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Coherence in Spontaneous Radiation 
Process
� R.H.Dicke, Phys.Rev. 93, 99 (1954)
� “In the usual treatment of spontaneous radiation by a 

gas, the radiation process is calculated as though the 
separate molecules radiate independently of each 
other…..

� It is clear that this model is incapable of describing a 
coherent spontaneous radiation process…This 
simplified picture overlooks the fact that all the 
molecules are interacting with a common radiation 
field and hence cannot be treated  as independent.”...

� ”A gas that radiates strongly because of coherence 
will be called  “super-radiant””.
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SuperradianceSuperradiance, collectivization by , collectivization by 
decaydecay

Dicke coherent state
N identical two-level atoms
coupled via common radiation 

Analog in nuclei
Interaction via continuum
(Trapped states ) self-organization



The Effective Hamiltonian
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Effective Hamiltonian (cont’d)
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The Effective Hamiltonian (cont’d)
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These originate from the principal value and delta function  .

The imaginary part,  / 2   is given by:
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where  is a symmetric real matrix that includes, apart from the
original  Hamiltonian of the -space ,  , 
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Single Channel

� To demonstrate in a simple way the effect of 
the anti-Hermitian term we look at the case of 
a single channel. Then the matrix W has a 
completely separable form:
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Separable interaction
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“Super-radiant” state

� The rank of the factorized  matrix is 1, so that 
all eigenvalues of W are zero, except one that 
has the value equal to the trace of this matrix:
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Effective interaction in the
Q-space
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“Super-radiant” state

� The special unstable state is often referred to 
as the “super-radiant” (SR), in analogy to the 
Dicke coherent state of a set of two-level 
atoms coupled through a common radiation 
field. Here, the coherence is generated by the 
common decay channel. The stable states 
are trapped and decoupled from the 
continuum.

� R.H.Dicke, Phys.Rev. 93, 99 (1954)



General case

� The phenomenon of super-radiance survives 
in a general situation of N intrinsic states and 
Nc open channels provided  Nc<< N, if the 
mean level spacing D of internal states and 
their characteristic decay widths satisfy the 
conditions
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General case

� In this regime of overlapping resonances their 
interaction through the common continuum 
channels leads to restructuring of the 
complex energy spectrum, similarly to the 
formation of Dicke’s coherent state. Since the 
rank of the factorized W matrix is Nc , it has 
only Nc non-zero positive eigenvalues.

� The intrinsic space Q is now divided into the 
SR subspace of dimension Nc and the 
subspace of trapped states It> of dimension 
N-Nc .



Doorways
� Frequently only a subset of intrinsic states {Q} connects directly 

to the  {P} space of channels. The rest of states in {Q} will 
connect to {P} states due to the admixtures of these selected 
states . The special states coupled directly to the continuum are 
the doorways Id>. They form the doorway subspace {D}. The 
corresponding projection operator will be denoted as D.

� The remaining  states will be denoted as ~
q
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Doorways
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Doorways (Corridors)





Single doorway
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When is this picture valid?

d

The criterion of validity is that the average spacing between
 levels in {Q} -space is smaller than the decay width of such
 a state  "before" the SR is set at work. Consider the spreading 

width ,  ,↓Γ
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 of the doorway state for the fragmentation 
into compound states  q .  If N  is the number of compound states

 in the interval covered by the spreading width, their average energy
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Examples

� Single-particle resonance
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Examples

� Isobaric analog state 
(IAS).

 The IAS,  A  is the result of action of the isospin lowering operator   on the parent state ,

A
In the compound nucleus, the IAS is surrounded by many compound states

 of lower isospin  T

T
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 isospin fragmenting the strength of the IAS over many states   that results 

in the spreading width  of the IAS.
If located above the threshold, the IA
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gives rise to the decay width .  In heavy nuclei .
The SR mechanism is relevant to this case, providing an explanation why the IAS  appea
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Mixing of the IAS with T-1 
states

IAS

states 1-T

Before mixing

After mixing



Pb208    Example        
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Neutron Induced Fission



Fission



Double humped potential in fission
� An outstanding example are the fission isomers in several 

heavy, nuclei such as Pu.
� The fission cross section in the neutron induced reaction shows 

structures with larger widths spaced several  hundred eV apart , 
in addition to the usual compound resonances which are spaced 
a few eV. This phenomenon is interpreted as a direct 
consequence of a double humped potential in the fission 
process of the compound nucleus. The energy spacing between 
the few excited (usually collective-rotational or vibrational) states 
in the second shallower well are larger than between the 
compound states in the deeper well.  When the compound 
states in the deeper well are in the vicinity of a state in the 
second well, they couple forming mixed states which, couple to 
the fission channel via the admixture of the state from the 
second well.



Double humped potential in fission 
(intermediate structure)
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Intermediate Structure in 
Fission





Example; Giant Resonances (GR)
� One describes the giant resonances in nuclei in terms of 1p-1h 

configurations. The residual interaction forms collective states
out of these configurations. However, usually the GRs are 
located in the particle continuum. The 1p-1h are surrounded by 
a vast spectrum of 2p-2h excitations which will mix with the GR.
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Giant Resonances (CRPA)





Multi-quark states

� The SR mechanism is universal and can take place 
in very distinctively different systems.
It is possible that in the sector of quark physics there 
are situations in  which preconditions exist for the 
appearance SR states followed by very narrow 
trapped resonances. Some examples are taken from 
the multi- quark systems. In some cases it is claimed  
that uncharacteristically narrow resonances are 
observed. For example the 1545 MeV pentaquark, 
the X(3872) tetraquark and other tetraquarks.



Superradiance in resonant 
spectra
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broad superradiant state 

in 12C ' 
Pentaquark as a possible 

candidate for 
superradiance

Stepanyan et.al. hep-ex/0307018

Bartsch et.al. Eur. Phys. J. A 4, 209 (1999)



4+ pentaquark as a two-state interference  

Effective Hamiltonian

2,1 , 2 =Α= iiiγ
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Two-level interaction via the 
continuum



Kn scattering crossection
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•Resonant energy Er=1540 MeV
•Kn threshold energy
•Width of broad peak

L�  1535 MeV
N1(Er) =120 MeV
L2 =1560 MeV
N2(Er) =60 MeV
v=1 MeV
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Other examples
One could envisage other situations in the field of
intermediate energy when the SR mechanism might
produce narrow states in addition to a very broad state.
Narrow resonances in deeply bound hadronic atoms
(pionic, anti-nucleonic), in deeply bound anti-kaons, in
sigma hypernuclei, etc
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