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Outline

e spectral statistics and the doorway mechanism

e three examples in nuclear physics:
giant dipole, scissors, pygmy dipole mode

e discuss surprises, limits and implications
e barrier billiard and superscars
o first hints at doorway mechanism

e quantitative study with new observables
o distribution of maximum coupling coefficient
o gpatial correlator in extended Berry model

e summary and conclusions
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Quantum Chaos in Nuclel

nuclear data ensemble (far from groundstate)
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Electric Giant Dipole Resonance

seen in many nuclel, here for Gold (A = 197)
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Strength Function

cross section contains huge number of individual states
(fragmentation) which cannot be resolved

strength function is related to this: consider state |GDR) with
resonance energy Eqpr and couple many states to it
— density around |GDR)

| [/2
E) ==
caor(E) = T R ST T

(Breit—Wigner)

under rather general conditions!

— strictly, one cannot conclude chaotic fluctuations,
but at these GDR energies one certainly expects them

Bohr, Mottelson, Nuclear Structure (1969); Zelevinsky, Annu Rev Nucl Part Sci 46 (1996) 237
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Magnetic Scissors Mode in Rare Earth Nuclel
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Spectral Statistics of Scissors Mode Resonances

152 states in 13 heavy deformed nuclei (at least 8 per nucleus)
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Influence of Detection Threshold

numerical simulation: assume chaos (Wigner for levels and
Porter—Thomas for intensities) —  worst case scenario
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71% observed, I > 0.2(])

50% observed, I > 0.5(])

33% observed, I > 1.0(])

experimental data
>50% observed (sum rule)
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How to interpret this?

e no state Is distinguished as a doorway

e level density low, no states available to mix in

e all states are collective in their own right

e fragmentation does not imply correlations

e these are conclusions based on an experiment

IS there a semiclassical interpretation?

... here comes an attempt
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Low Energies and Rearrangement of Particles

12 nucleons

large molecule

different inertia

slightly different arrangement can yield slightly different energies

more general feature in such nuclei ?
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Electric Pygmy Dipole Resonances

times 100
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Pygmy Resonances in N = 82 Nuclel
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Intermediate energies

fragmentation resolved
In experiment
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Comparison Experiment <— Theory

microscopic calculation within quasiparticle phonon model (QPM)
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grouping of levels around several doorway states seems possible

In experimental data

such a hierachy is a built—in feature of QPM
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Spacing Distribution and Level Number Variance
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strong missing level effect — expect largely chaotic statistics

we are at the limits of such an analysis for nuclear data

Enders, Guhr, Heine, von Neumann—Cosel, Ponomarev, Richter, Wambach, NPA 741 (2004) 3
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Anticrossing Spectroscopy in Molecular Physics

doorway mechanism: singlet state |s) couples with matrix
elements V, to background of triplet states |tu)
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shift triplets with magnetic field — resonance fluorescence yield

root mean square coupling V,; enters statistical observables

Pebay Peyroula, Jost, Lombardi, Dupré, CP 102 (1986) 417
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Superscars in a Pseudointegrable Barrier Billiard

ordinary scars “vanish” at high energies, superscars do not !

Bogomolny, Schmit, PRL 92 (2004) 244102
Bogomolny, Dietz, Friedrich, Miski—-Oglu, Richter, Schafer, Schmit, PRL 97 (2006) 254102

Dresden, March 2008



Constructed Superscars

Integrable approximation in Periodic Orbit Channels

: / Inside POC:
N %// | \Ijg)n(ﬂ ~ sin (Wng +0) sin (T1)
| // outside POC:
// ' Wi (7) = 0

z families Fe{BB,V,D, W}
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Overlap with Measured States

rescaled frequency f according to Weyl's law
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Local Density of States

sum over measured states A and over m quantum number
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Modeling the Doorway Mechanism

total Hamilonian H =Hg+Hp +V
one doorway  Hg|s) = Es|s) , background Hp|b) = Ey|b)
orthogonality  (s|b) =0

coupling  (s|V|s) =0=(b|V|t)) and (s|V|b) = Vi,

solve Hlv) =¢&|v) get EVZES—Z
—~ B, —¢&,

, ~1/2
coupling coefficients ¢, = (v|s) = (1 + Z E i )2>
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Matrix Representation for Statistical Model

N background states, matrix Hg, vector V

T
7 Es V
V. Hp

total Hamiltonian has N + 1 states, eventually N — oo

average over random Hamiltonian Hpg

— observables only depend on  (V?) = %VTV

W

Local Density is Breit-Wigner with width T'! = 2« 5
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Statistical Properties of Background States
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barrier billiard is a Veech billlard — semi—Poisson
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Coefficient Statistics versus Numerical Simulation

distribution of squared maximum coefficient c?

distribution of all coefficients c7, ,
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Analytical Treatment — Poisson Case

distribution P(cuax) Of maximum coupling coefficient
In case of background states with Poisson statistics

0.0 0.25 0.5 0.75 1.0

gross features as in numerical simulation, details quite different
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Analytical Treatment — Wigner—Dyson Case

distribution P(cuax) Of maximum coupling coefficient
In case of Wigher—Dyson statistics (unitary)

Integral over two ordinary 2 x 2 matrices for finite N

/ d[o] exp (—tr o?) / d[r] exp (—tr 7)

det V' (o0 + g ((V?) 7) det T
— two—matrix model ——  surprising generality

... Work in progress ...
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Berry’s Random Wave Model

spatial wavefunction correlator: isotropic average, fixed k = \IS\

C'(kr) = =
) (YK (R)[?

In ergodic regime, wave function equivalent to superposition
of random plane waves — in two dimensions C'(kr) = Jy(kr)

(r(R = 7/2) (R + 7/2))
)

1.0

05}

. microwave experiment

-0.5

Kim, Barth, Kuhl, Stéckmann, PTPS 150 (2003) 105
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Introducing Directed Spatial Correlators

correlator parallel to Periodic Orbit Channel, fixed & = ||

—

> TT/2) with  #(| POC

Cll(kr) = =

(¥n(R — 7/2)ui(
(¥w(R)[?

similarly, correlator C-+(kr) with 7 L POC perpendicular
to Periodic Orbit Channel
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Extended Random Wave Model

measured superscar states modeled as superpositions of
constructed superscar states and ergodic states

\IJ;:F) (F) — CmaX\IJ(F _|_ \/1 — 7 aszk

with maximum coupling coefficient cp.«

ergodic states modeled as “scarless” plane waves

= (F) (F) (=
~ s Xe\T) — \Ijm,n Xk \Ijm,n r
() = (") = (Wi | X1) Yy (7)

\/1 — (Wi nlxk)?

orthogonality with constructed superscars ensured
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Analysis of all Correlators

Correlation function

-1.0

constructed
V' superscars

all measured
wave functions

measured
V' superscars and fit
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Results for Maximum Coefficients and Widths

(Conax) [
F
EXp RMT Corr EXp RMT
BB 0.08 =0.05 0.58 0.81 0.9+0.1 1.3
V 0.63=0.05 0.68 0.69 0.8+0.1 0.8
D 0.74+0.03 0.72 0.69 0.9+0.1 0.6
W 0.54 £0.03 0.51 0.49 1.0£0.1 1.9
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Summary and Conclusions

e doorway mechanism and spectral statistics

e scissors mode regular, pygmy dipole largely chaotic

e exploring limits of such an analysis in nuclei

e superscars provide a beautiful model for doorway mechanism

e used two new observables: distribution of maximum
coefficient, spatial correlators in extended Berry model

e they yield consistent picture
e brief comment on preliminary analytical results
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