converge to saddle points

© Challenge :

@ problem nonlocal in nature but only local information available
(1-form Fokker Planck, Witten Laplacian, etc not useful)

@ follow minimum eigenmode close to saddle point - but can easily
become unstable (degenerate eigenvalues)

@ how to move out of basin of attraction - need better sampling
techniques

Rare events

@ no global convergence

@ System dimensions : Lennard-Jones cluster (LJ,)

@ n = 4 atoms, 6 saddle points!
@ n = 10 atoms, > 160, 000 saddle points!

1 J. P. Doye and D. J. Wales, J. Chem. Phys. (2002)



Many transition events : Nanoindentation
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N Tungsten, indenter ndenter tp ocation
using the Diamond, Boron nitride, N
gentlest Aluminium nitride —> 1 indenter
ascent Material whose "
dynamics hardness is to be substrate substrate
measured

\ S N
Amit Saman Measured quantities:- indentation load (P), indentation depth ()

Important Parameters:- indentation rate, indenter tip radius (R), elastic modulus,
temperature Heterogenous

Rare events
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dynamics

x=F(x)—2(F,n)n
n = —Hn + (n,Hn) n
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Lemma:The stable fixed points of this dynamics are the index-1 saddle
points of V . (Local minima of V are saddle points of GAD)

W. E and X. Zhou, Nonlinearity (2011)
A. Samanta and W. E, J Chem Phys (2012)
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Lemma:The stable fixed points of this dynamics are the index-1 saddle
points of V . (Local minima of V are saddle points of GAD)

Energy

Reaction coornate

shallow wells change in stability
@ simple, amendable to mathematical analysis, can be extended to higher
index saddles, non-gradient systems, efficient numerical schemes

W. E and X. Zhou, Nonlinearity (2011)
A. Samanta and W. E, J Chem Phys (2012)



Convergence to One Saddle Point
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dynamics

Amit Samanta 2-dimensional example : V (x,y) = sin (7x) sin (7y)

@ randomly initialized
direction vector

@ time step important

@ guess direction determines
convergence




Configuration Space Density Distribution
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randomly initialized direction vector
System spends considerable amount of time near saddle points.



Variants: MD-GAD
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incorporate thermostat, barostat

A. Samanta and W. E, J Chem Phys (2012)
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Ad-atom diffusion on (111) surface of Cu
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ad-atom on Cu surface coordination number coloring

Simulation details :
Ad-atom

diffusion @ Copper thin-film, 120 atoms, (111) free surface on top

@ periodic boundary conditions along other directions
@ interatomic potential - Embedded Atom Model (EAM)
o E=3" 1 Epair (Vi) + 2_; Eembed (i)
o Elastic constants, lattice parameter, cohesive energy,
stacking fault energy, etc. used for fitting

Y. Mishin, et al., Phys. Rev. B (2001)
A. Samanta and W. E, J Chem Phys (2012)



Ad-atom diffusion on (111) surface of Cu :

initialization problem

Atomistic How to initialize direction vector for high dimensional PES?

simulations of
rare events

Using the @ random vector - less informed

gentlest H . .

e @ eigen vectors of Hessian - expensive

dynamics @ select important degrees of freedom - permute them to obtain
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guess directions

Ad-atom
diffusion

Eigenvalue

A. Samanta and W. E, J Chem Phys (2012)
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Ad-atom
diffusion

Hessian

Eigenvalue

lowest eigen-modes of Hessian
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A. Samanta and W. E, J Chem Phys (2012)
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Ad-atom diffusion on (111) surface of Cu :
collection of saddle points
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Ad-atom
diffusion

Ad-atom diffusion on (111) surface of Cu :
collection of saddle points

Atoms involved in transition events are colored in grey

Cu thin-film 120 atoms, EAM potential (Mishin et al.)
Selectively initialized direction vector



Ad-atom diffusion on (111) surface of Cu :
MD-GAD
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Ad-atom
diffusion

A. Samanta and W. E, J Chem Phys (2012)




Ad-atom diffusion on (111) surface of Cu :
MD-GAD
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Ad-atom
diffusion

Copper sample, 120 atoms, 6 (111) layers
Embedded Atom Model potential
Selectively initialized direction vector

A. Samanta and W. E, J Chem Phys (2012)



Variants: finding high index saddles

Atomistic

SRCEEEEl  Auxiliary variable = a k-dimensional subspace spanned by

rare events

NN vectors {n1,na, -, g} N =(ng,-- k)
ascent

dynamics
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x=-VV(x) +2Z(VV(x),nj)nj

. N=—V2V (x) N+ NA
diffusion

A is a Lagrange multiplier matrix for the constraint NTN = /.

The stable fixed points of this dynamics are the index-k saddle
points of V

A. Samanta and W. E, J Chem Phys (2012)



Variants: Quasi-Newtonian scheme
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Quask_ If « = —sign (A1) and 0 < v < 1, then, the stable fixed points
of this dynamics are the index-1 saddle points of V

e modify Hessian to overcome singularities : H + SgFFT

@ Update Hessian using Sherman-Morrison,
Davidon-Fletcher-Powell schemes



Variants: Quasi-Newtonian scheme

Atomistic
simulations of
rare events _ 1 T
using the _ — _ -
gentlest pk - Hk Pka) Pk — (l Vnknk)
ascent

dynamics xk+]_ = Xk + akpk

Amit Samanta n’; — Fl;ilnk, nk+1 — n*/”n*”
A;}d = "k+1|:|;i1"k+1,
a1 = —sign (A1)

Quasi-

Newtonian @ Accurate Hessian : quadratic rate of convergence
@ Approximate Hessian : superlinear rate of convergence

@ Adaptive time step can yield superlinear convergence in
GAD




Convergence problem : Muller potential
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X
@ degenerate eigenvalues
o failure to converge to relevant saddle point
@ one possible solution : rank-1 update H + SoFFT



Conclusions

Atomistic . . . . . . . .
bS8 Exploring high dimensional configuration space is an issue of

rare events

using the general interest.

gentlest

dyajgen:itcs @ Finding saddles, local minima
o use MD-GAD, Stochastic GAD, Deterministic GAD
@ Global optimization
o Couple with simulated annealing, parallel tempering
© Model reduction

o Phase field model - information about saddle configuration

Amit Samanta

© Mapping out topology of energy surface

Conclusions

GAD and its variants will help us to do these.

@ local convergence
@ sampling of initial direction vectors

o efficient numerical scheme
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Thankyou for your time!

Questions? J

Conclusions
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