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Outline

 Ballistic dots in Coulomb blockade regime
« Conductance peak spacings: nege@ractions

« Computing IMES:
» Relation tosingle-particlecorrelators
 Random wave modelN — o0)

« What happens iactual chaotic dots?
 Failure of random wave model
 Falilure of leading-order semiclassical theory

« Can we compute subleading termsliV?
» Beyond chaos (time permitting)

o Summary
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Coulomb Blockade Regime

« Dot weakly coupled to outside via two leads

PFoimnd Comntncis

« Decay width< Temperaturex Charging energy

« Sharp conductance peaks when Fermi energy in
leads matches energy needed to move one new

electron onto dotly — N + 1)
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Coulomb Blockade Regime
» Peaks depend on many-body enerdigsand
associated wave functions
« E.g., peak spacings given by
EY . —2EY +Ey | for T=0
« Stafisticalproperties forV > 1?
« Hartree-Fock approaclt’y includes
- Classical charging energy?e?/2C
« Constant exchange interaction

» Mean-field single-electron potential (chaotic)
» Residual two-electron interaction
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Peak Height Distribution
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well explained using
constant Interaction
+ chaotic mean field

Folk et al, PRL (1996)
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Peak Spacing Distribution

Peak spacing distri-

pution predicted to
e bimodal ¢/C +

En EN+1 — EN followed

T~100mK - Dots3,4,5 by 62/0) INn mean-
ll field model (ot ob-

served)

Two-body Interac-
lionsessential for un-
derstanding spacings

Patel et al, PRL (1998)
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| nteraction M atrix Elements
» Diagonal two-body IMEv,3 = v43.05
« Contact interaction model:

Vag = VA [y, d [1a(7) | [55(7)
» Interested in fluctuation®? ; , etc.

- To leading order iny; = kL ~ /N (L = VV),

v, = ANV2 [, [, dFdi C*(F,7) + - - -|where

Cr) = [Pl = [0 @) [0 ()
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|nteraction Matrix Elements
« Similar expressions for

2
5Ua675

° covariancev,s 0v,~ (relevant for spectral
scrambling)

- surface charge IME fluctuatiofv?

o variancesv?

ao ?

» Higher momentgv” for n > 3 require
C'(r, 7, r") etc.

« Aside: IME distributions essential in diverse
physical contexts, e.g., mode competition In

micron- sized asymmetric dielectric laser
resonators (Tureci & Stone)
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Random wave model (Berry)

« Typical trajectory in classically ergodic system
uniformly explores energy hypersurface

» Typical single-electron wave function should be
composed of random superposition of basis states

at fixed energy (e.g., plane waves in hard-wall
billiard)

« Gaussian-distributed ()
» Free-space intensity correlation

2 1

C ") = S

5o (k|7 = 7))
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Random wave modd: normalize
« Normalization in finite volume:

~ 1
C(F, ) = CF ) — — / dr, C(7, )
V

- Satisfies[,, di’ C(7,#") =0 (Mirlin)

93 2\ [InkL+b, 1
;‘5”§ﬁA%(B> [ AR O((kms

)
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Random wave modd: variance

5“(35:“%(%)2{ a0 ()|

« Leading term depends only on
symmetry class, normalization unnecessary

» b, requiresnormalized correlatorC (7, i)
- Shape dependence lofis weak & 5%)

- Subleading)(1/(kL)?) corrections are< 10%
for systems of experimental interest
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Subleading effects are small
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Weak shape dependence of dv;, ,
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Random wave modél

« Within random wave model, other matrix
elements differ only by combinatoric factaas

leading order
3 /2\° [InkL + 1
2 _ A2~ |
Oa = & W(ﬂ> [ (kD) O((Wﬂ
. 3 In kL +
2 _ A2
Paa = 4 M{ (kD) ( ﬂ

5 3 lnkL—F
e M o)

Interaction Matrix Element Fluctuations in Quantum Dots ipkp Dresden March 5-8, 2008 —p. 14/29



Matrix element distributions
* Naively, should be Gaussian (central limit

theorem) 2
~ A*In kL
* R 1502, ~ =2 A7 (2 (7 7Y
- Similarly 5v2 ; ~ [, [, [i, dF di di”
where ~ csg Jo(k|F — 7))
X Jo(k|r" — ) Jo (k| — 7)) + - - -

o ThUSMiﬂ = b3, cgﬁ (kAT)g

* b3, IS geometry-dependent constant

* ¢33 IS combinatoric factor
» Note: no logarithmic divergences
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Matrix element distributions
}3/2

- Skewnesg; = dv,; / [51@5

3
=ty (3 @7 a0

e Excess kurtosis

Yy = (51@—3 [&Jiﬁr) / {5%42

Yo = byg (ciﬁ + (%)4> (%2) (InkL)"2+ - -

* Very slow convergence of interaction matrix
elements to Gaussian statistiwsgen for Gaussian
random single-electron wave functions

Interaction Matrix Element Fluctuations in Quantum Dots iphkp Dresden March 5-8, 2008 —p. 16/29




Skewness and excess kurtosis
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What do we have so far ?

« Can use guantum chaos methods to compute
universal IME distribution as function of single
semiclassical parametgr.

« Unfortunately, distributions too narrowto be
consistent with low-temperature experimental
data on peak spacings

* Brings into question validity of Hartree-Fock?
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Actual chaotic systems

Example: modified quarter-stadium billiard
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Variance enhancement over RW
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Actual chaotic systems. results

* V.3 Variancesnhanced by 2 — éver random
wave predictions fok L ~ 50

« Robusitto moderate shape changes
* No apparent convergence with increaskig(!')

 Good:Increased fluctuations consistent with
experimental data at low temperatures

« Good:Support for validity of Hartree—Fock

« Bad: Discrepancy with well-established random
wave model

« = Better understanding needed of actual chaotic
billiards
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Actual chaotic systems. results

 Relation 51)&5 = A*V? [, [, dF di Cian (7, 7)

still holds
. C2, (7, ) = intensity correlator for actual
billiard (notrandom waves)

» Large observable effects on behavior associated
with interactions come from subtle correlations
within single-particle states

« How to calculate these correlations?
« Try semiclassicaapproach ...
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Semiclassical calculations

 CorrelationC'(, ") in RW model arises from
straight-line path connectingand”’

« Additional correlation terms from bouncing paths
(Hortikar & Srednicki, Urbina & Richter)
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Semiclassical calculations
* Intensity correlator:

TC asS 1
Culri) = g3 | ROT= 7D+ O (57 )

» T..s/Tp = correlation time / bounce time

s = A7 (%) [m 0 <<k2>)}

e /. formally ~ T..s/Tg; in practice, typically
large and overwhelms univerdalk L
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Semiclassical calculations
« Semiclassically predicted scaling not observed at
all for kL < 100

- Reason: Formally subleadirig(1/(kL)° and
higher-order terms comparable to leading one

» Numerical confirmation: quantum maps
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Short-time calculations
* Naive semiclassical expressions do not work

* Nevertheless, we (or hop9g that IME
statistics can be reliably computed using
short-time information (few bounces)

e To have predictive power, statistics must
depend only on coarse-scale geometry

* In mapsv.., (FIPR) may be reliably computed

using T
> 7 l{ala(t)]’
Z?:—T [{ar|a(t)) R

Voo = Vaa,RMT

Interaction Matrix Element Fluctuations in Quantum Dots ipkp Dresden March 5-8, 2008 —p. 26/29



Short-time calculations of v,

A=1/8 —

Sem cl assi cal
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Summary

* Observable properties of interacting system
computable in terms of single-electron wave
function correlations

« Simple expressions for IME fluctuations In
random wave limit

« Non-Gaussian distribution of IMEs

 Fallure of random wave picture for
experimentally relevant system sizes

» Underestimates, s variance by factor of —4
» Predicts wrong sign for covariance,, — 3
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Summary

« Dynamicaleffects essential to obtain agreement
with experiment
» Inadequacy of leading-order semiclassics for
computing these effects

« Hope for robust predictions using short-time
dynamics combined with long time RMT
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