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WHY VORTEX DIPOLES?

• Vortex-antivortex pairs appear in many 2D situations.

Normal fluids and superfluids; during turbulent flow; flow over a sharp barrier, ...

• Vital for physics of Kosterlitz-Thouless transitions in 2D.

Recently probed experimentally in ENS (Paris) experiments.

• Fascinating analogies to vortex rings in 3D, solitons in 1D.

Some of our results have analogs in 3D vortex ring physics.

• Created recently experimentally in BEC’s by sudden perturbation.

• Can in principle be created & studied by phase imprinting.



OVERVIEW

• Setup, approximations.

Time-dependent Gross-Pitaevskii equation.

• Insights from a variational (approximate) calculation.

Analytically tractable calculations; relatively simple results.

• STATIONARY vortex dipole solutions.

Similar stationary soliton-like & vortex ring solutions.

• Dynamics: trajectories of the two defects.

Characteristic trajectory shapes. Large and small g. Deviations.

• Open questions.

(many...)



TIME-DEPENDENT GROSS-PITAEVSKII EQUATION.

i
∂ψ(t)

∂t
= − 1

2 ▽2 ψ + Vtr(r)ψ + g|ψ|2ψ (trap units)

• Isotropic (CIRCULAR) 2D trap →
Vtr(x, y) = 1

2
(x2 + y2)

• |ψ|2 = areal density.

• g is an EFFECTIVE 2D
interaction parameter.

g ∝ g3D × N × √
ωz

Neglected

• Dissipation effects.

• Temperature, quantum depletion &
fluctuations.

• Vortex pair creation/annihilation.

• Axial dynamics.



TWO COMPETING EFFECTS

Vortex dipole in

uniform condensate

is self-propelled.

Fetter, Phys. Rev. 1965

Single vortex in non-uniform

condensate is driven by inhomogeneity.

1n 2n

inhomogeneous BEC precession in trap

Rokhsar, PRL 1997

VORTEX DIPOLE IN TRAP −→
Small distance: mutually driven motion dominates.

Large distance: inhomogeneity-driven motion dominates. xd



(SIMPLE) VARIATIONAL CALCULATION: RESULTS (1)

ψ = [z − z1(t)]
[

z∗ − z∗2(t)
]

fc(|z|2)






z1 = x1 + iy1 vortex

z2 = x2 + iy2 antivortex

Good phase structure, unreliable (rigid) vortex size.

Stationary solution for
x1(0) = xs, xd = 2xs



INSIGHTS FROM VARIATIONAL CALCULATION (2) - DYNAMICS

• Increasing initial distance
xd = 2x1(0).

• Each defect revolves
around a stationary point.

• This trajectory type occurs
in full GPE solutions.
Not periodic, additional ef-
fects...

• Results qualitative only.

• Last trajectory is an arti-
fact.



STATIONARY SOLUTIONS (1)

• Stationary ‘soliton’-like solution at small g.

• Bifurcation at g ≈ 18.

• For g & 18, one ‘soliton’ and one vortex-dipole branch.
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STATIONARY SOLUTIONS (2)

Non-interacting case (g = 0)

‘Soliton’-like stationary solution →

First excited state,

ψ(x, y) ∝ φ0(x) φ1(y)

φ0(x) ∼ e−x
2/2 φ1(y) ∼ ye−y

2/2

Stationary because energy eigenstate.

|φ0|
2

|φ1|
2

x y

Similar bifurcations

In 3D condensate

Vortex RING instead of vortex dipole

In elongated condensate
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Term ‘soliton’ more appropriate.

Open issues

crossover of bifurcation between circular
and elongated trap; between 2D and 3D



DYNAMICS (VORTEX TRAJECTORIES); LARGE g
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• Simpler at large g.

• g = 150 shown here.

• Not periodic (‘almost’).

• Trajectories elongated in y
direction.
‘Reflection’ at edges clearer.

• Extra features.
Curvatures at outer parts.
Pointy feature at outer edge.
Direction reversal for
large initial xd).



DYNAMICS (VORTEX TRAJECTORIES); SMALL g
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g = 10 and g = 50. Many more unexplained features.

Significant intervals where it is difficult to identify original defect pair.

Creation of extra defect pairs, even without dissipation.



ADDITIONAL PHYSICS AFFECTING TRAJECTORIES

Large g (tiny vortices) better understood.

Smaller g → VORTEX POSITIONS alone are not sufficient description.
Additional dynamics possibilities!

• Vortex shape distortion dynamics.

• Extra pairs created easily.

• Tendency to morph into soliton-like objects.
SOLITON ≡ LINE OF VORTEX DIPOLES

• Annihilation into collective excitations better favored.

• Effects of condensate boundary.

Details are open issues...

Analog in many-vortex dynam-
ics (rotating trapped BEC) →

VORTEX POSITIONS provide suf-
ficient description of dynamics
in fast-rotation limit, where vor-
tices are ‘tiny’.



QUESTIONS & OPEN ISSUES

• Don’t understand all features of
defect trajectories.
Even at large g!!

• Do trajectories become periodic in
g → ∞ limit?
Above some critical g value?

• Do trajectories lose features
in g → ∞ limit?
i.e., become smoother?

• Details of reflection, e.g.,
in elongated condensate.
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• How does vortex shape dynamics
couple to vortex position dynamics?

• Pair annihilation & creation
without dissipation.

• How does existence of ‘nearby’ solitonic
solution affect vortex dipole dynamics?

• Vortex dipoles not placed
initially symmetrically in trap.
Chaotic motion?

• Dissipation.



VARIATIONAL FORMULATION; WAVEFUNCTIONS.

Lagrangian : L =

∫

dr

[

i

2

(

ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)

+ 1
2
ψ∗ ▽2 ψ − Vtr(r) |ψ|2 − 1

2
g |ψ|4

]

Trial w.f. : ψ = A(t) gv(u1)e
iφ1 gv(u2)e

−iφ2 fc(|z|2)
{

ui = |z − zi|/ξ
φi = tan−1(y−yi

x−xi)

2D coordinates bundled into complex z = x+ iy. Vortex at z1, antivortex at z2.

Euler-Lagrange equations for zi = xi + iyi:
∂L

∂x1

=
d

dt

(

∂L

∂ẋ1

)

→ equations of motion for x1, y1, x2, y2.

Vortex shape function
gv(u): ideally We used gv(u) = u −→

gv(u1) eiφ1 = |z− z1|eiφ1 = z− z1

ψ = [z − z1(t)]
[

z∗ − z∗2(t)
]

fc(|z|2)


