Fluctuations in Regular and Chaotic Many-Body Systems

Sven Åberg, Lund University, Sweden

International Workshop on
Chaos and Collectivity in Many-Body Systems
March 5-8, 2008

Scientific coordination:

Mahir S. Hussein MPI für Physik komplexer Systeme

Dresden, Germany
Organisation:
Marita Schneider
MPI für Physik komplexer Systeme

Dresden, Germany

Fluctuations in many-body systems

>Fluctuations of energy (or BCS gap) as a parameter is changed: Parameter: shape, number of particles, etc.

- Many-body systems:
- Atomic nuclei
- Ultracold gases of Fermionic/bosonic atoms
- Metallic grains
-Quantum dots
$>$ Role of dynamics: order/chaos

Fluctuations in Regular and Chaotic Many-Body Systems

I. Introduction:

(a) Quantum chaos in one-body and many-body systems
II. Fluctuations of shell energy
(a) Ground-states in nuclei - nuclear masses
(b) Ground-states in ultracold gases of atoms: bosonic/Fermionic
III. Fluctuations of BCS pairing gap
(a) Atomic nuclei
(b) Nanosized metallic grains
(c) Ultracold Fermionic gases

1. One-body system:

Dynamics determined by potential V_{1}
Billiards,
H -atom in B-field

Classical chaos - quantum chaos established

$$
H=\sum_{i} H_{i}, \quad \begin{gathered}
H_{i}=T_{i}+V_{i} \\
\text { Ground states of }
\end{gathered}
$$

many-body systems: Nuclei, metallic grains, ultracold Fermi gases
2. Many-body system:
V_{i} self-consistent mean field. Determines dynamics.

Classical chaos - quantum chaos established

3. Interacting many-body system: $H=\sum_{i} H_{i}+1 / 2 \sum_{i, j} W(i, j), ~$
$W(i, j)$ residual interaction $W(i, j)$ residual interaction

What determines dynamics, mean field V_{i} or res. int. $W(i, j)$?

Classical chaos - quantum chaos not established

II. Non-interacting particles in mean field: - Many-body ground states

Periodic orbit theory for non-interacting many-body system [1]

Using the expression for the fluctuating part of level density:

$$
\rho_{\text {osc. }}=2 \sum_{\text {periodic orbits }, p} \sum_{r=1}^{\infty} A_{p, r} \cdot \cos \left(r S_{p} / \hbar+v_{p, r}\right)
$$

the fluctuating part of the total energy for A particles is obtained:

$$
E_{\mathrm{osc}}(\mathrm{~A})=\int_{0}^{e_{\mathrm{F}}} e \rho_{\mathrm{osc}}(e) d e=2 \hbar^{2} \sum_{p} \sum_{r=1}^{\infty} \frac{A_{p, r}}{r^{2} \tau_{p}^{2}} \cos \left(r S_{p} / \hbar+v_{p, r}\right)
$$

The second moment of $\mathrm{E}_{\text {osc. }}$ can be evaluated: $\left\langle E_{\text {osc. }}^{2}\right\rangle=\frac{\hbar^{2}}{2 \pi^{2}} \int_{0}^{\infty} \frac{d \tau}{\tau^{4}} K_{D}(\tau)$
where K is the spectral form factor (Fourier transform of 2-point corr. function):

$$
\begin{aligned}
& E_{\text {regular }}^{R M S}=\sqrt{<E_{\text {regular }}^{2}>}=\sqrt{\frac{\hbar^{2}}{6 \pi^{2}} \frac{\tau_{H}}{\tau_{\text {min }}^{3}}} \\
& E_{\text {chaos }}^{R M S}=\sqrt{<E_{\text {chaos }}^{2}>}=\sqrt{\frac{\hbar^{2}}{2 \pi^{2}} \frac{1}{\tau_{H}^{2}}}
\end{aligned}
$$

$\tau_{\text {min }}$: shortest periodic orbit
$\tau_{\mathrm{H}}:$ Heisenberg time, h / δ
[1] P. Leboeuf and A.G. Monastra, Ann of Phys 297, 127 (2002)

II.a Ground-states of atomic nuclei - nuclear masses

Nuclear mass: $m(N, Z) / c^{2}=N m_{n}+Z m_{p}-\left(E_{\text {L.D. }}+E_{\text {shell }}+E_{\text {error }}\right)$

Autocorrelations in error in mass formuale [1]

$$
C(x)=\left\langle E\left(A-x_{N} / 2\right) E\left(A+x_{N} / 2\right)\right\rangle
$$

Chaotic energy is not random but strongly correlated!

Supports the idea of a chaotic component in ground state
[1] H. Olofsson. S. Åberg, O. Bohigas and P. Leboeuf, Phys. Rev. Lett. 96 (2006) 042502.

II.b Ground states of ultracold gases of atoms

Trapped quantum gases of bosons or fermions

$T \approx 0$

Degenerate fermi gas

Dilute gas confined in V :

$$
H=\sum_{i=1}^{N}\left(\frac{p_{i}^{2}}{2 m}+V\left(r_{i}\right)\right)+4 \pi \frac{\hbar^{2} a}{m} \sum_{i<j} \delta^{(3)}\left(r_{i}-r_{j}\right)
$$

S-wave scattering length, a, can be experimentally controlled both in size and in sign.

Constants: $\quad g \equiv 2 \pi \frac{a}{a_{o s c}} \quad \hbar=m=a_{o s c}=1$

Bosonic atoms in harmonic confinement, repulsive interaction ($a>0$)

Effective interaction approach to the many-boson problem

N spinless bosons in a 2D harmonic confinement interacting via short-range int. with strength g.
Effective interaction derived from Lee-Suzuki method.

$$
\mathbf{L}=0 \quad N=9 \quad \mathbf{L}=9
$$

Cutoff energy in Fock space

- Method works well for strong correlations
- Ground-state AND excited states
- All angular momenta
J. Christensson, Ch. Forssén, S. Åberg and S. Reimann, arXiv:0802.2811

Fermionic atoms in harmonic confinenment,
repulsive interaction $(a>0)$

Hartree-Fock approximation
Shell energy: $E_{\text {osc }}=E_{\text {tot }}-E_{a v}$

Shell energy vs particle number for pure H.O.
$\mathrm{g}=0$

Super shell structure observed for $\mathrm{g}>0$ [1]

Two close-lying frequencies give rise to the beating pattern: circle and diameter periodic orbits

Effective potential: $\quad V_{\text {eff }}=1 / 2 \omega_{\text {eff }} r^{2}+1 / 4 \varepsilon r^{4}$
[1] Y. Yu, M. Ögren, S. Åberg, S.M. Reimann, M. Brack, PRA 72, 051602 (2005)

Fluctuations of shell energy

Semiclassical calculation of energy fluctuation

Strong suppression of fluctuations from HO, to generic regular, to chaotic

[^0]

III Fluctuations of pairing gap [1]: Role of regular/chaotic dynamics?

[1] H. Olofsson, S. Åberg and P. Leboeuf, Phys. Rev. Lett. 100, 037005 (2008)

III.a BCS pairing gap in nuclei -Odd-even mass difference

Pairing gap from different mass models

Average behavior in agreement with exp. but very different fluctuations

Pairing gap $\Delta_{3}{ }^{\text {odd }}$ from different mass models

Mass models all seem to provide pairing gaps in good agreement with exp.

Fluctuations of the pairing gap

But large deviations in fluctuations of pairing gap

BCS theory

Hamiltonian: $\quad H=\sum_{k} e_{k} a_{k}^{+} a_{k}-G \sum_{k l} a_{k}^{+} a_{\bar{k}}^{+} a_{\bar{l}} a_{l}$
Mean field approximation (in pairing space):
Pairing gap ("pairing deformation"):

$$
\Delta=\left\langle G \sum_{k} a_{k}^{+} a_{\bar{k}}^{+}\right\rangle
$$

$\begin{aligned} & \begin{array}{l}\text { is determined by } \\ \text { gap equation: }\end{array}\end{aligned} \frac{2}{G}=\sum_{\mu} \frac{1}{\sqrt{\left(e_{\mu}-\lambda\right)^{2}+\Delta^{2}}} \rightarrow \int_{-L}^{L} \frac{\rho(e) d e}{\sqrt{e^{2}+\Delta^{2}}}$

Periodic orbit description of pairing

Divide pairing gap in smooth and fluctuating parts:

$$
\Delta=\bar{\Delta}+\widetilde{\Delta}
$$

Insert into gap equation and assuming $\bar{\Delta} \ll L$

$$
\bar{\Delta} \approx 2 L \exp \left(-\frac{1}{\bar{\rho} G}\right)
$$ Expand to lowest order in fluctuations gives

$$
\tilde{\Delta}=2 \frac{\bar{\Delta}}{\bar{\rho}} \sum_{p, r} A_{p, r} K_{0}\left(r \tau_{p} / \tau_{\Delta}\right) \cos \left(r S_{p}(e) / \hbar+v_{p, r}\right)
$$

where
$\tau_{\Delta}=\frac{h}{2 \pi \bar{\Delta}}$ is "pairing time" τ_{p} is period time of periodic orbit p

$$
\begin{array}{ll}
K_{0}(x)=\int_{0}^{\infty} \frac{\cos (x t)}{\sqrt{1+t^{2}}} d t \\
\rightarrow \exp (-x) / \sqrt{x}, \mathrm{x} \gg 1 & \begin{array}{l}
\text { i.e. no contribution } \\
\text { orbits with }
\end{array} \\
\tau_{p} \gg \tau_{\Delta}
\end{array}
$$

Fluctuations of pairing - simple expressions

Fluctuations of pairing, expressed in single-particle mean level spacing, δ :

$$
\sigma=\sqrt{\left\langle\tilde{\Delta}^{2}\right\rangle} / \delta
$$

If regular: $\quad \sigma_{r e g}^{2}=\frac{\pi}{4} \frac{\bar{\Delta}}{\delta} F_{0}(D)$
If chaotic:

$$
\sigma_{c h}^{2}=\frac{1}{2 \pi^{2}} F_{1}(D)
$$

where $\quad F_{n}(D)=1-\frac{\int_{0}^{D} x^{n} K_{0}^{2}(x) d x}{\int_{0}^{\infty} x^{n} K_{0}^{2}(x) d x}$

where $\mathbf{D}=\tau_{\text {min }} / \tau_{\Delta}$

Or, dimensionless ratio:
Size of system:
Correlation length of Cooper pair:
$\mathrm{D}=\mathbf{2 R} / \xi_{0}$ 2R
$\xi_{0}=\hbar v_{\mathrm{F}} / 2 \Delta$

Universal/non-universal fluctuations

$$
\begin{aligned}
& D=\frac{\tau_{\min }}{\tau_{\Delta}}=\frac{2 \pi}{g} \frac{\bar{\Delta}}{\delta} \\
& g=\frac{\tau_{H}}{\tau_{\min }} \quad \text { "dimensionless conductance" }
\end{aligned}
$$

Non-universal spectrum fluctuations for energy distances larger than g :

> Random matrix limit: $g \rightarrow \infty$ (i.e. $D=0$) corresponding to pure GOE spectrum (chaotic) or pure Poisson spectrum (regular)

Fluctuations of pairing in nuclei

Size of D:
Size of system: $\quad 2 R=2 * 1.2 \mathrm{~A}^{1 / 3} \mathrm{fm}$
Pairing length: $\quad \xi_{0}=\hbar \mathrm{v}_{\mathrm{F}} / 2 \Delta=11.3 \mathrm{~A}^{-1 / 4} \mathrm{fm}$

$$
\Rightarrow \quad D=2 R / \xi_{0}=0.22 A^{1 / 12}=0.27-0.33 \quad(A=25-250)
$$

Cooper pairs non-localized in nuclei

Fluctuations of nuclear pairing gap

Fluctuations of nuclear pairing gap from mass models

III.b Pairing fluctuations in nanosized metallic grains

- Discrete exc. spectrum

Work by D.C. Ralph, C.T. Black and M. Tinkham, PRL 74, 3241 (1995); PRL 76, 688 (1996)

- Irregular shape of grain \Rightarrow chaotic dynamics
- No symmetries - only time-rev. symm.
- Energy level statistics described by GOE
- Excitation gap - pairing gap ($\gg \delta$) observed for even N
- Applied B-field \Rightarrow gap disappears

$$
\mathrm{N} \sim 10^{3}-10^{5}
$$

$$
\bar{\Delta} \approx 0.38 \times 10^{-3} \mathrm{eV} \quad \delta=2.1 / N \mathrm{eV}
$$

$$
\mathrm{D}=\frac{2 R}{\xi_{0}}=\frac{2 \pi}{5.5} N^{1 / 3} \bar{\Delta} \approx 0.004-0.02 \Rightarrow \mathrm{~F}_{1} \approx 1
$$

\Rightarrow Universal pairing fluctuations: $\sigma_{c h}^{2}=\frac{1}{2 \pi^{2}} \quad$ (GOE limit)

III.c Pairing fluctuations in ultracold fermionic gases

In dilute BCS region: $\bar{\Delta} / \delta=(2 / e)^{7 / 3} \frac{3 N}{2} \exp \left(-\frac{\pi}{2 k_{F}|a|}\right)$
(attractive interaction $\mathbf{g}<\mathbf{0}$)

$$
D=\frac{2 R}{\xi_{0}}=2 \pi(2 / e)^{7 / 3}(3 N)^{1 / 3} \exp \left(-\frac{\pi}{2 k_{F}|a|}\right)
$$

Recent experiments [1] using ${ }^{6} \mathrm{Li}$ reach $\mathrm{k}_{\mathrm{F}}|a|=0.8$ and about 100000 atoms gives $\Delta / \delta=100000, D=60$ and:
negligible fluctuations of the pairing gap
However, for example, for $k_{F}|a|=0.2$ and 50000 atoms gives $\Delta / \delta=12, D=0.06$ and:

$$
\frac{\Delta}{\bar{\Delta}}=1 \pm 0.24 \quad \text { for regular system } \quad \frac{\Delta}{\bar{\Delta}}=1 \pm 0.02 \quad \text { for chaotic system }
$$

Making the system chaotic strongly supresses pairing fluctuations!

[1] C.H. Schunck et al, PRL 98 (2007) 050404

SUMMARY

I. Mixture of chaos in nuclear ground state. Supported by energy statistics, errors in masses and correlation measures.
II. Effective interaction scheme (Lee-Suzuki) works well for many-body boson system
III. Ultracold Fermionic gases show supershell structure in harmonic confinement. Energy fluctuations strongly supressed in generic regular and chaotic systems
IV. Fluctuations of BCS gaps in nuclei well described by periodic orbit theory. Regular part masks possible chaotic mixture.
V. Non-universal corrections to BCS fluctuations important - beyond random matrix theory.

[^0]: M. Puig von Friesen, M. Ögren and S. Åberg, PRE 76, 057204 (2007)

