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WHY VORTEX DIPOLES?

Vortex-antivortex pairs appear in many 2D situations.

Normal fluids and superfluids; during turbulent flow; flow over a sharp barrier, ...

Vital for physics of Kosterlitz-Thouless transitions in 2D.
Recently probed experimentally in ENS (Paris) experiments.

Fascinating analogies to vortex rings in 3D, solitons in 1D.
Some of our results have analogs in 3D vortex ring physics.

Created recently experimentally in BEC’s by sudden perturbation.

Can in principle be created & studied by phase imprinting.



OVERVIEW

Setup, approximations.

Time-dependent Gross-Pitaevskii equation.

Insights from a variational (approximate) calculation.
Analytically tractable calculations; relatively simple results.

STATIONARY vortex dipole solutions.
Similar stationary soliton-like & vortex ring solutions.

Dynamics: trajectories of the two defects.

Characteristic trajectory shapes. Large and small g. Deviations.

Open questions.
(many...)



TIME-DEPENDENT GROSS-PITAEVSKII EQUATION.

0P (t) i
i = =57+ V@ 4 gy (trap units)
e Isotropic (CIRCULAR) 2D trap — Neglected

Vir(z, y) = 2(z* + v°)

Dissipation effects.

e [1)|? = areal density. e Temperature, quantum depletion &

fluctuations.

® g iS an EFFECTIVE 2D
interaction parameter.

g X g3p X N X Jw;

Vortex pair creation/annihilation.

Axial dynamics.




TWO COMPETING EFFECTS

Vortex dipole in Single vortex in non-uniform

uniform condensate condensate is driven by inhomogeneity.
is self-propelled.

© o

inhomogeneous BEC precession in frap

Fetter, Phys. Rev. 1965 Rokhsar, PRL 1997

VORTEX DIPOLE IN TRAP —
Small distance: mutually driven motion dominates.
LLarge distance: inhomogeneity-driven motion dominates.



‘ (SIMPLE) VARIATIONAL CALCULATION: RESULTS (1)
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INSIGHTS FROM VARIATIONAL CALCULATION (2) - DYNAMICS
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Increasing initial distance
xq = 221(0).

Each defect revolves
around a stationary point.

This trajectory type occurs
in full GPE solutions.

Not periodic, additional ef-
fects...

Results qualitative only.

LLast trajectory is an arti-
fact.



e Stationary ‘soliton’-like solution at small g.

e Bifurcation at g = 18.

e For g 2 18, one ‘soliton’ and one vortex-dipole branch.

Energy of solution

2D interaction parameter, g
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STATIONARY SOLUTIONS (1)




STATIONARY SOLUTIONS (2)

Non-interacting case (g = 0) Similar bifurcations

In 3D condensate

‘Soliton’-like stationary solution —
Vortex RING instead of vortex dipole

First excited state,

Y(z,y) < ¢o(z) ¢1(y) In elongated condensate
do(z) ~ e /2 $1(y) ~ ye /2 -
Stationary because energy eigenstate. :——I_—: _ *

Term ‘soliton’ more appropriate.
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Open issues

crossover of bifurcation between circular
X y and elongated trap; between 2D and 3D




DYNAMICS (VORTEX TRAJECTORIES); LARGE g
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Simpler at large g.
g = 150 shown here.
Not periodic (‘almost’).

Trajectories elongated in y
direction.
‘Reflection’ at edges clearer.

Extra features.

Curvatures at outer parts.
Pointy feature at outer edge.
Direction reversal for

large initial xq).



DYNAMICS (VORTEX TRAJECTORIES); SMALL g
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g =10 and g = 50. Many more unexplained features.
Significant intervals where it is difficult to identify original defect pair.

Creation of extra defect pairs, even without dissipation.



ADDITIONAL PHYSICS AFFECTING TRAJECTORIES |

Large g (tiny vortices) better understood.

Smaller ¢ — VORTEX POSITIONS alone are not sufficient description.

Additional dynamics possibilities!

e \Vortex shape distortion dynamics.
e EXxtra pairs created easily.

e Tendency to morph into soliton-like objects.
SOLITON = LINE OF VORTEX DIPOLES

e Annihilation into collective excitations better favored.

e Effects of condensate boundary.

Details are open issues...

Analog in many-vortex dynam-
ics (rotating trapped BEC) —

VORTEX POSITIONS provide suf-
ficient description of dynamics
in fast-rotation limit, where vor-
tices are ‘tiny’.
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Don't understand all features of
defect trajectories.
Even at large g!!

Do trajectories become periodic in
g — oo limit?

Above some critical g value?

Do trajectories lose features

in g — oo limit?

i.e., become smoother?

Details of reflection, e.qg.,
in elongated condensate.
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QUESTIONS & OPEN ISSUES

How does vortex shape dynamics
couple to vortex position dynamics?

Pair annihilation & creation
without dissipation.

How does existence of ‘nearby’ solitonic
solution affect vortex dipole dynamics?

Vortex dipoles not placed
initially symmetrically in trap.
Chaotic motion?

Dissipation.



‘ VARIATIONAL FORMULATION; WAVEFUNCTIONS. |

Lagrangian : L :/ [ A (¢ %_15 —Ib{w*)

+ Ly oty — V() [P — L w]

Trial w.f.: ¢ = A(t) gv(u1)e’® gv(ua)e " fe(|z|?) {Z zé;—zl(l.{f_y)

2D coordinates bundled into complex z = x 4+ 1y. Vortex at z;, antivortex at zo».

OL oL
Euler-Lagrange equations for z; = x; + y;: — = — | —
ox1 dt \ 0z
— equations of motion for xz1, y1, x2, y2.
Vortex shape function
gv(u): ideally We used gv(u) = u —
gv(ui) € = |z—z1]e = z—2

= [z—21(8)] [z* — 25(8)] fe(Jz]?)
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