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Fluctuations in many-body systems

Fluctuations of energy (or BCS gap) as a parameter is changed:
Parameter: shape, number of particles, etc.

Many-body systems:
•Atomic nuclei
•Ultracold gases of Fermionic/bosonic atoms
•Metallic grains
•Quantum dots

Role of dynamics: order/chaos



I. Introduction: 
(a) Quantum chaos in one-body and many-body systems

II. Fluctuations of shell energy
(a) Ground-states in nuclei – nuclear masses
(b) Ground-states in ultracold gases of atoms: bosonic/Fermionic

III. Fluctuations of BCS pairing gap
(a) Atomic nuclei
(b) Nanosized metallic grains
(c) Ultracold Fermionic gases

Fluctuations in Regular and Chaotic Many-Body Systems
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1. One-body system:
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Dynamics determined by potential V1

Classical chaos - quantum chaos established

Billiards,
H-atom in B-field

m1

m2

2. Many-body system: iii
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Vi self-consistent mean field. 
Determines dynamics.

Classical chaos - quantum chaos established

Ground states of
many-body systems:
Nuclei, metallic grains,
ultracold Fermi gases
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1 ),(3. Interacting many-body system:

W(i,j) residual interaction

What determines dynamics, mean field 
Vi or res. int. W(i,j) ? 
Classical chaos - quantum chaos not established

Excited states of
many-body systems



II. Non-interacting particles in mean field:
- Many-body ground states
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the fluctuating part of the total energy for A particles is obtained:

Using the expression for the fluctuating part of level density:
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Periodic orbit theory for non-interacting many-body system [1]
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where K is the spectral form factor (Fourier transform of 2-point corr. function): 

[1] P. Leboeuf and A.G. Monastra, Ann of Phys 297, 127 (2002)
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τmin : shortest periodic orbit
τH : Heisenberg time, h/δ



Agreement suggests a chaotic 
component in nuclear ground state. 

This is supported by autocorrelations 
between error in a sequence of nuclei:

Echaos 3)
4)

1) Samyn, Goriely, Bender, Pearson,  PRC 70 (2004) 044309
2) Duflo, Zuker, PRC 52 (1995) R23
3) Möller et al, At Data and Nucl. Data Tables 59 (1995) 185.
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Inserting proper estimates gives [4]:
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4) O.Bohigas and P.Leboeuf, PRL 88 (2002) 092502.

II.a Ground-states of atomic nuclei – nuclear masses



Scaled differens in neutron number 

Theoretical correlation between chaotic states

Correlations from error in 
Möller mass formula

Pearson mass formula

Duflo, Zuker
mass formula

Autocorrelations in error in mass formuale [1]

C(x)= <E(A-xN/2)E(A+ xN/2)>

Supports the idea of a chaotic component in ground state

Chaotic energy is not
random but strongly 

correlated!

[1] H. Olofsson. S. Åberg, O. Bohigas and P. Leboeuf, Phys. Rev. Lett. 96 (2006) 042502.



II.b Ground states of ultracold gases of atoms
Trapped quantum gases of bosons or fermions

T≈0

Bose condensate Degenerate fermi gas
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S-wave scattering length, a, can be experimentally controlled both in size and in sign. 
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Bosonic atoms in harmonic confinement, 
repulsive interaction (a>0)



N spinless bosons in a 2D harmonic confinement
interacting via short-range int. with strength g.
Effective interaction derived from Lee-Suzuki method.

J. Christensson, Ch. Forssén, S. Åberg and S. Reimann, arXiv:0802.2811

•Method works well for strong correlations
•Ground-state AND excited states
•All angular momenta

Effective interaction approach to the many-boson problem

L=0 L=9

Exact diagonalization

Effective interaction

Cutoff energy in Fock space

g=1 g=10 g=10

N=9



Fermionic atoms in harmonic confinenment,
repulsive interaction (a > 0)



Hartree-Fock approximation

Shell energy: Eosc = Etot - Eav

N Fermionic atoms in harmonic trap - Repulsive interaction

Shell energy vs particle number for pure H.O.

Fourier transform



Super shell structure observed for g>0 [1]

g=0.2

g=0.4

g=2
Two close-lying frequencies 
give rise to the beating pattern:
circle and diameter periodic orbits
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[1] Y. Yu, M. Ögren, S. Åberg, S.M. Reimann, M. Brack, PRA 72, 051602 (2005)



Fluctuations of shell energy

Generic regular Generic chaoticH.O. confinement

g=0
g=0.1

g=0.2
g=0.4

Strong suppression of fluctuations from HO, to generic regular, to chaotic!

Semiclassical calculation of energy fluctuation

M. Puig von Friesen, M. Ögren and S. Åberg, PRE 76, 057204 (2007)



III Fluctuations of pairing gap [1] :
Role of regular/chaotic dynamics?

[1] H. Olofsson, S. Åberg and P. Leboeuf, Phys. Rev. Lett. 100, 037005 (2008)



III.a BCS pairing gap in nuclei  -
Odd-even mass difference



Pairing gap from different mass models

Average behavior in agreement with exp. but very different fluctuations



Pairing gap ∆3
odd from different mass models

Mass models all seem to provide pairing gaps in good agreement with exp.



Fluctuations of the pairing gap

But large deviations in fluctuations of pairing gap



BCS theory

Hamiltonian: ll
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Mean field approximation (in pairing space):
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Periodic orbit description of pairing

Divide pairing gap in smooth and fluctuating parts:
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Expand to lowest order in fluctuations gives
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Fluctuations of pairing – simple expressions 

Fluctuations of pairing, expressed in 
single-particle mean level spacing, δ: δσ /~2∆=
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Or, dimensionless ratio: D=2R/ξ0
Size of system: 2R
Correlation length of Cooper pair: ξ0=hvF/2∆



Universal/non-universal fluctuations

δ
π

τ
τ ∆

==
∆ g

D 2min

minτ
τ Hg = ”dimensionless conductance”

Non-universal spectrum fluctuations
for energy distances larger than g:

universal

non-universal

g=Lmax

∆3 statistics

Random matrix limit: g →∞ (i.e. D = 0) 
corresponding to pure GOE spectrum (chaotic)
or pure Poisson spectrum (regular)



Fluctuations of pairing in nuclei 

Size of D:
Size of system: 2R=2*1.2A1/3 fm
Pairing length: ξ0=hvF/2∆ =11.3 A–1/4 fm

⇒ D=2R/ξ0 = 0.22A1/12 = 0.27 – 0.33   (A=25-250)

Cooper pairs non-localized in nuclei

(Nuclei)

Pairing fluctuations for regular system:



Exp. pairing gaps

Theor.
regular

Theor.
chaotic

Exp.

Fluctuations of nuclear pairing gap



Fluctuations of nuclear pairing gap from mass models



III.b Pairing fluctuations in nanosized metallic grains
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• Irregular shape of grain ⇒ chaotic dynamics
- No symmetries – only time-rev. symm. 
- Energy level statistics described by GOE

• Excitation gap – pairing gap (>>δ) 
observed for even N

• Applied B-field ⇒ gap disappears

⇒ Universal pairing fluctuations:

• Discrete exc. spectrum 
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σ =ch (GOE limit)

Work by D.C. Ralph, C.T. Black and M. Tinkham, 
PRL 74, 3241 (1995); PRL 76, 688 (1996)

Universal GOE limit derived in: K.A. Matveev and A. Larkin PRL 78, 3749 (1997)



III.c Pairing fluctuations in ultracold fermionic gases

Recent experiments [1] using 6Li reach kF|a| = 0.8 and about 
100 000 atoms gives ∆/δ=100 000, D=60 and: 
negligible fluctuations of the pairing gap

[1] C.H. Schunck et al, PRL 98 (2007) 050404
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However, for example, for kF|a| = 0.2
and 50 000 atoms gives ∆/δ=12, D=0.06 and:

24.01±=
∆
∆

for regular system 02.01±=
∆
∆

for chaotic system

Making the system chaotic strongly supresses pairing fluctuations!
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SUMMARY

I. Mixture of chaos in nuclear ground state. Supported by 
energy statistics, errors in masses and correlation measures.

IV. Fluctuations of BCS gaps in nuclei well described by periodic 
orbit theory. Regular part masks possible chaotic mixture.

V. Non-universal corrections to BCS fluctuations important         
- beyond random matrix theory.

III. Ultracold Fermionic gases show supershell structure in 
harmonic confinement. Energy fluctuations strongly 
supressed in generic regular and chaotic systems

II. Effective interaction scheme (Lee-Suzuki) works well for 
many-body boson system


