Interaction Matrix Element Fluctuations

in Quantum Dots

Lev Kaplan

Tulane University

and

Yoram Alhassid

Yale University

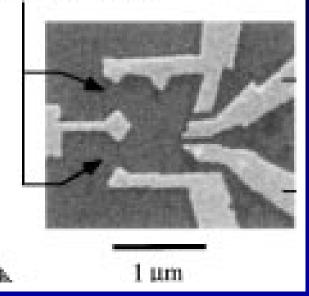
Outline

- Ballistic dots in Coulomb blockade regime
 - Conductance peak spacings: need interactions
- Computing IMEs:
 - Relation to single-particle correlators
- Random wave model $(N \to \infty)$
- What happens in actual chaotic dots?
 - Failure of random wave model
 - Failure of leading-order semiclassical theory
 - Can we compute subleading terms in 1/N?
 - Beyond chaos (time permitting)
- Summary

Coulomb Blockade Regime

• Dot weakly coupled to outside via two leads

Point Contacts

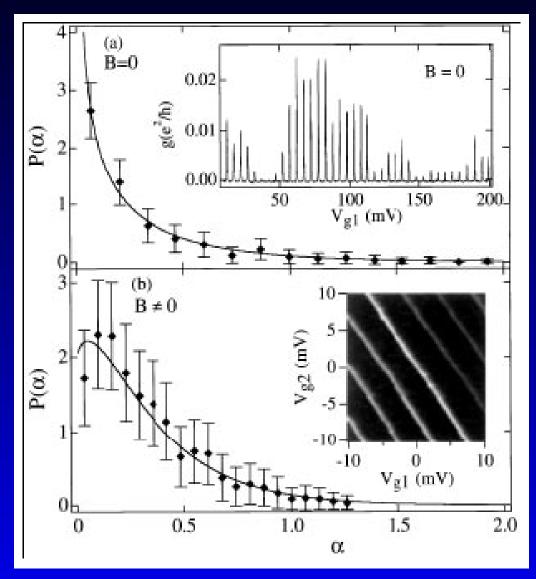


- Decay width *«* Temperature *«* Charging energy
- Sharp conductance peaks when Fermi energy in leads matches energy needed to move one new electron onto dot $(N \rightarrow N + 1)$

Coulomb Blockade Regime

- Peaks depend on many-body energies E_N and associated wave functions
- E.g., peak spacings given by $E_{N+1}^{\rm gs} 2E_N^{\rm gs} + E_{N-1}^{\rm gs} \text{ for } T = 0$
- Statistical properties for $N \gg 1$?
- Hartree-Fock approach: E_N includes
 - Classical charging energy $N^2 e^2/2C$
 - Constant exchange interaction
 - Mean-field single-electron potential (chaotic)
 - Residual two-electron interaction

Peak Height Distribution

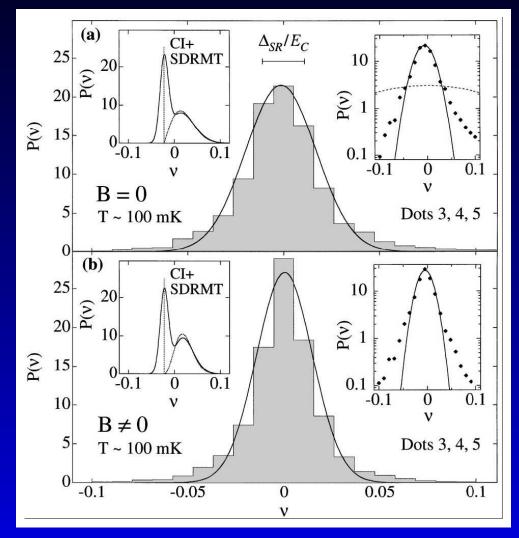


Peak height statistics well explained using constant interaction + chaotic mean field

Folk et al, PRL (1996)

Interaction Matrix Element Fluctuations in Quantum Dots

Peak Spacing Distribution



Peak spacing distribution predicted to be bimodal $(e^2/C + \epsilon_{N+1} - \epsilon_N \text{ followed})$ by e^2/C in mean-field model (*not* observed)

Two-body interactions essential for understanding spacings

Patel et al, PRL (1998)

Interaction Matrix Elements

- Diagonal two-body IME $v_{\alpha\beta} \equiv v_{\alpha\beta;\alpha\beta}$
- Contact interaction model:

 $v_{\alpha\beta} = V\Delta \int_V d\vec{r} \, |\psi_\alpha(\vec{r})|^2 \, |\psi_\beta(\vec{r})|^2$

- Interested in fluctuations $\overline{\delta v_{\alpha\beta}^2}$, etc.
- To leading order in $g_T = kL \sim \sqrt{N} \ (L \equiv \sqrt{V})$,

$$\overline{\delta v_{\alpha\beta}^2} = \Delta^2 V^2 \int_V \int_V d\vec{r} \, d\vec{r'} \, \tilde{C}^2(\vec{r}, \vec{r'}) + \cdots$$
 where

$$\tilde{C}(\vec{r}, \vec{r'}) = \overline{|\psi(\vec{r})|^2 |\psi(\vec{r'})|^2} - \overline{|\psi(\vec{r})|^2} \,\overline{|\psi(\vec{r'})|^2}$$

Interaction Matrix Elements

- Similar expressions for
 - variances $\overline{\delta v_{\alpha\alpha}^2}$, $\overline{\delta v_{\alpha\beta\gamma\delta}^2}$
 - covariance $\delta v_{\alpha\beta} \, \delta v_{\alpha\gamma}$ (relevant for spectral scrambling)
 - surface charge IME fluctuation $\overline{\delta v_{\alpha}^2}$
- Higher moments $\overline{\delta v^n}$ for $n \ge 3$ require $\tilde{C}(\vec{r}, \vec{r}', \vec{r}'')$ etc.
- Aside: IME distributions essential in diverse physical contexts, e.g., mode competition in micron- sized asymmetric dielectric laser resonators (Tureci & Stone)

Random wave model (Berry)

- Typical trajectory in classically ergodic system uniformly explores energy hypersurface
- Typical single-electron wave function should be composed of random superposition of basis states at fixed energy (e.g., plane waves in hard-wall billiard)
 - Gaussian-distributed $\psi(\vec{r})$
 - Free-space intensity correlation

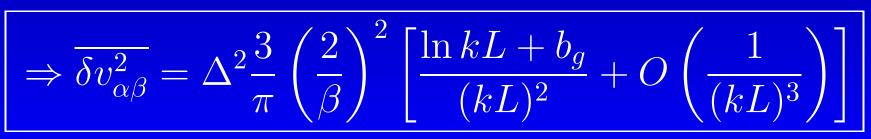
$$C(\vec{r}, \vec{r'}) = \frac{2}{\beta} \frac{1}{V^2} J_0^2(k|\vec{r} - \vec{r'}|)$$

Random wave model: normalize

• Normalization in finite volume:

$$\begin{aligned} \dot{V}(\vec{r}, \vec{r}') &= C(\vec{r}, \vec{r}') - \frac{1}{V} \int_{V} d\vec{r}_{a} C(\vec{r}, \vec{r}_{a}) \\ &- \frac{1}{V} \int_{V} d\vec{r}_{a} C(\vec{r}_{a}, \vec{r}') \\ &+ \frac{1}{V^{2}} \int_{V} \int_{V} d\vec{r}_{a} d\vec{r}_{b} C(\vec{r}_{a}, \vec{r}_{b}) + \cdots \end{aligned}$$

• Satisfies $\int_V d\vec{r}' \, \tilde{C}(\vec{r}, \vec{r}') = 0$ (Mirlin)

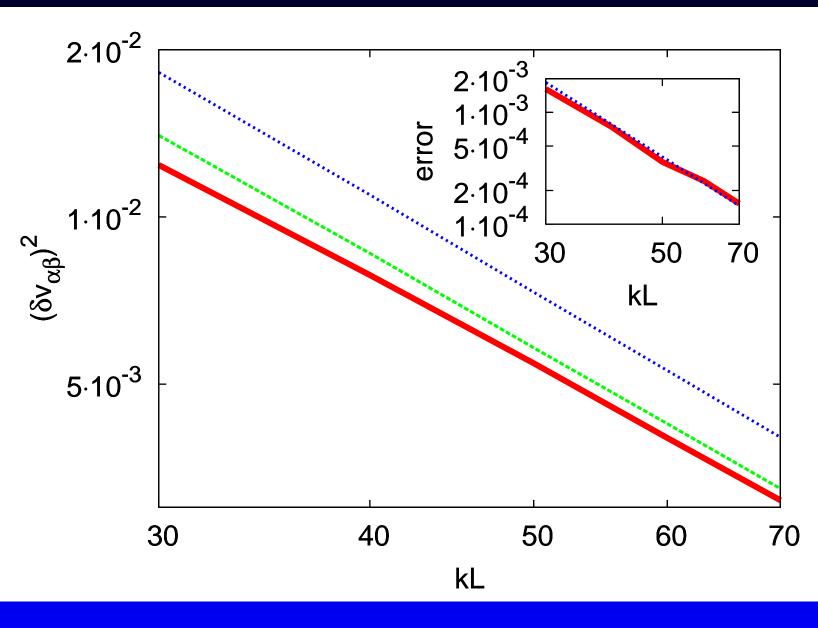


Random wave model: variance

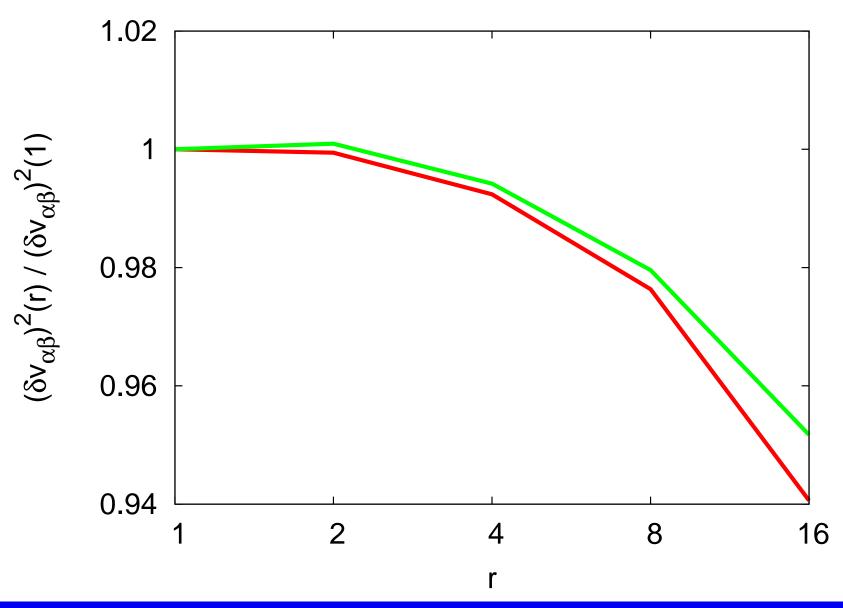
$$\overline{\delta v_{\alpha\beta}^2} = \Delta^2 \frac{3}{\pi} \left(\frac{2}{\beta}\right)^2 \left[\frac{\ln kL + b_g}{(kL)^2} + O\left(\frac{1}{(kL)^3}\right)\right]$$

- Leading $\ln kL/(kL)^2$ term depends only on symmetry class, normalization unnecessary
- b_g requires *normalized* correlator $\tilde{C}(\vec{r}, \vec{r'})$
- Shape dependence of b_g is weak (< 5%)
- Subleading $O(1/(kL)^3)$ corrections are < 10% for systems of experimental interest

Subleading effects are small



Weak shape dependence of $\overline{\delta v_{\alpha\beta}^2}$



Random wave model

• Within random wave model, other matrix elements differ only by combinatoric factors *at leading order*

$$\overline{\delta v_{\alpha\beta}^2} = \Delta^2 \frac{3}{\pi} \left(\frac{2}{\beta}\right)^2 \left[\frac{\ln kL + b_g}{(kL)^2} + O\left(\frac{1}{(kL)^3}\right)\right]$$
$$\overline{\delta v_{\alpha\alpha}^2} = \Delta^2 \frac{3}{\pi} c_\beta \left[\frac{\ln kL + b'_g}{(kL)^2} + O\left(\frac{1}{(kL)^3}\right)\right]$$
$$\overline{\delta v_{\alpha\beta\gamma\delta}^2} = \Delta^2 \frac{3}{\pi} \left[\frac{\ln kL + b''_g}{(kL)^2} + O\left(\frac{1}{(kL)^3}\right)\right]$$

Matrix element distributions

- Naively, should be Gaussian (central limit theorem)
- Recall $\overline{\delta v_{\alpha\beta}^2} \sim \int_V \int_V d\vec{r} \, d\vec{r'} \, \tilde{C}^2(\vec{r}, \vec{r'}) \sim \frac{\Delta^2 \ln kL}{(kL)^2}$
- Similarly $\overline{\delta v_{\alpha\beta}^3} \sim \int_V \int_V \int_V d\vec{r} \, d\vec{r'} \, C^2(\vec{r}, \vec{r'}, \vec{r''})$
 - where $C(\vec{r}, \vec{r}', \vec{r}'') \sim c_{3\beta} J_0(k|\vec{r} \vec{r}'|)$

 $\times J_0(k|\vec{r'} - \vec{r''}|) J_0(k|\vec{r''} - \vec{r}|) + \cdots$

- Thus $\overline{\delta v_{\alpha\beta}^3} = b_{3g} c_{3\beta}^2 \frac{\Delta^3}{(kL)^3}$
 - b_{3g} is geometry-dependent constant
 - $c_{3\beta}$ is combinatoric factor
 - Note: no logarithmic divergences

Matrix element distributions

• Skewness
$$\gamma_1 = \overline{\delta v_{\alpha\beta}^3} / \left[\overline{\delta v_{\alpha\beta}^2} \right]^{3/2}$$

$$\gamma_1 = b_{3g} c_{3\beta}^2 \left(\frac{\beta}{2}\right)^3 \left(\frac{\pi}{3}\right)^{3/2} (\ln kL)^{-3/2} + \cdots$$

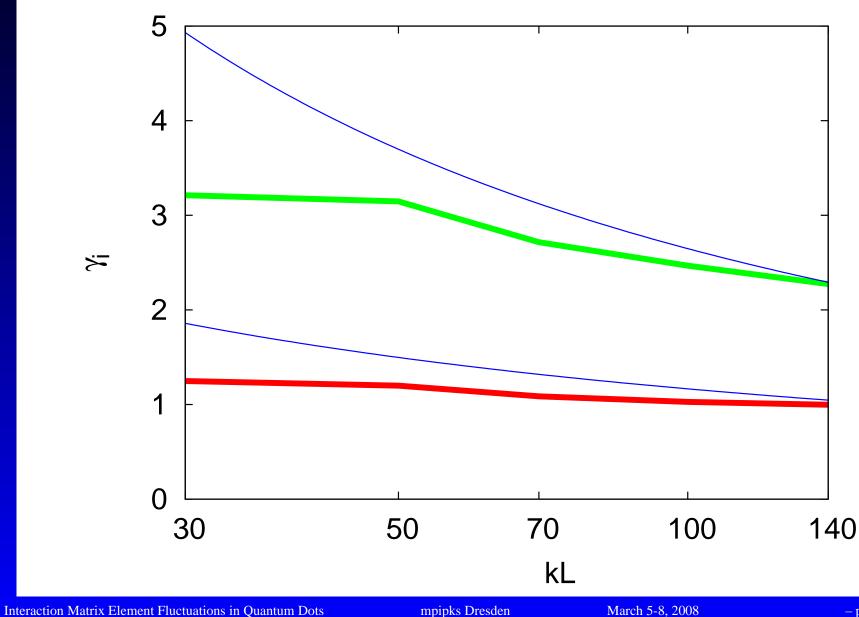
• Excess kurtosis

$$\gamma_2 = \left(\overline{\delta v_{\alpha\beta}^4} - 3\left[\overline{\delta v_{\alpha\beta}^2}\right]^2\right) / \left[\overline{\delta v_{\alpha\beta}^2}\right]^2$$

$$\gamma_2 = b_{4g} \left(c_{4\beta}^2 + \left(\frac{2}{\beta}\right)^4 \right) \left(\frac{\pi^2}{3}\right) (\ln kL)^{-2} + \cdots$$

• Very slow convergence of interaction matrix elements to Gaussian statistics even for Gaussian random single-electron wave functions

Skewness and excess kurtosis



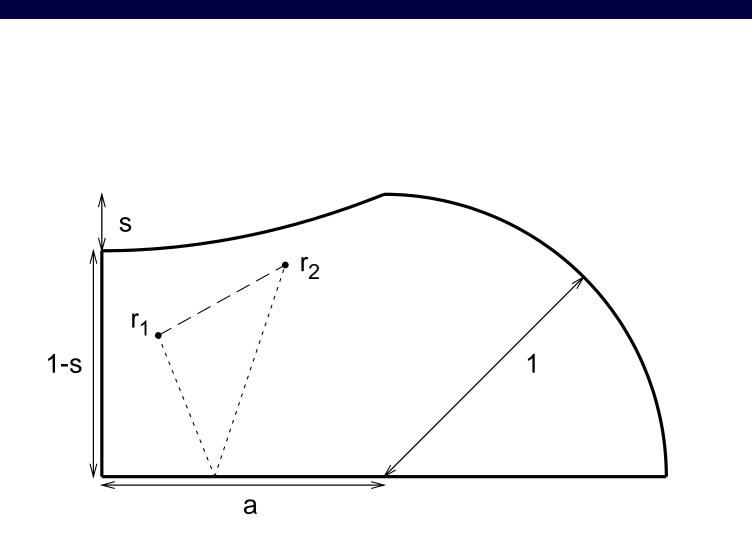
– p. 17/29

What do we have so far?

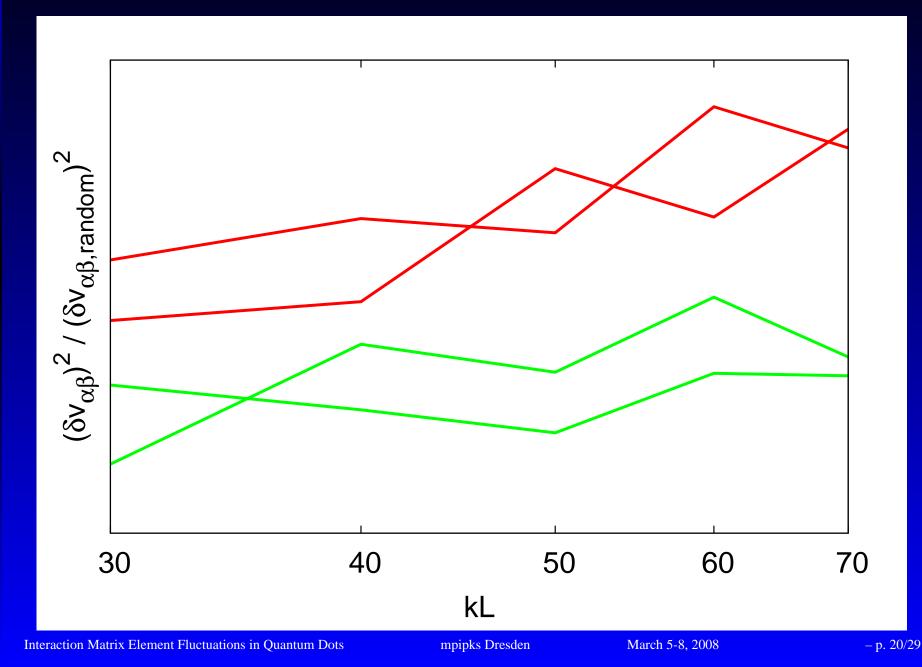
- Can use quantum chaos methods to compute universal IME distribution as function of single semiclassical parameter *kL*
- Unfortunately, distribution is too narrow to be consistent with low-temperature experimental data on peak spacings
- Brings into question validity of Hartree-Fock?

Actual chaotic systems

Example: modified quarter-stadium billiard



Variance enhancement over RW



Actual chaotic systems: results

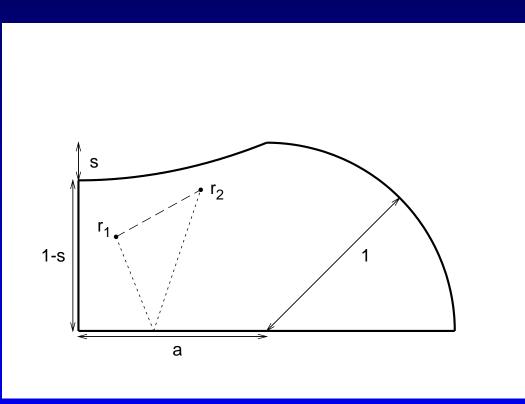
- $v_{\alpha\beta}$ variance enhanced by 2 4 over random wave predictions for $kL \sim 50$
- Robust to moderate shape changes
- No apparent convergence with increasing kL (!)
- Good: Increased fluctuations consistent with experimental data at low temperatures
- Good: Support for validity of Hartree–Fock
- Bad: Discrepancy with well-established random wave model
- → Better understanding needed of actual chaotic billiards

Actual chaotic systems: results

- Relation $\overline{\delta v_{\alpha\beta}^2} = \Delta^2 V^2 \int_V \int_V d\vec{r} \, d\vec{r'} \, \tilde{C}_{\text{bill}}^2(\vec{r}, \vec{r'})$ still holds
 - $\tilde{C}_{\text{bill}}^2(\vec{r},\vec{r'})$ = intensity correlator for actual billiard (not random waves)
- Large observable effects on behavior associated with interactions come from subtle correlations within single-particle states
 - How to calculate these correlations?
 - Try semiclassical approach ...

Semiclassical calculations

- Correlation $C(\vec{r}, \vec{r'})$ in RW model arises from straight-line path connecting \vec{r} and $\vec{r'}$
- Additional correlation terms from bouncing paths (Hortikar & Srednicki, Urbina & Richter)



Semiclassical calculations

• Intensity correlator:

$$C_{\rm sc}(\vec{r}, \vec{r'}) = \frac{1}{V^2} \frac{2}{\beta} \left[J_0^2(k|\vec{r} - \vec{r'}|) + O\left(\frac{T_{\rm clas}}{T_B} \frac{1}{kL}\right) \right]$$

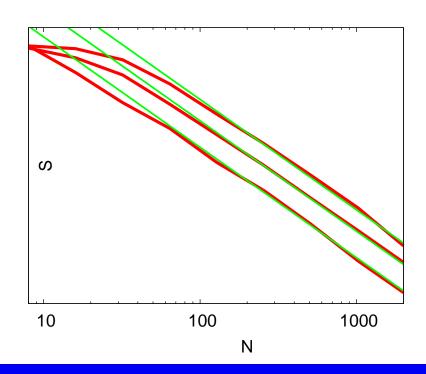
• $T_{\rm clas}/T_B$ = correlation time / bounce time

$$\overline{\delta v_{\alpha\beta}^2} = \Delta^2 \frac{3}{\pi} \left(\frac{2}{\beta}\right)^2 \left[\frac{\ln kL + b_g + b_{sc}}{(kL)^2} + O\left(\frac{1}{(kL)^3}\right)\right]$$

• b_{sc} : formally ~ T_{clas}/T_B ; in practice, typically large and overwhelms universal $\ln kL$

Semiclassical calculations

- Semiclassically predicted scaling not observed at all for $kL \leq 100$
 - Reason: Formally subleading $O(1/(kL)^3)$ and higher-order terms comparable to leading one
 - Numerical confirmation: quantum maps

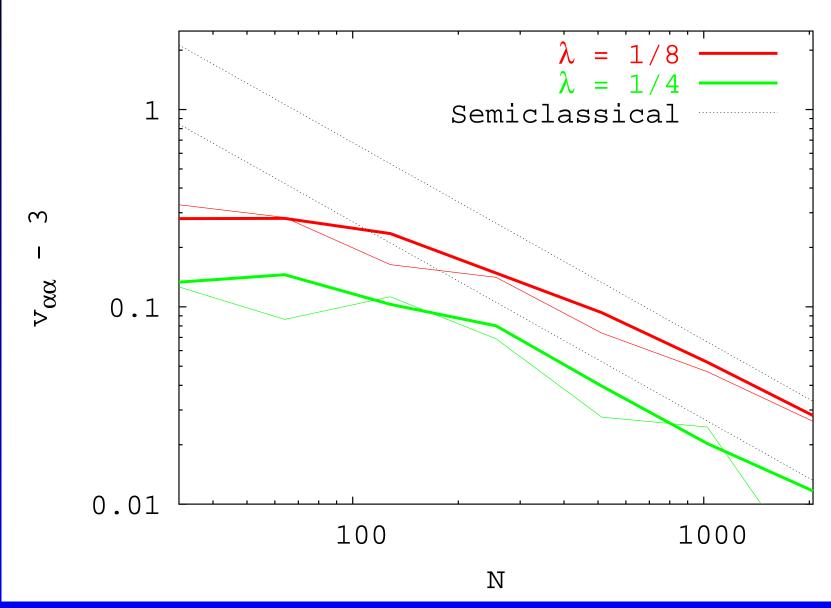


Short-time calculations

- Naive semiclassical expressions do not work
- Nevertheless, we expect (or hope) that IME statistics can be reliably computed using short-time information (few bounces)
 - To have predictive power, statistics must depend only on coarse-scale geometry
 - Confirmed by robustness of results for perturbed modified stadium billiards
- In maps, $\overline{v_{\alpha\alpha}}$ (=IPR) may be reliably computed using

$$\overline{v_{\alpha\alpha}} = v_{\alpha\alpha, \text{RMT}} \quad \frac{\sum_{t=-T}^{T} |\langle \alpha | \alpha(t) \rangle|^2}{\sum_{t=-T}^{T} |\langle \alpha | \alpha(t) \rangle|^2_{\text{RMT}}}$$

Short-time calculations of $\overline{v_{\alpha\alpha}}$



Summary

- Observable properties of interacting system computable in terms of single-electron wave function correlations
- Simple expressions for IME fluctuations in random wave limit
- Non-Gaussian distribution of IMEs
- Failure of random wave picture for experimentally relevant system sizes
 - Underestimates $v_{\alpha\beta}$ variance by factor of 3-4
 - Predicts wrong sign for covariance, $v_{\alpha\alpha} 3$

Summary

- Dynamical effects essential to obtain agreement with experiment
 - Inadequacy of leading-order semiclassics for computing these effects
 - Hope for robust predictions using short-time dynamics combined with long time RMT