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Outline
• Ballistic dots in Coulomb blockade regime

• Conductance peak spacings: needinteractions
• Computing IMEs:

• Relation tosingle-particlecorrelators
• Random wave model (N → ∞)
• What happens inactual chaotic dots?

• Failure of random wave model
• Failure of leading-order semiclassical theory
• Can we compute subleading terms in1/N?
• Beyond chaos (time permitting)

• Summary
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Coulomb Blockade Regime
• Dot weakly coupled to outside via two leads

• Decay width� Temperature� Charging energy
• Sharp conductance peaks when Fermi energy in

leads matches energy needed to move one new
electron onto dot (N → N + 1)
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Coulomb Blockade Regime
• Peaks depend on many-body energiesEN and

associated wave functions
• E.g., peak spacings given by
Egs

N+1 − 2Egs
N + Egs

N−1 for T = 0

• Statisticalproperties forN � 1?
• Hartree-Fock approach:EN includes

• Classical charging energyN2e2/2C
• Constant exchange interaction
• Mean-field single-electron potential (chaotic)
• Residual two-electron interaction
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Peak Height Distribution

Peakheightstatistics
well explained using
constant interaction
+ chaotic mean field

Folk et al, PRL (1996)
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Peak Spacing Distribution

Peak spacing distri-
bution predicted to
be bimodal (e2/C +
εN+1 − εN followed
by e2/C) in mean-
field model (not ob-
served)

Two-body interac-
tionsessential for un-
derstanding spacings

Patel et al, PRL (1998)
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Interaction Matrix Elements
• Diagonal two-body IMEvαβ ≡ vαβ;αβ

• Contact interaction model:

vαβ = V∆
∫

V d~r |ψα(~r)|2 |ψβ(~r)|2

• Interested in fluctuationsδv2
αβ , etc.

• To leading order ingT = kL ∼
√
N (L ≡

√
V ),

δv2
αβ = ∆2V 2

∫

V

∫

V d~r d~r
′ C̃2(~r, ~r′) + · · · where

C̃(~r, ~r′) = |ψ(~r)|2|ψ(~r′)|2 − |ψ(~r)|2 |ψ(~r′)|2
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Interaction Matrix Elements
• Similar expressions for

• variancesδv2
αα , δv2

αβγδ

• covarianceδvαβ δvαγ (relevant for spectral
scrambling)

• surface charge IME fluctuationδv2
α

• Higher momentsδvn for n ≥ 3 require
C̃(~r, ~r′, ~r′′) etc.

• Aside: IME distributions essential in diverse
physical contexts, e.g., mode competition in
micron- sized asymmetric dielectric laser
resonators (Tureci & Stone)
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Random wave model (Berry)
• Typical trajectory in classically ergodic system

uniformly explores energy hypersurface
• Typical single-electron wave function should be

composed of random superposition of basis states
at fixed energy (e.g., plane waves in hard-wall
billiard)
• Gaussian-distributedψ(~r)
• Free-space intensity correlation

C(~r, ~r′) =
2

β

1

V 2
J2

0 (k|~r − ~r′|)
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Random wave model: normalize
• Normalization in finite volume:

C̃(~r, ~r′) = C(~r, ~r′) − 1

V

∫

V

d~raC(~r, ~ra)

− 1

V

∫

V

d~raC(~ra, ~r
′)

+
1

V 2

∫

V

∫

V

d~ra d~rbC(~ra, ~rb) + · · ·

• Satisfies
∫

V d~r
′ C̃(~r, ~r′) = 0 (Mirlin)

⇒ δv2
αβ = ∆2 3

π

(

2

β

)2 [

ln kL+ bg
(kL)2

+O

(

1

(kL)3

)]
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Random wave model: variance

δv2
αβ = ∆2 3

π

(

2

β

)2 [

ln kL+ bg
(kL)2

+O

(

1

(kL)3

)]

• Leadingln kL/(kL)2 term depends only on
symmetry class, normalization unnecessary

• bg requiresnormalized correlatorC̃(~r, ~r′)

• Shape dependence ofbg is weak (< 5%)

• SubleadingO(1/(kL)3) corrections are< 10%
for systems of experimental interest
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Subleading effects are small
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Weak shape dependence of δv2
αβ
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Random wave model
• Within random wave model, other matrix

elements differ only by combinatoric factorsat
leading order

δv2
αβ = ∆2 3

π

(

2

β

)2 [

ln kL+ bg
(kL)2

+O

(

1

(kL)3

)]

δv2
αα = ∆2 3

π
cβ

[

ln kL+ b′g
(kL)2

+O

(

1

(kL)3

)]

δv2
αβγδ = ∆2 3

π

[

ln kL+ b′′g
(kL)2

+O

(

1

(kL)3

)]
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Matrix element distributions
• Naively, should be Gaussian (central limit

theorem)

• Recallδv2
αβ ∼

∫

V

∫

V

d~r d~r′ C̃2(~r, ~r′) ∼ ∆2 ln kL

(kL)2

• Similarly δv3
αβ ∼

∫

V

∫

V

∫

V d~r d~r
′ d~r′′C2(~r, ~r′, ~r′′)

whereC(~r, ~r′, ~r′′) ∼ c3β J0(k|~r − ~r′|)
×J0(k|~r′ − ~r′′|)J0(k|~r′′ − ~r|) + · · ·

• Thusδv3
αβ = b3g c

2
3β

∆3

(kL)3

• b3g is geometry-dependent constant
• c3β is combinatoric factor
• Note: no logarithmic divergences
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Matrix element distributions
• Skewnessγ1 = δv3

αβ /
[

δv2
αβ

]3/2

γ1 = b3g c
2
3β

(

β
2

)3
(

π
3

)3/2
(ln kL)−3/2 + · · ·

• Excess kurtosis

γ2 =

(

δv4
αβ − 3

[

δv2
αβ

]2
)

/
[

δv2
αβ

]2

γ2 = b4g

(

c24β +
(

2
β

)4
)

(

π2

3

)

(ln kL)−2 + · · ·

• Very slow convergence of interaction matrix
elements to Gaussian statisticseven for Gaussian
random single-electron wave functions
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Skewness and excess kurtosis
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What do we have so far?
• Can use quantum chaos methods to compute

universal IME distribution as function of single
semiclassical parameterkL

• Unfortunately, distributionis too narrowto be
consistent with low-temperature experimental
data on peak spacings

• Brings into question validity of Hartree-Fock?
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Actual chaotic systems
Example: modified quarter-stadium billiard

1

a

1-s

s

r1

r2
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Variance enhancement over RW
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Actual chaotic systems: results
• vαβ varianceenhanced by 2 – 4over random

wave predictions forkL ∼ 50

• Robustto moderate shape changes
• No apparent convergence with increasingkL (!)
• Good:Increased fluctuations consistent with

experimental data at low temperatures
• Good:Support for validity of Hartree–Fock
• Bad: Discrepancy with well-established random

wave model
• ⇒ Better understanding needed of actual chaotic

billiards
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Actual chaotic systems: results

• Relation δv2
αβ = ∆2V 2

∫

V

∫

V d~r d~r
′ C̃2

bill(~r, ~r
′)

still holds
• C̃2

bill(~r, ~r
′) = intensity correlator for actual

billiard (not random waves)
• Large observable effects on behavior associated

with interactions come from subtle correlations
within single-particle states
• How to calculate these correlations?
• Try semiclassicalapproach ...
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Semiclassical calculations
• CorrelationC(~r, ~r′) in RW model arises from

straight-line path connecting~r and~r′

• Additional correlation terms from bouncing paths
(Hortikar & Srednicki, Urbina & Richter)
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Semiclassical calculations
• Intensity correlator:

Csc(~r, ~r
′) =

1

V 2

2

β

[

J2
0 (k|~r − ~r′|) +O

(

Tclas

TB

1

kL

)]

• Tclas/TB = correlation time / bounce time

δv2
αβ = ∆2 3

π

(

2

β

)2 [

ln kL+ bg + bsc
(kL)2

+O

(

1

(kL)3

)]

• bsc: formally∼ Tclas/TB; in practice, typically
large and overwhelms universalln kL
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Semiclassical calculations
• Semiclassically predicted scaling not observed at

all for kL ≤ 100
• Reason: Formally subleadingO(1/(kL)3 and

higher-order terms comparable to leading one
• Numerical confirmation: quantum maps

 10  100  1000

S

N
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Short-time calculations
• Naive semiclassical expressions do not work
• Nevertheless, weexpect(or hope) that IME

statistics can be reliably computed using
short-time information (few bounces)
• To have predictive power, statistics must

depend only on coarse-scale geometry
• Confirmed by robustness of results for

perturbed modified stadium billiards
• In maps,vαα (=IPR) may be reliably computed

using

vαα = vαα, RMT

∑T
t=−T |〈α|α(t)〉|2

∑T
t=−T |〈α|α(t)〉|2RMT
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Short-time calculations of vαα
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Summary
• Observable properties of interacting system

computable in terms of single-electron wave
function correlations

• Simple expressions for IME fluctuations in
random wave limit

• Non-Gaussian distribution of IMEs
• Failure of random wave picture for

experimentally relevant system sizes
• Underestimatesvαβ variance by factor of3 – 4
• Predicts wrong sign for covariance,vαα − 3
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Summary
• Dynamicaleffects essential to obtain agreement

with experiment
• Inadequacy of leading-order semiclassics for

computing these effects
• Hope for robust predictions using short-time

dynamics combined with long time RMT
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