Fluctuations in Regular and Chaotic Many-Body Systems

Sven Åberg, Lund University, Sweden

International Workshop on Chaos and Collectivity in Many-Body Systems

March 5 - 8, 2008

Scientific coordination:

Mahir S. Hussein MPI für Physik komplexer Systeme Dresden, Germany

Organisation:

Marita Schneider MPI für Physik komplexer Systeme Dresden, Germany

Fluctuations in many-body systems

Fluctuations of energy (or BCS gap) as a parameter is changed: Parameter: shape, number of particles, etc.

>Many-body systems:

➡ •Atomic nuclei

- •Ultracold gases of Fermionic/bosonic atoms
- •Metallic grains

•Quantum dots

>Role of dynamics: order/chaos

Fluctuations in Regular and Chaotic Many-Body Systems

I. Introduction:

- (a) Quantum chaos in one-body and many-body systems
- **II.** Fluctuations of shell energy
 - (a) Ground-states in nuclei nuclear masses
 - (b) Ground-states in ultracold gases of atoms: bosonic/Fermionic
- **III. Fluctuations of BCS pairing gap**
 - (a) Atomic nuclei
 - (b) Nanosized metallic grains
 - (c) Ultracold Fermionic gases

1. One-body system:

$$H_1 = T_1 + V_1$$

i

Billiards, H-atom in B-field

Classical chaos - quantum chaos established

Dynamics determined by potential V_1

2. Many-body system:

 V_i self-consistent mean field. Determines dynamics.

$$H = \sum H_i, \quad H_i = T_i + V_i$$

Ground states of many-body systems: Nuclei, metallic grains, ultracold Fermi gases

W(1,2)

Classical chaos - quantum chaos established

3. Interacting many-body system:
$$H = \sum_{i} H_{i} + \frac{1}{2} \sum_{i,j} W(i,j)$$

 $W(i,j)$ residual interaction

What determines dynamics, mean field V_i or res. int. $W(i_j)$?

Excited states of many-body systems

Classical chaos - quantum chaos not established

II. Non-interacting particles in mean field:Many-body ground states

Periodic orbit theory for non-interacting many-body system [1]

Using the expression for the fluctuating part of level density:

$$\rho_{osc.} = 2 \sum_{\text{periodic orbits, } p} \sum_{r=1}^{\infty} A_{p,r} \cdot \cos(rS_p / \hbar + v_{p,r})$$

the fluctuating part of the total energy for A particles is obtained:

$$E_{\rm osc}(A) = \int_{0}^{e_{\rm F}} e\rho_{osc}(e)de = 2\hbar^{2}\sum_{p}\sum_{r=1}^{\infty}\frac{A_{p,r}}{r^{2}\tau_{p}^{2}}\cos(rS_{p}/\hbar + v_{p,r})$$

The second moment of $E_{\rm osc.}$ can be evaluated: $\left\langle E_{\rm osc.}^{2} \right\rangle = \frac{\hbar^{2}}{2\pi^{2}}\int_{0}^{\infty}\frac{d\tau}{\tau^{4}}K_{D}(\tau)$

where K is the spectral form factor (Fourier transform of 2-point corr. function):

[1] P. Leboeuf and A.G. Monastra, Ann of Phys 297, 127 (2002)

$$E_{regular}^{RMS} = \sqrt{\langle E_{regular}^2 \rangle} = \sqrt{\frac{\hbar^2}{6\pi^2} \frac{\tau_H}{\tau_{\min}^3}}$$
$$E_{chaos}^{RMS} = \sqrt{\langle E_{chaos}^2 \rangle} = \sqrt{\frac{\hbar^2}{2\pi^2} \frac{1}{\tau_H^2}}$$

 τ_{min} : shortest periodic orbit τ_{H} : Heisenberg time, h/ δ

II.a Ground-states of atomic nuclei – nuclear masses

Nuclear mass: $m(N,Z)/c^2 = Nm_n + Zm_p - (E_{L.D.} + E_{shell} + E_{error})$

Autocorrelations in error in mass formuale [1]

Chaotic energy is *not* random but strongly correlated!

Supports the idea of a chaotic component in ground state

[1] H. Olofsson. S. Åberg, O. Bohigas and P. Leboeuf, Phys. Rev. Lett. 96 (2006) 042502.

II.b Ground states of ultracold gases of atoms

Trapped quantum gases of bosons or fermions

Dilute gas confined in V:

$$H = \sum_{i=1}^{N} \left(\frac{p_i^2}{2m} + V(r_i) \right) + 4\pi \frac{\hbar^2 a}{m} \sum_{i < j} \delta^{(3)}(r_i - r_j)$$

S-wave scattering length, *a*, can be experimentally controlled both in size and in sign.

Constants:
$$g \equiv 2\pi \frac{a}{a_{osc}}$$
 $\hbar = m = a_{osc} = 1$

Bosonic atoms in harmonic confinement, repulsive interaction (a>0)

Effective interaction approach to the many-boson problem

N spinless bosons in a 2D harmonic confinement interacting via short-range int. with strength g. Effective interaction derived from Lee-Suzuki method.

J. Christensson, Ch. Forssén, S. Åberg and S. Reimann, arXiv:0802.2811

Fermionic atoms in harmonic confinenment, repulsive interaction (a > 0)

N Fermionic atoms in harmonic trap - Repulsive interaction

Shell energy: $E_{osc} = E_{tot} - E_{av}$

Super shell structure observed for g>0 [1]

Effective potential: $V_{eff} = \frac{1}{2}\omega_{eff}r^2 + \frac{1}{4}\varepsilon r^4$

[1] Y. Yu, M. Ögren, S. Åberg, S.M. Reimann, M. Brack, PRA 72, 051602 (2005)

Fluctuations of shell energy

Semiclassical calculation of energy fluctuation

Strong suppression of fluctuations from HO, to generic regular, to chaotic

M. Puig von Friesen, M. Ögren and S. Åberg, PRE 76, 057204 (2007)

III Fluctuations of pairing gap [1] : Role of regular/chaotic dynamics?

[1] H. Olofsson, S. Åberg and P. Leboeuf, Phys. Rev. Lett. 100, 037005 (2008)

III.a BCS pairing gap in nuclei -Odd-even mass difference

Pairing gap from different mass models

Average behavior in agreement with exp. but very different fluctuations

Pairing gap Δ_3^{odd} from different mass models

Mass models all seem to provide pairing gaps in good agreement with exp.

Fluctuations of the pairing gap

But large deviations in fluctuations of pairing gap

BCS theory

$H = \sum_{k} e_{k} a_{k}^{+} a_{k} - G \sum_{kl} a_{k}^{+} a_{\bar{k}}^{+} a_{\bar{l}} a_{l}$ Hamiltonian: **Mean field approximation (in pairing space):** $\Delta = \left\langle G \sum_{i} a_{k}^{+} a_{\overline{k}}^{+} \right\rangle$ Pairing gap ("pairing deformation"): is determined by $\frac{2}{G} = \sum_{\mu} \frac{1}{\sqrt{(e_{\mu} - \lambda)^2 + \Delta^2}} \rightarrow \int_{-L}^{L} \frac{\rho(e)de}{\sqrt{e^2 + \Delta^2}}$

Periodic orbit description of pairing

Fluctuations of pairing – simple expressions

Or, dimensionless ratio: $D=2R/\xi_0$ Size of system:2RCorrelation length of Cooper pair: $\xi_0=\hbar v_F/2\Delta$

Universal/non-universal fluctuations

$$D = \frac{\tau_{\min}}{\tau_{\Delta}} = \frac{2\pi}{g} \frac{\Delta}{\delta}$$
$$g = \frac{\tau_{H}}{\tau_{\min}}$$
 "dimensionless conductance"

Non-universal spectrum fluctuations for energy distances larger than g:

Random matrix limit: $g \rightarrow \infty$ (i.e. D = 0) corresponding to pure GOE spectrum (chaotic) or pure Poisson spectrum (regular)

Fluctuations of pairing in nuclei

Size of D: $2R=2*1.2A^{1/3}$ fmSize of system: $2R=2*1.2A^{1/3}$ fmPairing length: $\xi_0=\hbar v_F/2\Delta=11.3$ $A^{-1/4}$ fm

$$\Rightarrow$$
 D=2R/ $\xi_0 = 0.22A^{1/12} = 0.27 - 0.33$ (A=25-250)

Cooper pairs non-localized in nuclei

Fluctuations of nuclear pairing gap

Fluctuations of nuclear pairing gap from mass models

III.b Pairing fluctuations in nanosized metallic grains

• Discrete exc. spectrum

Work by D.C. Ralph, C.T. Black and M. Tinkham, PRL 74, 3241 (1995); PRL 76, 688 (1996)

- Irregular shape of grain \Rightarrow chaotic dynamics
 - No symmetries only time-rev. symm.
 - Energy level statistics described by GOE
- Excitation gap pairing gap (>>δ) observed for even N
- Applied B-field ⇒ gap disappears

. - 3 . . . 5

$$N \sim 10^{3} - 10^{3}$$

$$\overline{\Delta} \approx 0.38 \times 10^{-3} eV \qquad \delta = 2.1/N eV$$

$$D = \frac{2R}{\xi_{0}} = \frac{2\pi}{5.5} N^{1/3} \overline{\Delta} \approx 0.004 - 0.02 \implies F_{1} \approx 1$$

$$\Rightarrow \text{ Universal pairing fluctuations:} \qquad \sigma_{ch}^{2} = \frac{1}{2\pi^{2}} \qquad \text{(GOE limit)}$$

Universal GOE limit derived in: K.A. Matveev and A. Larkin PRL 78, 3749 (1997)

III.c Pairing fluctuations in ultracold fermionic gases

In dilute BCS region: $\overline{\Delta} / \delta = (2/e)^{7/3} \frac{3N}{2} \exp\left(-\frac{\pi}{2k_F|a|}\right)$ (attractive interaction g < 0) $D = \frac{2R}{\xi_0} = 2\pi (2/e)^{7/3} (3N)^{1/3} \exp\left(-\frac{\pi}{2k_F|a|}\right)$

Recent experiments [1] using ⁶Li reach $k_F|a| = 0.8$ and about 100 000 atoms gives $\Delta/\delta=100$ 000, D=60 and: negligible fluctuations of the pairing gap

However, for example, for $k_F|a| = 0.2$ and 50 000 atoms gives $\Delta/\delta=12$, D=0.06 and:

 $\frac{\Delta}{\overline{\Delta}} = 1 \pm 0.24$ for regular system $\frac{\Delta}{\overline{\Delta}} = 1 \pm 0.02$ for chaotic system

Making the system chaotic strongly supresses pairing fluctuations!

$$\widetilde{\Delta}_{RMS,regular} \, / \, \widetilde{\Delta}_{RMS,chaotic} \approx 4 \sqrt{\overline{\Delta} \, / \, \delta}$$

[1] C.H. Schunck et al, PRL **98** (2007) 050404

SUMMARY

- I. Mixture of chaos in nuclear ground state. Supported by energy statistics, errors in masses and correlation measures.
- II. Effective interaction scheme (Lee-Suzuki) works well for many-body boson system
- III. Ultracold Fermionic gases show supershell structure in harmonic confinement. Energy fluctuations strongly supressed in generic regular and chaotic systems
- IV. Fluctuations of BCS gaps in nuclei well described by periodic orbit theory. Regular part masks possible chaotic mixture.
- V. Non-universal corrections to BCS fluctuations important
 beyond random matrix theory.