

The simple model

- •Single-j level
- Ω =2j+1 single-particle orbitals: m=-j, j-1, ... j
- •Number of nucleons N: $0 \le N \le \Omega$
- •Number of many-body states: Ω!/((N!(Ω-N)!)
- •Many-body states classified by rotational symmetry: (J,M)

Dynamics

•Rotational invariance and two-body interactions particle-particle pair operator $P_{LM}=(a a)_{LM}$ particle-hole pair operator $M_{K\kappa}=(a a^{\dagger})_{K\kappa}$

•Hamiltonian
$$H = \sum_{L} V_L \sum_{M} P_{LM}^{\dagger} P_{LM}$$

•Dynamics is fully determined by j+1/2 parameters V_L

Ground state statistics^[1] Dynamics versus symmetry

Take V_L at random (Gaussian distribution centered at 0, width 1) What is the probability for the ground state to have spin J?

- J=0 is enhanced
- J=J_{max} is enhanced

[1] C. W. Johnson, G. F. Bertsch, and D. J. Dean, Phys. Rev. Lett. 80, 2749 (1998).

Ground State Spin Statistics

Statistics is based on 10000 random realizations.

Robust preponderance of zero and maximum spin g.s.

The role of statistical widths

$$\bar{E}_J = \frac{1}{d_J} \operatorname{Tr}_J H \equiv \langle H \rangle_J$$
$$\sigma_J^2 = \langle (H - \langle H \rangle_J)^2 \rangle_J$$

Statistics of widths does not explain the systematics. Correlations may be important 6

Random Interactions and pairing

Spin	0	48
Fraction of states	0.61	0.05
Gaussian	61.9	11.5
Forced pairing V_0 =-1	80.5	9.2
No pairing $V_0=0$	64.1	11.7
Anti pairing V_0 =+1	55.2	12.4

Statistics with pairing and without pairing for j=21/2 N=6

Solid line: statistical expectation in 6D Dashed histogram: $J_0=0$ Unshaded histogram: $J_0=0$ and $J_1=2$

Tackling the TBRE and symmetry puzzle

- •C.W. Johnson, G.F. Bertsch, D.J. Dean. Phys Rev Lett. 80 (1998) 2749.
- •R. Bijker, A. Frank. Phys Rev Lett. 84 (2000) 420-422.
- •D. Mulhall, A. Volya, V. Zelevinsky. Phys Rev Lett. 85 (2000) 4016-4019.
- •T. Papenbrock, H.A. Weidenmuller. Phys Rev Lett. 93 (2004) 132503.
- •Y.M. Zhao, A. Arima, N. Yoshinaga. Physics Reports. 400 (2004) 1-66.
- •T. Papenbrock, H.A. Weidenmuller. Reviews of Modern Physics. 79 (2007) 997-1013.
- •V. Zelevinsky, A. Volya. Physics Reports. 391 (2004) 311-352.

n-body Random Ensemble (n-BRE) $H^{(n)} = \sum_{\alpha,\beta} \sum_{\mathbf{r}} V_L^{(n)}(\alpha\beta) \sum_{\mathbf{r}} T_{LM}^{(n)\dagger}(\alpha) T_{LM}^{(n)}(\beta)$ n-body Hamiltonian $T_{LM}^{(n)\dagger}(\alpha) = \sum_{12\dots n} C_{12\dots n}^{LM}(\alpha) a_1^{\dagger} a_2^{\dagger} \dots a_n^{\dagger}$ Operator n-body operator is eigenstate $T_{LM}^{(n)^{\dagger}}(\alpha)|0\rangle$ of the reference 2-body Hamiltonian $H_0^{(2)}$ Random Gaussian ensemble of interactions $\langle V_L^{(n)}(\alpha,\beta)\rangle = 0 \quad V_L^{(n)}(\alpha,\beta) = V_L^{(n)}(\beta,\alpha)$

$$\langle V_L^{(n)}(\alpha,\beta) V_{L'}^{(n)}(\alpha',\beta') \rangle = \delta_{LL'} \delta_{\alpha\alpha'} \delta_{\beta\beta'} (1+\delta_{\alpha\beta})/2$$

The ensemble does not depend on the choice of reference Hamiltonian For n = N the ensemble is GOE in each symmetry class

Statistics of g.s. spins

Conserved quantum numbers, coherent property effective interaction

2-BRE
$$\langle H^{(2)} \rangle_J = \tilde{V}_1 J^2$$

In the particle-hole representation:

monopole term (particle number); moment of inertia (angular momentum)

$$\tilde{V}_1 = \sum_L \frac{3(2L+1)}{j(j+1)(2j+1)} \left\{ \begin{array}{ccc} j & j & 1\\ j & j & L \end{array} \right\} V_L^{(2)}$$

•Predicts equal probability for $P[0_0] = P[(J_{max})_0] = 1/2$ •Particle number independent •Correlation across different N

Statistical treatment

Minimize energy as a function of density under geometric constraints

$$E(\{n_m\}) = \frac{1}{2} \sum_{mm'} V_{mm'} \langle n_m n_{m'} \rangle$$

$$\sum_m n_m = N, \quad \sum_m mn_m = M$$

$$E(N, M) = \frac{1}{2} [N\mu(N, M) + M\gamma(N, M)]$$

$$\mu = \frac{2N}{(2j+1)^2} \sum_L (2L+1)V_L,$$

$$\gamma = rac{3M}{(2j+1)^2 j(j+1)} \sum_L (2L+1) [L(L+1) - 2j(j+1)] V_L$$

Statistical treatment ^[1]

Constants of motion and corresponding terms •Particle number N monopole (mass) term $\tilde{V}_0 = [\Omega(\Omega - 1)]^{-1} \sum (2L + 1) V_L$ •Angular momentum J * moment of inertia $\tilde{V}_1 = (2j^4\Omega^2)^{-1}\sum(2L+1)(L^2-2j^2)V_L$ Average energy L $\langle H \rangle_{N,J} = \tilde{V}_0 N(N-1) + \tilde{V}_1 J(J+1)$ Statistical prediction $ilde{V}_1 > 0$ Ground state has J₀=0 $\tilde{V}_1 < 0$ Ground state has $J_0 = J_{max}$ (maximum possible J)

[1] D. Mulhall, A. Volya, and V. Zelevinsky, Phys. Rev. Lett. 85, 4016 (2000);

Exact energy and statistical prediction

Measuring Correlations

Important property of joint probability in independent events

$$P[J(N_1)_0, J(N_2)_0, \dots] = \prod_i P[J(N_i)_0]$$

In the 2-BRE we have correlations

 $j = \frac{19}{2} \text{ with } N = 5, 6 \dots 10 P \left[J_{max}(5)_0 \dots J_{max}(10)_0 \right] = 6.6\%$ $P \left[J_{max}(5)_0 \right] P \left[J_{max}(6)_0 \right] \dots P \left[J_{max}(10)_0 \right] = 2.1 \cdot 10^{-4}\%$

Measure correlation with Total Weighted Correlation (TWC)

$$\mathcal{C}\left[J, J', J'', \ldots\right] = \frac{\log\left(P\left[J\right] P\left[J'\right] P\left[J''\right] \ldots\right)}{\log\left(P\left[J, J', J'', \ldots\right]\right)} - 1$$

•TWC is zero for uncorrelated events

•TWC in X-1 for X totally correlated events

•Measures Informational content: gives the number of redundant sets of data

Correlations across different particle number

	2-B	RE	3-B	RE	4-B	RE
Ν	N J_{min} J_{max}		J_{min}	J_{max}	J_{min}	J_{max}
5	16.0	10.1	36.3	2.9	7.7	0.2
6	52.3	10.5	66.4	3.1	83.0	0.0
7	12.4	11.8	39.1	4.8	33.0	0.5
8	42.7	12.1	63.2	5.0	84.3	1.1
9	9.5	12.3	31.1	6.5	33.7	2.3
10	31.2	11.5	48.6	7.1	65.5	2.6
\mathcal{C}	1.883	3.806	1.560	3.266	0.435	0.000

Summary of g.s. statistics for minimum and maximum spin, and correlations across different mass numbers N for a single j=19/2 valence space with 2,3, and 4-body random interactions.

Coherent effective interaction components

2-BRE
$$\langle H^{(2)} \rangle_J = \tilde{V}_1 J^2$$

•Predicts equal probability for $P[0_0] = P[(J_{max})_0] = 1/2$ •Particle number independent •Correlation across different N

3-BRE
$$\langle H^{(3)} \rangle_J = (\tilde{V}'N + \tilde{V})J^2$$

•Enhancement of $P[(J_{max})_0]$ is lower

• $P[(J_{max})_0]$ increases with N

•Correlation across different N are lower

4-BRE
$$\langle H^{(4)} \rangle_J = (V_1'' \tilde{N}^2 + \tilde{V}_1' N + \tilde{V}_1) J^2 + \tilde{V}_2 J^4$$

•The $P[(J_{max})_0]$ is nearly zero.

• $P[0_0]$ increases as it is always a local minimum

•Correlation across different N disappear.

Enhancement of paring

Seniority (average number of unpaired particles)

$$\langle N, \alpha | T_{00}^{(2)^{\dagger}} T_{00}^{(2)} | N, \alpha \rangle = \frac{(N-s)(2j+3-N-s)}{2(2j+1)}$$

Searching for rotational sequences

	2-B	RE	3-B	RE	4-BRE		
	P	E_1/E_2	P	E_1/E_2	P	E_1/E_2	
6	3.7(2)	0.55	$4.2(2)^{*}$	0.69	$4.4(7)^{*}$	0.69	
8	$4.2(2)^{*}$	0.59	5.5(2)	0.67	7.4(11)	0.75	
10	$2.1(1)^*$	0.72	5.2(2)	0.69	7.3(10)	0.62	

Probability of finding the three lowest states as a sequence 0,2,4, $P[0_0, 2_1, 4_2]$, labeled as P, expressed in percent, and the ratio of excitation energies between 2_1 and 4_2 states. In all cases the sequence 0,2,4 in the most likely g.s. sequence except for those marked with *.

For exact rotor
$$E_1/E_2 = 0.3$$

In all cases $\mathcal{C}\left[0_0, 2_1, 4_2\right] \approx 0.4$

Rotational properties in systems with random interactions

Select realizations where $J_0=0$ and $J_1=2$

Prediction for rotor (Alaga intensity rules)

$$A = Q^2 / B(E2) = 4/49$$

Distribution of Alaga ratio

One-level system with isospin

•Even-Even system (J T)=(0,0) is enhanced, grows with n, J+T even •Odd-Odd (0,0) does not appear as g.s. J+T odd enhanced •J_{max} and T_{max} appear in 2-BRE and less expected for higher n.

Is order of states a statistical evidence for **3-body forces?**

p-shell ¹⁰B

Experiment

J	Т	1-body	2-body	3-body	4-body	1-body	2-body	3-body	4-body	3.5871	
		degenerate $\epsilon = 0$				non degenerate $\epsilon = 1$				2.1543	
1	0	11.9	19.1(4)	25.6(5)	30.3(6)	25	19.3(4)	25.4(5)	30.8(6)	1.74015	
3	0	11.9	36.6(6)	30.5(6)	29.9(6)	25	35.8(6)	30.5(6)	29.6(5)	0.71835	
0	1	8.3	21.3(5)	24.5(5)	23.2(5)	25	20.5(5)	24.6(5)	23.0(5)	N L	J ^π _3
2	1	16.7	9.7(3)	5.9(2)	4.8(2)	25	11.4(3)	6.3(3)	4.6(2)	1	⁰ B
0	0	2.4	2.3(2)	2.8(2)	3.0(2)		2.2(2)	2.8(2)	3.2(2)		D
5	0	1.2	2.4(2)	1.5(1)	0.8(1)		2.4(2)	1.4(1)	0.7(1)		
0	3	1.2	4.8(2)	4.5(2)	3.3(2)		4.5(2)	4.5(2)	3.2(2)		

Many-body forces and structure of ¹⁰B

Conclusions

- n-Body ensemble and preponderance of symmetry
- Conserved quantities in effective interactions
- Coherent components: pairing, rotations, vibrations

Acknowledgements:

Thanks: V. Abramkina, D. Mulahll, and V. Zelevinsky. Funding support: Department of Energy, National Science Foundation.

Further reading:

Alexander Volya, *Emergence of symmetry from random n-body interactions*, http://lanl.arxiv.org/abs/0712.3754